
J Comb Optim (2008) 16: 263–278
DOI 10.1007/s10878-007-9132-y

Alignments with non-overlapping moves, inversions
and tandem duplications in O(n4) time

Christian Ledergerber · Christophe Dessimoz

Published online: 22 December 2007
© Springer Science+Business Media, LLC 2007

Abstract Sequence alignment is a central problem in bioinformatics. The classical
dynamic programming algorithm aligns two sequences by optimizing over possible
insertions, deletions and substitutions. However, other evolutionary events can be ob-
served, such as inversions, tandem duplications or moves (transpositions). It has been
established that the extension of the problem to move operations is NP-complete. Pre-
vious work has shown that an extension restricted to non-overlapping inversions can
be solved in O(n3) with a restricted scoring scheme. In this paper, we show that the
alignment problem extended to non-overlapping moves can be solved in O(n5) for
general scoring schemes, O(n4 logn) for concave scoring schemes and O(n4) for re-
stricted scoring schemes. Furthermore, we show that the alignment problem extended
to non-overlapping moves, inversions and tandem duplications can be solved with the
same time complexities. Finally, an example of an alignment with non-overlapping
moves is provided.

Keywords Dynamic programming · String to string comparison · Block
operations · Scoring schemes · Biological sequence alignment

1 Introduction

In computational biology, alignments are usually performed to identify the characters
that have common ancestry. More abstractly, alignments can also be represented as

A preliminary version of this paper appeared in the Proceedings of COCOON 2007, LNCS,
vol. 4598, pp. 151–164.

C. Ledergerber (�) · C. Dessimoz
ETH Zurich, Institute of Computational Science, Zurich, Switzerland
e-mail: ledergec@student.ethz.ch

C. Dessimoz
e-mail: cdessimoz@inf.ethz.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159155396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ledergec@student.ethz.ch
mailto:cdessimoz@inf.ethz.ch

264 J Comb Optim (2008) 16: 263–278

edit sequences that transform one sequence into the other under operations that model
the evolutionary process. Hence, the problem of aligning two sequences is to find the
most likely edit sequence, or equivalently, under an appropriate scoring scheme, the
highest scoring edit sequence.

Historically, the only edit operations allowed were insertions, deletions and substi-
tutions of characters, which we refer to as standard edit operations. The computation
of the optimal alignment with respect to standard edit operations is well understood
(Needleman and Wunsch 1970), and commonly used. But in some cases, standard
edit operations are not sufficient to accurately model gene evolution. To take into
account observed phenomena such as inversions, duplications or moves (intragenic
transpositions) of blocks of sequences (Fliess et al. 2002), the set of edit operations
must be extended correspondingly. Such extensions have been studied in the past and
a number of them turned out to be hard (Lopresti and Tomkins 1997). In particular
an extension to general move operations was shown to be NP-complete (Shapira and
Storer 2002) while the complexity of an extension to inversions is still unknown.

The hardness results from above led to the development of approximation al-
gorithms for move operations. The results include a greedy algorithm presented in
Shapira and Storer (2002) which achieves an approximation factor of O(n0.69) as
shown by Chrobak et al. (2005). Furthermore, Cormode and Muthukrishnan (2002)
presented a O(log∗ n logn) factor approximation algorithm for general move opera-
tions which runs in sub-quadratic time.

Alternatively, the problems can be simplified through stronger assumptions. For
alignments with inversions, Schoeninger and Waterman (1992) proposed the simpli-
fication hypothesis that none of the inversions overlap. They found that alignments
with non-overlapping inversions can be computed in O(n6) time. This result was then
further improved by Chen et al. (2004), do Lago and Muchnik (2005), Alves et al.
(2005), Vellozo et al. (2006) where Vellozo et al. (2006) obtained an O(n3) algorithm
for a restricted scoring scheme.

A related problem is the detection of (tandem) repeats resulting from duplications
within a given sequence (Liu and Wang 2006).

In this paper, we extend the non-overlapping hypothesis to moves and tandem du-
plications and show that the problem of computing alignments with non-overlapping
moves, inversions and tandem duplications can be solved in polynomial time. We
provide algorithms with time complexity of O(n5) for general scoring schemes,
O(n4 logn) for concave scoring schemes and O(n4) for restricted scoring schemes.

Since the probability that k independent and uniformly distributed moves be non-
overlapping decreases very rapidly,1 this restriction is only of practical interest for
small k, that is, if such events are very rare. Convincing evidence that this is indeed
the case can be found in Apic et al. (2001). They show that protein domain order is
highly conserved during evolution. It is established in Apic et al. (2001) that most
domains cooccur with only zero, one or two domain families. Since a move opera-
tion of the more elaborate type such as ABCD → ACBD immediately implies that
B cooccurs with three other domains, we conclude that move operations have to be

1For long sequences, this probability converges to 1
(2k−1)!! = 1

1·3·5···2k−1 .

J Comb Optim (2008) 16: 263–278 265

rare. Furthermore, exon shuffling is highly correlated to domain shuffling (Kaess-
mann et al. 2002; Liu et al. 2005; Vibranovski et al. 2005) and hence cannot lead to a
large amount of move operations. Finally, a number of move operations can be found
in the literature (Bashton and Chothia 2002; Shandala et al. 2004). As for tandem
duplication events, articles on domain shuffling reveal that the most abundant block
edit operations are tandem duplications where the duplicate stays next to the original
(Andrade et al. 2001; Marcotte et al. 1999).

In the next section, we present a rigorous definition of the two alignment prob-
lems solved here: an extension to non-overlapping moves and an extension to non-
overlapping moves, inversions and tandem duplications. Then, we provide solutions
to both problems. The last section presents the experimental results for the first prob-
lem.

2 Definition of the problems and preliminaries

2.1 Notation and definitions

In the following, we will denote the two strings to be aligned with S = s1 . . . sn and
T = t1 . . . tm where |S| = n and |T | = m. The i-th character of S is S[i] and S[i..j] =
si+1 . . . sj (note the indices). If j ≤ i, we define S[i..j] = λ. Note, by this definition,
S[i..j] and S[j..k] are disjoint. S = sn . . . s1 denotes the reverse of S and S[i..j] =
S[n − j..n − i] is the reverse of a substring, the substring of the reverse respectively
(note the extension of the bar). Let us denote the score of the standard alignment of
S with T with δ(S,T). The score for substituting a character a with character b is
denoted by an entry in the scoring matrix σ(a, b). To simplify the definition of the
alignment problems we introduce the concept of d-decompositions:

Definition 1 Let a d-decomposition of a string S be a decomposition of S in d

substrings such that the concatenation of all the substrings is equal to S. That is,
S = S1 . . . Sd . Let Md(S) be the set of all d-decompositions of S.

Note that Si denotes a substring of a d-decomposition while si denotes a character.
Let us further define the cyclic string to string comparison problem as introduced by
Maes (1990):

Definition 2 The cyclic string comparison problem is to find the 2-decomposition
S1S2 ∈ M2(S) and T1T2 ∈ M2(T) such that the score δ(S1, T2) + δ(S2, T1) is maxi-
mum. The optimal score is denoted by δc(S,T).

For constant indel penalties there exists always a two decomposition of S = S1S2

such that δc(S,T) = δ(S2S1, T) as proven by Maes (1990).
Finally, we assume that the reader is familiar with the concept of edit graphs as

defined for instance in Myers (1991) or Gusfield (1997).

266 J Comb Optim (2008) 16: 263–278

Fig. 1 Example of a non-overlapping move alignment of S with T

2.2 Definition of alignment with non-overlapping moves

Using d-decompositions and the cyclic string to string comparison problem we can
now define the alignment with non-overlapping moves as follows.

Definition 3 The problem of aligning S and T with non-overlapping moves is to
find d ∈ N and d-decompositions of S and T such that the score

∑d
i=1 max{δ(Si, Ti),

δc(Si, Ti) + σc(lSi1) + σc(lSi2) + σc(lTi1) + σc(lTi2)} is maximal for all d ∈ N, S1 . . .

Sd ∈ Md(S) and T1 . . . Td ∈ Md(T), where lSi1 , lSi2 , lTi1, lTi2 are the lengths of the
blocks involved in the move operation and σc(l) is a penalty function for move oper-
ations. The optimal score is denoted by δm(S,T).

Note that substrings Si, Ti may be empty. However, a substring needs to have a
length of at least 2 to contain a move. Intuitively, in the above definition we align d

pairs of substrings of S and T and allow for each aligned pair of substrings at most
one swap of a prefix with a suffix as defined by the cyclic string comparison problem.
σc(lS1) + σc(lS2) + σc(lT1) + σc(lT2) is a penalty function for such a move operation
and depends on the lengths of the four substrings involved in the move operation.
This decomposition in a sum will be required in the algorithm. An example of a non-
overlapping move alignment is shown in Fig. 1. We now introduce different scoring
schemes that will influence the time complexity of the results.

Definition 4 General scoring scheme: the standard alignment of substrings is done
with affine gap penalties, σc(l) is an arbitrary function and the scoring matrix σ(a, b)

is arbitrary. Concave scoring scheme: the standard alignment of substrings is done
with constant indel penalties, σc(l) is a concave function and the scoring matrix
σ(a, b) is arbitrary. Restricted scoring scheme: the standard alignment of substrings is
done with constant indel penalties and σc(l) is a constant. The scoring matrix σ(a, b)

is selected such that the number of distinct values of DIST[i, j] − DIST[i, j − 1] is
bounded by a constant ψ . For more details on the restricted scoring scheme, we refer
to Landau and Ziv-Ukelson (2001).

Note that although simplistic gap penalty schemes may not always yield bi- olog-
ically meaningful alignments, they are interesting from the theoretical point of view.

2.3 Definition of alignment with non-overlapping moves, inversions and
tandem-duplications

For the sake of simplicity, we assume constant indel penalties and constant penalties
for block operations in the treatment of this problem. However, the scoring schemes
of Sect. 2.2 could be used here as well.

J Comb Optim (2008) 16: 263–278 267

Definition 5 The problem of aligning S and T with non-overlapping moves, rever-
sals and tandem duplications is to find d ∈ N and d-decompositions of S and T such
that the score

∑d
i=1 max{δ(Si, Ti), δc(Si, Ti)+σc, δd(Si, Ti)+σd, δr (Si, Ti)+σr } is

maximal for all d ∈ N, S1 . . . Sd ∈Md(S) and T1 . . . Td ∈ Md(T), where δd(A,B) =
max{δ(AA,B), δ(A,BB)} and δr (A,B) = δ(A,B). Where σc, σd, σr are penalties
for move operations, duplications or reversals respectively. The optimal score is de-
noted by δdrm(S,T).

2.4 Other preliminaries

The notion of DIST[i, j] arrays as used in Landau and Ziv-Ukelson (2001), Schmidt
(1998) can be defined as follows.

Definition 6 Let DISTS,T [i, j],0 ≤ i ≤ j ≤ m denote the score of the optimal align-
ment of T [i..j] with S.

Let us further introduce input vectors I , output vectors O and a matrix OUT .

Definition 7 Let OUTS,T [i, j] = I [i] + DISTS,T [i, j] + σc(j − i),0 ≤ i ≤ j ≤ m.
Then I is an arbitrary vector called input vector and O[j] = maxi OUT[i, j] is called
output vector containing all the column maxima of OUT .

Lemma 1 DISTS,T [i, j] arrays are inverse Monge arrays.

The following lemma will become useful in the selection of the parameters.

Lemma 2 If f (l) is concave then fl(j
′, j) := f (j − j ′), 0 ≤ j ′ ≤ m, 0 ≤ j ≤ m is

inverse Monge.

A proof of these lemmas can be found with the definition of inverse Monge in the
Appendix.

Corollary 1 OUTS,T [i, j] = DISTS,T [i, j] + f (j − i) + I [i] is inverse Monge for
f concave and constant indel penalties.

Proof Due to Lemma 1 DISTS,T arrays with constant indel penalties are inverse
Monge. The rest follows from Definition 8 and Lemma 2 (in Appendix). �

We would like to note here that inverse total monotonicity of OUTS,T would suf-
fice for the following conclusions. However, in the Appendix we show that f (l) has
to be a concave function unless we can prove stronger properties for DISTS,T .

Using our observations and the results from Landau and Ziv-Ukelson (2001);
Schmidt (1998), we can conclude with the following results:

(i) For arbitrary penalty functions σc and affine gap penalties as in the general scor-
ing scheme, we can compute DISTS[0..l],T from DISTS[0..l−1],T in O(m2) as
indicated in the Appendix. Then we can trivially compute the output vector O

as in Definition 7 in O(m2) time by inspecting all entries.

268 J Comb Optim (2008) 16: 263–278

(ii) For concave functions σc and constant indel penalties as in the concave scoring
scheme, we can compute a representation of DISTS[0..l],T from DISTS[0..l−1],T
in O(m logm) time using the data structure of Schmidt (1998). Then since OUT
is inverse Monge, we can compute the output vector O by applying the algo-
rithm of Aggarwal et al. (1987) for searching all column maxima in a Monge
array to OUT . This algorithm will access O(m) entries of the array and hence
the computation of O will take O(m logm) time since we can access an entry
of DIST in the data structure of Schmidt (1998) in O(logm) time.

(iii) For constant functions σc, constant indel penalties and a restricted scoring ma-
trix as in the restricted scoring scheme, we can compute a representation of
DISTS[0..l],T from DISTS[0..l−1],T in O(m) time due to Sect. 6 of Schmidt
(1998) and then compute the output vector O using the algorithm of Landau
and Ziv-Ukelson (2001) in O(m) time.

Note that the O(m logm) and O(m) results rely heavily on the fact that DIST
arrays are Monge. Since this is not true for affine gap penalties (as shown in the
Appendix) these results cannot be easily extended to affine gap penalties. It is how-
ever open whether the algorithm in Landau and Ziv-Ukelson (2001) can be adapted
to include more complex penalty functions for the restricted scoring scheme.

3 Algorithms

3.1 Alignment with non-overlapping moves

Let SCOS,T [i, j] be the score of the optimal alignment of S[0..i] and T [0..j] with
non-overlapping moves. Then the following recurrence relation and initialization of
the table will lead to a dynamic programming solution for the problem.

Base Case: SCOS,T [i,0] = i · σI and SCOS,T [0, j] = j · σI ,

Recurrence: SCOS,T [i, j] = max

⎧
⎪⎪⎨

⎪⎪⎩

SCOS,T [i, j − 1] + σI ,

SCOS,T [i − 1, j − 1] + σ(S[i], T [j]),
SCOS,T [i − 1, j] + σI ,

MOVE,

where

MOVE = max
0≤i′<i,0≤j ′<j

{SCOS,T [i′, j ′] + δc(S[i′..i], T [j ′..j])

+ σc(lSd1) + σc(lSd2) + σc(lTd1) + σc(lTd2)}.

Proof Let us consider an optimal non-overlapping move alignment of S[0..i] with
T [0..j]. Let Sd and Td be the last substrings of the optimal d-composition of S[0..i]
and T [0..j]. Then there are two cases: (1) Sd and Td are aligned using the cyclic string
comparison or (2) Sd and Td are aligned by the standard alignment. In case (1), we
know that SCOS,T [i, j] = SCOS,T [i′, j ′]+ δc(Sd, Td) which is considered in MOVE.

J Comb Optim (2008) 16: 263–278 269

Fig. 2 An illustration of the computation of a move operation in DP_MOVE. Since the scores are additive:
SCO[l, j] = SCO[i, j ′] + DISTS[k..l],T [j ′, j ′′] + DISTS[i..k],T [j ′′, j]. In DP_MOVE this is maximized
for all i < k < l, j ′ < j ′′ < j

In case (2), we are in the usual standard alignment cases. Hence, we consider all the
cases and therefore find the optimal solution. �

With the goal of economizing the computation of the table let us rewrite MOVE as

max
0≤i′<i′′<i

0≤j ′<j ′′<j

{SCOS,T [i′, j ′] + DISTS[i′′..i],T [j ′, j ′′] + σc(j
′′ − j ′) + σc(i − i′′)

+ DISTS[i′..i′′],T [j ′′, j] + σc(j − j ′′) + σc(i
′′ − i′)}.

To compute MOVE for a given i′ and i′′ we can first maximize over j ′ and then
over j ′′. That is, we can first compute the output row of the first DISTS[i′′..i],T array
and then, given that output, compute the output of the second DISTS[i′..i′′],T array.
This leads to the following definitions (illustrated in Fig. 2).

O1[j ′′] = max
0≤j ′<j ′′ SCOS,T [i′, j ′] + DISTS[i′′..i],T [j ′, j ′′]

+σc(j
′′ − j ′) + σc(i − i′′), (1)

O2[j] = max
0≤j ′′<j

O1[j ′′] + DISTS[i′..i′′],T [j ′′, j] + σc(j − j ′′) + σc(i
′′ − i′). (2)

Given DISTS[i′′..i],T [j ′, j ′′] and DISTS[i′..i′′],T [j ′′, j], O1[j ′′] and O2[j] can be
computed efficiently using the results from Sect. 2.4 since both of them are output
vectors as in Definition 7.

DP_MOVE
1: for all i, j such that 0 ≤ i ≤ n,0 ≤ j ≤ m do
2: {base case}
3: SCO[i,0] := i · σI

4: SCO[0, j] := j · σI

5: SCO[i, j] := −∞ if i �= 0, j �= 0

270 J Comb Optim (2008) 16: 263–278

6: end for
7: for i from 0 to n do
8: for j from 1 to m do
9: {standard alignment recurrence}

10: SCO[i, j] := max{SCO[i, j],SCO[i − 1, j] + σI ,SCO[i, j − 1] + σI ,

SCO[i − 1, j − 1] + σ(S[i], T [j])}
11: end for
12: for k from i to n do
13: {move operations}
14: DISTS[i..k],T := calcDist(DISTS[i..k−1],T)

15: for l from k to n do
16: DISTS[k..l],T := calcDist(DISTS[k..l−1],T)

17: O1 := calcOutput(OUT[j ′, j ′′] = SCO[i, j ′] + DISTS[k..l],T [j ′, j ′′] +
σc(j

′′ − j ′) + σc(l − k))

18: O2 := calcOutput(OUT[j ′′, j] = O1[j ′′] + DISTS[i..k][j ′′, j] +
σc(j − j ′′) + σc(k − i))

19: for j from 0 to m do
20: SCO[l, j] := max{SCO[l, j],O2[j]}
21: end for
22: end for
23: end for
24: end for
Where calcDist(DISTS[0..l−1],T) computes DISTS[0..l],T from DISTS[0..l−1],T and
calcOutput(OUT[i, j]) computes O as in Definition 7.

Correctness To show the correctness of the algorithm it suffices to show that we
process all edges in the edit graph and whenever we process an edge (u, v) ∈ E we
have completed the computation of the score of u and any of its predecessors in topo-
logical order (Myers 1991). The computation of the score of a node u is completed
iff all the incoming edges of u have been processed. This can be proven by induction.
In our edit graph, the only edges are either due to the standard alignment, or due to
move operations, as can be seen in the recurrence.

For i = 0, the table is initialized with the base case of the recurrence. For 1 ≤
i ≤ n, assuming that when computing the i-th row of SCO, all edges due to move
operations starting in a row i′ < i have already been processed and the computation
of any node (i′, j) with i′ < i has been completed, we can see that the processing of
the edges due to the standard alignment recurrence ending in the i-th row as done on
lines 8 to 11 is legitimate. After having processed those edges, we have completed the
computation of all edges ending on any node in the i-th row and hence can compute
all edges due to move operations starting on that row on lines 12 to 23. Consequently,
when we advance to the computation of row i + 1 the assumption is again true.

Using the results from Sect. 2.4 we can analyze the runtime of the algorithm and
conclude with the following theorem.

Theorem 1 The problem of aligning S and T , |S| = n, |T | = m, with non-
overlapping moves can be solved in O(n3m2) time and O(nm + m2) space for

J Comb Optim (2008) 16: 263–278 271

general scoring schemes, in O(n3m logm) time and O(nm + m2) space for con-
cave scoring schemes and in O(n3m) time and O(nm) space for restricted scoring
schemes.

3.2 Alignment with non-overlapping moves, inversions, and tandem duplications

The dynamic programming recurrence of non-overlapping move operations extends
nicely to this problem.

Base Case: SCOS,T [i,0] = i · σI and SCOS,T [0, j] = j · σI .

Recurrence: SCOS,T [i, j] = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SCOS,T [i, j − 1] + σI ,

SCOS,T [i − 1, j − 1] + σ(S[i], T [j]),
SCOS,T [i − 1, j] + σI ,

MOVE + σc,

S_DUPLICATE + σd,

T _DUPLICATE + σd,

REVERSE + σr,

where

MOVE = max
0≤i′<i, 0≤j ′<j

{SCOS,T [i′, j ′] + δc(S[i′..i], T [j ′..j])},

S_DUPLICATE = max
0≤i′<i,0≤j ′<j ′′<j

{SCOS,T [i′, j ′] + δ(S[i′..i], T [j ′..j ′′])

+ δ(S[i′..i], T [j ′′..j]},
T _DUPLICATE = max

0≤i′<i′′<i,0≤j ′<j
{SCOS,T [i′, j ′] + δ(S[i′..i′′], T [j ′..j])

+ δ(S[i′′..i], T [j ′..j]},
REVERSE = max

0≤i′<i,0≤j ′<j
{SCOS,T [i′, j ′] + δ(S[i′..i], T [j ′..j])}.

A proof of this recurrence is analogous to the proof for non-overlapping moves
and is omitted.

We have split tandem duplication into tandem duplication of a substring of S

and tandem duplication of a substring of T . We have already shown how MOVE
can be treated and in Alves et al. (2005) it is shown how to handle REVERSE.
S_DUPLICATE can be done as follows. We calculate DISTS[i..k]. Then, we first
use SCOS,T [i, j ′] as input vector for DISTS[i..k] to get O1[j ′] and then use O1[j ′]
as input for DISTS[i..k] to get O2[j]. T _DUPLICATE can be computed by comput-
ing the output vector of DISTS[i..k],T [j ′, j] + DISTS[k..l],T [j ′, j] for the input vector
SCOS,T [i, j ′]. Note that this array is well defined and is again inverse Monge because
it is a sum of two inverse Monge arrays. Using these observations illustrated in Fig. 3,
we can now present our algorithm for this problem.

272 J Comb Optim (2008) 16: 263–278

Fig. 3 An illustration on how duplications are treated

DP_MOVE_INV_DUPL

1: {initialize the table as in DP_MOVE}
2: for i from 0 to n do
3: {compute REVERSE as done in Vellozo et al. (2006)}
4: {compute the standard alignment recurrence as in DP_MOVE}
5: {treat MOVE as done in DP_MOVE}
6: for k from i to n do
7: {S duplication}
8: DISTS[i..k],T := calcDist(DISTS[i..k−1],T)

9: O1 := calcOutput(OUT[j ′, j ′′] = SCO[i, j ′] + DISTS[i..k],T [j ′, j ′′])
10: O2 := calcOutput(OUT[j ′′, j] = O1[j ′′] + DISTS[i..k],T [j ′′, j])
11: for j from 0 to m do
12: SCO[l, j] := max{SCO[l, j],O2[j] + σd}
13: end for
14: end for
15: for k from i to n do
16: {T duplication}
17: DISTS[i..k],T := calcDist(DISTS[i..k−1],T)

18: for l from k to n do
19: DISTS[k..l],T := calcDist(DISTS[k..l−1],T)

20: O := calcOutput(OUT[j ′, j] = SCO[i, j ′] + DISTS[i..k],T [j ′, j] +
DISTS[k..l],T [j ′, j])

21: for j from 0 to m do
22: SCO[l, j] := max{SCO[l, j],O[j] + σd}
23: end for
24: end for
25: end for
26: end for

A proof of the correctness of the algorithm is analogous to the proof for
DP_MOVE. This proof however reveals that it is important to process edges due
to REVERSE before the standard alignment recurrence.

Theorem 2 The problem of aligning S and T with non-overlapping moves, reversals
and tandem duplications can be solved in O(n3m2) time and O(nm + m2) space

J Comb Optim (2008) 16: 263–278 273

for general scoring schemes, in O(n3m logm) time and O(mn + m2) space for con-
cave scoring schemes and in O(n3m) time and O(nm) space for restricted scoring
schemes, where n = |S| and m = |T |.

3.3 Asymmetric alignments with tandem duplications

If we restrict the alignment problem to tandem duplications it can be seen in
DP_MOVE_INV_DUPL that considering duplication events of substrings of T is the
bottleneck in terms of time. That is, if we restrict the problem to reversals and tan-
dem duplication of substrings of S (e.g. no tandem duplications of substrings of T)
we can solve the problem in O(n2m) time. However, in this case the distance mea-
sure is no more symmetric e.g. δrd(S,T) �= δrd(T ,S) which is undesirable in most
applications. Furthermore, if the symmetric model reveals tandem duplications it is
not guaranteed that the asymmetric model will do so too. Still, this is a heuristic
approach for detecting tandem duplication events more efficiently.

4 Implementation and experiments

We have implemented an O(n5) version of the DP_MOVE with constant gap penal-
ties in C.2 Inversions and tandem duplications were not considered. This implemen-
tation has proven useful for aligning sequences of up to about 400 AA, taking a few
hours to compute the alignment. We have tested the algorithm on real data and were
able to confirm a number of examples found in Fliess et al. (2002). In addition we
run the algorithm on an example found in Shandala et al. (2004). This alignment is
shown in Fig. 4 and is compared with a standard alignment obtained from Darwin
(Gonnet et al. 2000).

5 Conclusions

In this paper, we have presented a number of new alignment problems extending the
notion of non-overlapping inversions to non-overlapping moves and tandem duplica-
tions. For all of them we found algorithms that solve the problems exactly and can
be implemented to run in O(n2) space and O(n5), O(n4 logn) or O(n4) time de-
pending on the scoring scheme used. We believe that this approach may yield new
insights by finding the best alignment of two sequences, and think that it is justifiable
due to the rarity of such events in nature. Using the implementation of the O(n5)

variant of the algorithm restricted to non-overlapping moves, we were able to align
previously identified cases of pairs of sequences with move operations. Furthermore,
these experiments also showed the necessity of an O(n4 logn) implementation to be
applicable to large sequences, which are more likely to contain a move.

Acknowledgements We thank Manuel Gil, Gaston H. Gonnet, Gina M. Cannarozzi and five anonymous
referees for helpful critiques and discussions.

2Available from the authors upon request.

274 J Comb Optim (2008) 16: 263–278

F
ig

.4
(C

ol
or

on
lin

e)
A

n
ex

am
pl

e
fo

un
d

in
Sh

an
da

la
et

al
.(

20
04

).
In

th
is

fig
ur

e
w

e
co

m
pa

re
an

al
ig

nm
en

t
co

m
pu

te
d

w
ith

ou
r

ne
w

al
go

ri
th

m
an

d
an

al
ig

nm
en

t
do

ne
w

ith
D

ar
w

in
(G

on
ne

t
et

al
.

20
00

).
T

he
br

ac
ke

ts
’[

’
an

d
’]

’
in

di
ca

te
th

e
bo

un
da

ry
of

th
e

su
bs

tr
in

gs
co

nt
ai

ni
ng

a
m

ov
e

op
er

at
io

n
an

d
’|’

m
ar

ks
th

e
po

si
tio

n
of

th
e

sp
lit

.
Se

q1
:

Q
7T

T
49

A
A

10
05

-1
24

1;
Se

q2
:Q

9V
X

E
3

A
A

11
12

-1
36

7.
U

si
ng

th
e

an
no

ta
tio

n
of

SM
A

R
T

w
e

ha
ve

m
ar

ke
d

th
e

do
m

ai
ns

in
vo

lv
ed

in
th

e
m

ov
e

op
er

at
io

n.
Pl

ec
ks

tr
in

ho
m

ol
og

y
ph

os
ph

ol
ip

id
bi

nd
in

g
do

m
ai

n
is

sh
ow

n
in

bl
ue

,p
ro

te
in

ki
na

se
C

-t
yp

e
di

ac
yl

gl
yc

er
ol

bi
nd

in
g

do
m

ai
n

is
sh

ow
n

in
re

d

J Comb Optim (2008) 16: 263–278 275

Fig. 5 For concave functions
any point on a secant is below
the function

Appendix

Concave scoring scheme

In this section we will first prove that the condition of a concave scoring scheme is
sufficient by proving Lemmas 1 and 2. We also establish that the condition is nec-
essary, that is, it is not guaranteed that the algorithm of Aggarwal et al. (1987) will
compute the correct result without it.

For a proof of Lemmas 1 and 2 we have to define the notion of inverse Monge
arrays (Monge 1781) first:

Definition 8 A matrix M[0 . . . n;0 . . .m] is inverse Monge if for all i = 1 . . . n, j =
1 . . .m

M[i, j] + M[i − 1, j − 1] ≥ M[i − 1, j] + M[i, j − 1].
Furthermore we denote a matrix M[0 . . . n;0 . . .m] inverse totally monotone if for all
0 ≤ i1 < i2 ≤ n,0 ≤ j1 < j2 ≤ m

M[i1, j1] < M[i1, j2] ⇒ M[i2, j1] < M[i2, j2].

We note that total monotonicity is a weaker property than the Monge property.
That is, inverse Monge implies inverse totally monotone, but the converse is not true.

Then the proof for Lemma 2 goes as follows.

Proof

fl(j
′ − 1, j − 1) + fl(j

′, j) = 2f (j − j ′)

≥ 2
f (j − j ′ − 1) + f (j − j ′ + 1)

2

= fl(j
′ − 1, j) + fl(j

′, j − 1),

where the inequality follows from the definition of concave. A function f is concave
iff f (tx + (1 − t)y) ≥ tf (x) + (1 − t)f (y) holds for all x, y ∈ R, t ∈ [0,1]. In other
words every point on a secant is below the function. In the proof we used t = 1/2 as
shown in Fig. 5. �

Note that if any three points f (j − 1), f (j), f (j + 1),0 < j < m are not in con-
cave position the resulting array will not be inverse Monge. That is, Lemma 2 holds

276 J Comb Optim (2008) 16: 263–278

Fig. 6 1 illustrates that the path from vertex (0, i) to (n, j −1) and the path from vertex (0, i −1) to (n, j)

in the grid graph have to cross in a common vertex v. 2 gives a counter example for affine gap penalties

with equivalence if we restrict the definition of concave to values in {0, . . . ,m+ 1} ⊆
N.

The proof for Lemma 1 is analogous to the proof in Schmidt (1998). However, we
extended it to affine gap penalties.

Proof Let σINIT < 0 denote the gap opening penalty of an affine scoring scheme.
Furthermore let |a| be the length of path a and a · b be the concatenation of path a

with path b.
The paths represented by DISTS,T [i − 1, j] =: |a · b| and DISTS,T [i, j − 1] =:

|c · d| have to cross properly in a vertex v as shown in Fig. 6. Therefore, we have

DISTS,T [i − 1, j] + DISTS,T [i, j − 1]
= |a · b| + |c · d|
≤ |a · d| + |b · c| − 2σINIT

≤ |g| + |f | − 2σINIT

= DISTS,T [i, j] + DISTS,T [i − 1, j − 1] − 2σINIT

where the first inequality follows from the observation, that reconnecting the paths
splits at most two gaps and hence increases the number of gaps at most by two. The
second inequality follows since we are maximizing the lengths of the paths.

Hence DIST arrays are Monge for σINIT = 0. �

In Fig. 6(2) an example for affine gap penalties is given which illustrates that DIST
arrays may not be Monge for large gap opening penalties.

As noted in Sect. 2.4 it would suffice to prove that OUTS,T is totally monotone.
The following lemma however shows that if we drop one of the assumptions the
resulting OUT array is not guaranteed to be totally monotone.

Lemma 3 Let A,B ∈ R
n×m be two arrays and let C = A+B . Then C is guaranteed

to be inverse totally monotone iff A and B are inverse Monge. That is, if B is not
inverse Monge we can always find A, A inverse Monge, such that C is not inverse
totally monotone.

Proof If A and B are inverse Monge then C is so too and hence C it also inverse
totally monotone.

J Comb Optim (2008) 16: 263–278 277

For the other direction first consider only the case that A,B ∈ R
2×2 with

A =
[

a b

c d

]

, B =
[

e f

g h

]

and hence C =
[

a + e b + f

c + g d + h

]

.

Assuming B is not inverse Monge e + h < g + f e.g. (g − h)+ (f − e) = ε > 0. We
then choose A as b = c = 0 and a = f − e − ε/4, d = g − h − ε/4.

We thus have a + d = g − h + f − e − ε/2 = ε/2 > 0 = b + c and hence A is
inverse Monge. Further more we have a + e = f − ε/4 < f = b + f and c + g =
g > g − ε/4 = d + h and hence C is not inverse totally monotone.

The general case follows since an array is Monge iff every 2 × 2 sub-array is
Monge and an array is totally monotone iff every 2 × 2 sub-array is totally monotone
and finally we can enlarge A by duplicating columns/rows. �

Finally, we would like to note, that it is still possible to allow affine gap penalties
by relaxing one of the conditions in favor of the other. That is, if

DISTS,T [i − 1, j] + DISTS,T [i, j − 1] + 2σINIT

≤ DISTS,T [i, j] + DISTS,T [i − 1, j − 1]
then we have to insist on

fl(i − 1, j) + f (i, j − 1) − 2σINIT ≤ fl(i, j) + fl(i − 1, j − 1)

such that the sum is still Monge. This may not be favorable in practical models. The
converse, e.g. relaxing the condition on the penalty functions and allowing slightly
convex functions, appears to be impossible because we cannot enforce a stronger
condition on the DIST arrays.

Extension of DIST arrays

This simple algorithm is inspired by Schmidt (1998). It is repeated here to provide an
idea on how to extend our algorithms to affine gap penalties.

For the base cases we observe that DISTS,T [i, j] = BS,T [i..j][n, j − i] in particular
for constant indel penalties DISTS[0..0],T [i, j] = (j − i) · σI and DISTS[0..l],T [i, i] =
l · σI .

By mapping the standard alignment recurrence to DIST arrays we obtain:

DISTS[0..l],T [i, j] = max

⎧
⎨

⎩

DISTS[0..l−1],T [i, j] + σI ,

DISTS[0..l−1],T [i, j − 1] + σ(S[l], T [j]),
DISTS[0..l],T [i, j − 1] + σI .

Therefore, we can compute DISTS[0..l],T given DISTS[0..l−1],T in O(m2) time.
This recurrence can be extended to include affine gap penalties by mapping the more
complicated recurrence for the standard alignment with affine gap penalties to DIST
arrays.

278 J Comb Optim (2008) 16: 263–278

References

Aggarwal A, Klawe MM, Moran S, Shor P, Wilber R (1987) Geometric applications of a matrix-searching
algorithm. Algorithmica 2(1):195–208

Alves CER, do Lago AP, Vellozo AF (2005) Alignment with non-overlapping inversions in o(n3 logn)

time. In: Proceedings of GRACO 2005. Electronic Notes in Discrete Mathematics, vol 19. Elsevier,
Amsterdam, pp 365–371

Andrade MA, Perez-Iratxeta C, Ponting CP (2001) Protein repeats: structures, functions, and evolution.
J Struct Biol 134(23):117–131

Apic G, Gough J, Teichmann SA (2001) Domain combinations in archaeal, eubacterial and eukaryotic
proteomes. J Mol Biol 310(2):311–325

Bashton M, Chothia C (2002) The geometry of domain combination in proteinsm. J Mol Biol 315(4):927–
939

Chen ZZ, Gao Y, Lin G, Niewiadomski R, Wang Y, Wu J (2004) A space-efficient algorithm for sequence
alignment with inversions and reversals. Theor Comput Sci 325(3):361–372

Chrobak M, Kolman P, Sgall J (2005) The greedy algorithm for the minimum common string partition
problem. ACM Trans Algorithms 1(2):350–366

Cormode G, Muthukrishnan S (2002) The string edit distance matching problem with moves. In:
SODA ’02: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA. Society for Industrial and Applied Mathematics, pp 667–676

do Lago AP, Muchnik I (2005) A sparse dynamic programming algorithm for alignment with non-
overlapping inversions. Theor Inform Appl 39(1):175–189

Fliess A, Motro B, Unger R (2002) Swaps in protein sequences. Proteins 48(2):377–387
Gonnet GH, Hallett MT, Korostensky C, Bernardin L (2000) Darwin v2.0: an interpreted computer lan-

guage for the biosciences. Bioinformatics 16(2):101–103
Gusfield D (1997/1999) Algorithms on strings, trees, and sequences: computer science and computational

biology. Press Syndicate of the University of Cambridge, Cambridge
Kaessmann H, Zöllner S, Nekrutenko A, Li WH (2002) Signatures of domain shuffling in the human

genome. Genome Res 12(11):1642–1650
Landau GM, Ziv-Ukelson M (2001) On the common substring alignment problem. J Algorithms

41(2):339–354
Liu X, Wang L (2006) Finding the region of pseudo-periodic tandem repeats in biological sequences.

Algorithms Mol Biol 1(1):2
Liu M, Walch H, Wu S, Grigoriev A (2005) Significant expansion of exon-bordering protein domains

during animal proteome evolution. Nucleic Acids Res 33(1):95–105
Lopresti D, Tomkins A (1997) Block edit models for approximate string matching. Theor Comput Sci

181(1):159–179
Maes M (1990) On a cyclic string-to-string correction problem. Inf Process Lett 35(2):73–78
Marcotte EM, Pellegrini M, Yeates TO, Eisenberg D (1999) A census of protein repeats. J Mol Biol

293(1):151–160
Monge G (1781) Déblai et remblai. Mémoires de l’Académie Royale des Sciences
Myers EW (1991) An overview of sequence comparison algorithms in molecular biology. Technical report

91-29, Univ of Arizona, Dept of Computer Science
Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino

acid sequence of two proteins. J Mol Biol 48(3):443–453
Schmidt JP (1998) All highest scoring paths in weighted grid graphs and their application to finding all

approximate repeats in strings. SIAM J Comput 27(4):972–992
Schoeninger M, Waterman MS (1992) A local algorithm for dna sequence alignment with inversions. Bull

Math Biol 54(4):521–536
Shandala T, Gregory SL, Dalton HE, Smallhorn M, Saint R (2004) Citron kinase is an essential effector

of the pbl-activated rho signalling pathway in drosophila melanogaster. Development 131(20):5053–
5063

Shapira D, Storer JA (2002) Edit distance with move operations. In: CPM ’02: Proceedings of the 13th
annual symposium on combinatorial pattern matching, London, UK. Springer, Berlin, pp 85–98

Vellozo AF, Alves CER, do Lago AP (2006) Alignment with non-overlapping inversions in o(n3)-time.
In: WABI, LNCS, vol 4175. Springer, Berlin

Vibranovski MD, Sakabe NJ, de Oliveira RS, de Souza SJ (2005) Signs of ancient and modern exon-
shuffling are correlated to the distribution of ancient and modern domains along proteins. J Mol Evol
61(3):341–350

	Alignments with non-overlapping moves, inversions and tandem duplications in O(n4) time
	Abstract
	Introduction
	Definition of the problems and preliminaries
	Notation and definitions
	Definition of alignment with non-overlapping moves
	Definition of alignment with non-overlapping moves, inversions and tandem-duplications
	Other preliminaries

	Algorithms
	Alignment with non-overlapping moves
	Correctness

	Alignment with non-overlapping moves, inversions, and tandem duplications
	Asymmetric alignments with tandem duplications

	Implementation and experiments
	Conclusions
	Acknowledgements
	Appendix
	Concave scoring scheme
	Extension of DIST arrays

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

