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Abstract
Introduction Magnetization transfer (MT) is sensitive to the
macromolecular environment of water protons and thereby
provides information not obtainable from conventional
magnetic resonance imaging (MRI). Compared to standard
methods, MT-sensitized balanced steady-state free preces-
sion (bSSFP) offers high-resolution images with significant-
ly reduced acquisition times. In this study, high-resolution
magnetization transfer ratio (MTR) images from normal
appearing brain structures were acquired with bSSFP.
Methods Twelve subjects were studied on a 1.5 T scanner.
MTR values were calculated from MT images acquired in
3D with 1.3 mm isotropic resolution. The complete MT
data set was acquired within less than 3.5 min. Forty-one
brain structures of the white matter (WM) and gray matter
(GM) were identified for each subject.
Results MTR values were higher for WM than GM. In
general, MTR values of the WM and GM structures were in
good accordance with the literature. However, MTR values
showed more homogenous values within WM and GM
structures than previous studies.
Conclusions MT-sensitized bSSFP provides isotropic
high-resolution MTR images and hereby allows assess-
ment of reliable MTR data in also very small brain
structures in clinically feasible acquisition times and is

thus a promising sequence for being widely used in the
clinical routine. The present normative data can serve as
a reference for the future characterization of brain
pathologies.

Keywords Magnetization transfer ratio (MTR) . Balanced
steady-state free precession (bSSFP) . High-resolution
imaging . Normative MTR values

Introduction

Magnetization transfer is based on the exchange of spin
magnetization between free water protons (the so-called
liquid pool) and those bound to macromolecules (“semi-
solid or solid pool”) [1–4], thus providing information
beyond conventional T1- and T2-weighted MRI.

In its simplest form of quantification, magnetization transfer
(MT) effects are condensed into so-called magnetization
transfer ratio (MTR) images based on the acquisition of two
images, i.e., one with and one without MT saturation of
semisolid protons, respectively [1, 5–7]. Although MTR
imaging has been applied for the characterization of different
pathologies, including brain infarction, tumors, and white
matter (WM) lesions [3, 5, 8–14], this technique is still not a
widely established method in the daily clinical routine,
especially due to its long acquisition times. In addition,
MTR suffers from its difficulty to be reproduced across
different studies as it is very sensitive to pulse sequence
details and relaxation properties [1, 7, 12, 15, 16]. Further-
more, clinical limitations on power absorption, i.e., specific
absorption rate (SAR), preclude a complete saturation of the
restricted pool protons, hereby making data interpretation and
standardization difficult [15, 17]. In addition, the comparabil-
ity of MTR values is complicated by several technical issues,
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such as field strength, MT saturation and sequence properties,
B1-inhomogeneity, and subject positioning [18]. However,
reproducibility and standardization of MTR data are prereq-
uisites for diagnostic accuracy, therapeutic trials, and multi-
center studies [16].

So far, two major methods for MT using MT-prepared
spoiled gradient echo (SPGR) methods have been described
in the literature that mainly differ from the state in which
magnetization is measured, that is: either in steady-state [2,
12, 17, 19, 20], or during the transition to steady-state [4,
13, 14].

Only recently, a new MT-sensitized method using
balanced steady-state free precession (bSSFP) was pro-
posed [21, 22], which is based on a modification of the
duration of the radiofrequency (RF) pulses used. In contrast
to common MT-prepared imaging, bSSFP provides high-
resolution whole brain MTR within short and thus clinically
feasible acquisition times. Since MT-sensitized bSSFP
circumvents the need for additional MT saturation pre-
pulses, repetition times can be kept exceptionally short (i.e.,
typically within 3–5 ms yielding an acquisition time of
3.5 min with 1.3 mm isotropic resolution) and the missing
off-resonance pre-pulses additionally promise a reduced
sensitivity to B1 field inhomogeneities and subject posi-
tioning [23]. Furthermore, the signal-to-noise ratio (SNR)
of 3D MT-bSSFP is typically about two times the SNR of
3D MT-prepared SPGR [22].

In this study, normal appearing cerebral structures from 12
healthy volunteers were acquired using MT-sensitized bSSFP
with an isotropic resolution of 1.3 mm in order to create a
normative high-resolution MTR data set that may serve as a
source of reference for the evaluation of pathologies in the
future. In addition, MTR values were compared with
previously published data achieved byMT-SPGR [12, 24–26].

Materials and methods

Image acquisition

All measurements were obtained at a 1.5 T MR clinical
whole body scanner (Avanto, Siemens Medical Solutions,
Erlangen, Germany), equipped with a 12-channel head coil.
Twelve healthy subjects (six males and six females, age
range 26–45 years, mean age 36 years) underwent an
imaging protocol including an axial unenhanced turbo spin-
echo (TSE) T1-weighted sequence, an axial TSE T2-
weighted sequence, and an axial turbo inversion recovery
magnitude sequence for anatomical exclusion of incidental
findings. Images from a sagittal 3D inversion recovery
magnetization prepared rapid gradient echo (repetition time/
echo time (TR/TE)=1,760 ms/3.35 ms, inversion time=
906 ms, α=7°, bandwidth=190 Hz/Pixel) were used for

anatomical reference. For calculation of MTR maps, MT-
sensitized bSSFP was used (α=35°, bandwidth=790 Hz/
Pixel, matrix size 192×192×144, yielding 1.3 mm isotropic
resolution) with varying RF pulse duration (TRF), having
TR/TRF=2.92/0.23 ms and TR/TRF=4.78/2.1 ms of the
MT- and non-MT-sensitized image acquisition, respectively
[22]. The complete MT data set (MT- and non-MT-
sensitized images) was acquired within less than 3.5 min.

Image post-processing

After brain segmentation and image registration using FSL
[27] and AFNI [28], MTR maps were calculated from two
bSSFP acquisitions with different pulse durations (TMT=
0.23 ms, Tnon-MT=2.1 ms) according to MTR=100 (S0−
SMT)/S0 [%], where S0 and SMT corresponded to the signal
amplitude measured with Tnon-MT and TMT, respectively [7].
Forty-one (five unilateral, 36 bilateral) brain structures were
identified and corresponding masks were drawn by an
experienced radiologist, covering: (1) the deep WM and
gray matter (GM) of all four lobes (frontal, temporal,
parietal, and occipital) bilaterally; (2) the head of the caudate
nucleus, the putamen, the globus pallidus, the thalamus, the
mamillary body, the amygdala, the hippocampus, the anterior
and posterior limb of the internal capsule (IC), and the crus
cerebri bilaterally; and (3) as midline structures the anterior
commissure and the four different parts of the corpus
callosum (CC) (rostrum, genu, body, and splenium). For
the frontal, temporal, and occipital lobes, masks were created
at the transition from the superior to the medial gyrus and
sulcus, respectively, whereas the masks for the parietal lobe
were drawn at the transition from the parietal lobulus to the
angular gyrus. The lateral borders of the GM masks of the
cerebral cortex were omitted to avoid inclusion of extracere-
bral or adjacent WM tissue. For all the other cerebral
structures, masks did not include the structures’ anatomical
margins to avoid partial volume effects from adjacent tissue
or cerebral spinal fluid.

Due to some cases’ relevant differences in the volunteers’
head configuration and size of evaluated brain structures, all
masks were drawn for each subject individually using FSL [27]
(FSL, Oxford, UK, www.fmrib.ox.ac.uk/fsl). Bilateral masks
were drawn symmetrically in both hemispheres. All masks
were reviewed by a second experienced radiologist for
anatomical localization and size. Examples for WM and GM
structure masks are presented in Fig. 1. Evaluation of created
MTR masks was performed using Matlab (The MathWorks,
Inc., Natick, MA, USA; Fig. 2).

Statistical analysis

For the analysis of differences between the right and left
hemisphere (side), the WM and GM tissue (type of tissue), and
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the single subjects, two-way analysis of variances (ANOVA)
were performed, as this test enables the assessment of several
grouping variables simultaneously. For the assessment of
differences between types of brain tissue (WM/GM) and side
(right/left) a two-way ANOVA based on MTR values was
factored into side (right/left) and type of brain tissue (WM/
GM), whereby only the bilateral structures were considered. In
a second two-way ANOVA (based on MTR values) factored
into type of brain tissue (WM/GM) and all 12 subjects, both
bilateral and midline structures were included. Differences
were considered to be statistically significant for p<0.01.

For a more detailed assessment of the differences within
the single WM and GM structures, respectively, a post hoc

analysis for the evaluation of found significant differences
in the prior ANOVA tests was performed using Tukey’s
multiple comparisons procedure. This was done for both
series of the ANOVA analysis.

Results

In general, MTR was higher in WM as compared to GM
structures, and average (over the subjects) MTR values of
the single brain structures investigated are summarized in
Tables 1 and 2.

Fig. 2 MTR parametric maps in the axial (left), coronal (middle), and sagittal (right) plane, obtained from a healthy subject by the 3D-bSSFP
method with an isotropic resolution of 1.3 mm

Fig. 1 Sagittal (left), axial (middle), and coronal (right) images showing masks located in the splenium of the corpus callosum (upper row), head
of the left caudate nucleus (middle row), and white matter of the right frontal lobe (lower row)

161Neuroradiology (2011) 53:159–167



For WM, highest MTR values were found in the frontal
lobe, followed by the splenium, genu, and rostrum of the CC,
whereas lowestMTR values were observed in the crus cerebri.

For GM, lowest MTR values were found in the frontal
cortex and caput nucleus caudatus, whereas the thalamus,
amygdala, and globus pallidus showed the highest MTR
values. Despite of the general higher MTR in WM, the
higher MTR values for the thalamus (GM structure) were
not statistically significantly different from MTR values for
the anterior commissure and crus cerebri (WM structures).

No significant MTR difference between the right and left
hemisphere was observed for all bilateral WM and GM
structures investigated. However, the ANOVA tests showed
a significant difference between the average of the 12
subjects and the average in WM and GM structures,
respectively (F value for the WM structures 78.53 with a
p (>F) of 0.0000; F value for the GM structures 24.60 with
a p (>F) of 0.0000).

The post hoc analyses of the MTR assessing the
differences within all single WM and GM structures,
respectively, showed a number of highly significant
differences (Figs. 3, 4, 5, and 6).

Among the WM structures a significant difference was
found between the anterior and the posterior limb of the
internal capsule. Here, MTR values were significantly
higher in the posterior as compared to the anterior limb
(Figs. 3 and 5). Furthermore, highly significant differences
within WM structures were observed in the posterior limb
of the internal capsule as compared to the crus cerebri as
well as for the frontal WM in comparison to the crus cerebri
(Figs. 3 and 5).

Within the GM tissue highly significant differences in
MTR were observed between the frontal GM and amygda-
la, caput nucleus caudatus and amygdala, thalamus and
frontal GM as well as the thalamus and caput nucleus
caudatus (Figs. 4 and 6).

WM structure Present study 3D-bSSFP Mehta et al. [24] 2D T1-SPGR

MTR [%] ΔMTR (%) MTR [%] ΔMTR (%)

WM frontal 43.9±0.2 +5.1 36.6±0.5 +0.6

CC splenium 43.8±1.1 +4.8 37.7±0.3 +3.7

CC genu 43.5±2.1 +4.1 40.7±0.3 +11.9

CC rostrum 43.4±1.9 +3.9 n.a. n.a.

WM parietal 43.2±0.3 +3.4 34.6±0.5 −4.9
CC truncus 43.2±1.8 +3.4 n.a. n.a.

WM temporal 42.5±0.3 +1.7 38.2±0.3 +5.0

Int. capsule, crus posterior 42.4±0.4 +1.5 38.1±0.3 +4.8

WM occipital 41.9±0.2 +0.3 38.2±0.2 +5.0

In. capsule, crus anterior 39.2±0.3 −62 34.3±0.3 −5.7
Anterior commissure 37.3±2.7 −10.7 29.9±0.7 −17.8
Crus cerebri 37.1±0.5 −11.2 35.4±0.6 −2.7

Table 1 MTR values (%, mean
±SD) for different white matter
brain structures of the present
study and the study of Mehta et
al.

Additionally, relative differences
(ΔMTR) to the mean MTR
value (41.8% and 36.4%) across
all structures are given for both
studies

GM structure Present study 3D-bSSFP Mehta et al. [24] 2D T1-SPGR

MTR [%] ΔMTR (%) MTR [%] ΔMTR (%)

Thalamus 37.9±0.3 +10.3 28.6±0.4 +4.7

Amygdala 36.3±0.2 +5.7 n.a. n.a.

Globus pallidus 36.1±0.5 +5.1 28.4±0.5 +4.0

Hippocampus 34.7±0.2 +1.0 n.a. n.a.

Putamen 34.7±0.2 +1.0 27.4±0.5 +0.3

GM occipital 34.7±0.5 +1.0 27.5±0.2 +0.7

Corpora mamillaria 33.9±0.5 −1.3 n.a. n.a.

GM temporal 33.5±0.3 −2.5 28.4±0.4 +4.0

GM parietal 33.2±0.8 −3.4 24.6±0.4 −9.9
Caudate nucleus 31.7±1.0 −7.7 27.7±0.4 −1.4
GM frontal 31.2±0.9 −9.2 25.9±0.2 −5.2

Table 2 MTR values (%, mean
±SD) for different gray matter
brain structures of the present
study and the study of Mehta et
al.

Additionally, relative differences
(ΔMTR) to the mean MTR
value (34.4% and 27.3%) across
all structures are given for both
studies
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Concerning the deep WM and the cortex also several
statistical differences for MTR between matched pairs of
WM and GM structures, respectively, could be observed
between the different regions (frontal, temporal, parietal,
and occipital; Figs. 3, 4, 5, and 6).

Comparison of relative MTR values of same brain
structures were overall in good accordance with the
study of Mehta et al. [24], the hitherto largest and most
complete study assessing normative MTR data [22]
(Tables 1 and 2).

Discussion

Our MTR results did in overall agree with those of prior
studies from normal brain structures [12, 24–26], especially
with the larger MTR study by Mehta et al. [24]. For
example, the CC, cerebral WM, and internal capsule
showed maximum MTR, whereas for the GM the highest
MTR was observed in the thalamus, according to the study
of Mehta et al. [24].

As in the study of Mehta et al. [24], the posterior limb of
the internal capsule showed significantly higher MTR than
the anterior limb. One hypothesis could be that the long and
large-diameter axons composing the corticospinal tract and
whose cell bodies reside in the primary motor cortex might
be a major cause for the higher MTR observed in the
posterior limb of the internal capsule, reflecting high
myelination.

However, slight differences were observed between
studies. For instance, for the CC the highest MTR was

found in the splenium, whereas Mehta et al. [24] observed
highest MTR in the genu. In contrast to the study of Mehta
et al. [24], but in accordance with the study of Ramani et al.
[12] the highest MTR value within the deep WM was
detected in the frontal lobe. For the GM structures, in this
study the MTR for the thalamus was not significantly
different from the MTR for the WM structures of the
anterior commissure and crus cerebri, differing from the
results by Mehta et al. [24].

MTR values in general and especially for the CC and for
WM appear to be more homogeneous in this study as
compared to values found by Mehta et al. [24]. This is most
likely due to hardware improvements, in particular improve-
ments in B1 field homogeneity, over the past 15 years.

One advantage of the MT-sensitized bSSFP technique is
its high resolution. When regarding the MTR values within
the WM and GM structures, respectively, each of the two
types of brain tissue showed more homogeneous values
than in the study of Mehta et al. [24]. Furthermore, the high
resolution enabled the evaluation of reliable MT values in
even very small brain structures, as reflected by their small
standard deviation. Thus, the smaller and more difficult to
delineate structures like the corpora mamillaria and hippo-
campus, which MTR values have not been described
before, showed quite homogeneous values among all GM
structures in our study. Larger deviations like the notably
lower MTR value of the anterior commissure in contrast to
the other WM structures in the study of Mehta et al. [24]
can most likely be attributed to the small size of this
structure being impaired by partial volume effects, given
the slice thickness of 5 mm in the study of Mehta et al.

Fig. 3 Confidence intervals on
Tukey’s honest significant dif-
ferences between the means of
white matter structures with a
95% family-wise probability of
coverage for MTR (ANOVA
factored in side (left/right) and
structure)
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[24]. This is an important factor, as high resolution enables
more accurate evaluation of small structures, hereby enhanc-
ing diagnostic reliability and accuracy. This might be
especially important for the detection of very small lesions
or, e.g., incipient MS lesions that are too small or too subtle to
be assessed with low-resolution MTR. In addition, the signal
of bSSFP is considerably higher than that of 3D-SPGR
(typically around two times), yielding higher SNR at
exceptionally short repetition times (3–5 ms).

A further advantage of MT-based bSSFP over MT-SPGR
is the markedly lower and consequently clinically applica-
ble acquisition time. Especially the need of the magnetiza-
tion preparation step, i.e., the addition of the MT-sensitizing
off-resonance pulse prior to the proper MT measurement in

standard methods using MT-SPGR, makes these sequences
very time consuming, requiring TRs exceeding 20 ms. This
is especially a problem, e.g., in situations when agitated
patients are scanned, or if scan time is limited due to the
restricted therapeutic time window, like in stroke patients.
MT-sensitized bSSFP, however, circumvents the need for
additional MT saturation pre-pulses since the on-resonant
RF pulses used for imaging are responsible for the MT
effect. Therefore, repetition times and consequently the
overall acquisition time can be kept exceptionally short.
Similar to standard MTR sequences, SAR is a limiting
factor with MT-sensitized bSSFP, which might become an
issue with increasing field strength. Nevertheless, the
feasibility of MTR scans with MT-sensitized bSSFP has

Fig. 4 Confidence intervals on
Tukey’s honest significant dif-
ferences between the means of
gray matter structures with a
95% family-wise probability of
coverage for MTR (ANOVA
factored in side (left/right) and
structure)
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been demonstrated also at ultra-high field strengths [29].
Whether off-resonance or on-resonance irradiation concepts
with similar irradiation power are more advantageous in
terms of the achievable contrast-to-noise ratio has been a
matter of controversy over the last two decades. Whereas
several authors claimed an advantage for on-resonance
irradiation concepts [30, 31], other studies indicated very
comparable results [32, 33]. From this, except for the gain
of a factor two in the SNR, similar SAR properties are
expected for MT-sensitized bSSFP as compared to standard
off-resonance MT-prepared SPGR methods.

Limitations of the study include the small number of
subjects examined and their narrow age range (26–
45 years), preventing a subdivision of the patient pool into

different age ranges. MTR has been shown to increase
gradually with normal brain maturation during childhood
[34], whereas in the elderly small, but significant age-
related reductions in MTR in selective WM regions have
been reported [26]. However, in the study of Mehta et al.
[24], in which a larger patient pool with a wide age range
was studied and subdivided into different age groups, no
significant differences in MTR values could be observed
across the different age groups up to the age of 80 years.
Rovaris et al. [35], who among others studied the influence
of aging on MTR, did also not find a significant age-related
correlation for MTR. Hence, further studies are necessary in
order to evaluate to what extent MTR reflects changes in
the normal aging adult brain.

Fig. 5 Confidence intervals on
Tukey’s honest significant dif-
ferences between the means of
white matter structures with a
95% family-wise probability of
coverage for MTR (ANOVA
factored in structure and subject)
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Due to the intrinsic MT-weighting of bSSFP without
additional RF pulses, making this sequence much less
sensitive to pulse sequence details and therefore theoreti-
cally MR-scanner independent, bSSFP-based MT should
provide standardization of MT data and MT comparison
across studies, which could promote a more widespread use
of MT. Recently, intra- and inter-scanner variability of
MTR using bSSFP has been shown to be very low [23].
However, large clinical studies with this method on
different scanners are necessary in order to assess to what
extent MT-bSSFP is really device independent.

In conclusion and in contrast to standard MT-SPGR,
bSSFP-based MT imaging provides high-resolution MTR
images with significantly reduced and thus clinically
applicable acquisition times. The high-resolution 3D MTR

data obtained in this study can be taken as a normative
baseline data set for the characterization and evolution of
pathologies of the brain.
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