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Summary. In this paper, we consider the Stokes problem in a three-dimen-
sional polyhedral domain discretized with hp finite elements of type Qk for
the velocity and Qk−2 for the pressure, defined on hexahedral meshes aniso-
tropically and non quasi-uniformly refined towards faces, edges, and corners.
The inf–sup constant of the discretized problem is independent of arbitrarily
large aspect ratios. Our work generalizes a recent result for two-dimensional
problems in [10,11].
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1 Introduction

It is well-known that solutions of elliptic boundary value problems in poly-
hedral domains have corner and edge singularities. In addition, boundary
layers may also arise in laminar, viscous, incompressible flows with moder-
ate Reynolds numbers at faces, edges, and corners. Suitably graded meshes,
geometrically refined towards corners, edges, and/or faces, are required in
order to achieve an exponential rate of convergence of hp finite element
approximations; see, e.g., [2,3,8,13,14].

The Stokes and Navier–Stokes equations are mixed elliptic systems with
saddle point variational form. The stability and accuracy of the correspond-
ing finite element approximations depend on an inf–sup condition for the
finite element spaces chosen for the velocity and the pressure fields. Even
for stable velocity–pressure combinations, the corresponding inf–sup con-
stants may in general be very sensitive to the aspect ratio of the mesh, thus
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degrading the stability if very thin elements are employed, as required for
boundary-layer and singularity resolution. It has recently been shown in the
two-dimensional case, for corner and boundary-layer tensor-product mesh-
es, that the inf–sup constant of certain velocity/pressure space pairs for the
Stokes problem retains the same dependence on the polynomial degree as
for isotropically refined triangulations, regardless of arbitrarily large aspect
ratios of the mesh; see [13,10,11,1]. Analogous results in three dimensional
domains appear to be lacking.

In this paper, we prove that, for the most widely used Qk–Qk−2 spac-
es on geometric boundary layer and edge meshes consisting of hexahedral
elements in R3, the inf–sup constant decreases as Ck−3/2, with a constant
C that depends only on the mesh grading factor, but is independent of the
degree k, the level of refinement, and arbitrarily large element aspect ratios.
In the case of isotropically refined meshes the same constant decreases as
Ck−1; see [16]. Our analysis is also valid for linearly elasticity problems
in nearly incompressible materials; see, e.g., [6,7]. The same inf-sup condi-
tion is required in order to have approximations that remain stable for nearly
incompressible materials.

This paper is organized as follows:
In Section 2, we introduce the continuous problem and the finite element spac-
es for its discretization. They are built on geometric boundary layer and edge
meshes, described and constructed in Section 3. In Section 4, we describe the
macro-element technique that we repeatedly employ in our proofs. In Section
5, we prove a stability result for shape-regular meshes with hanging nodes.
The stability of face, edge, and corner patches for geometric boundary layer
meshes is proven in Sections 6, 7, and 8, respectively. The case of geometric
edge meshes is treated in Section 9.

2 Problem setting

Let � ⊂ R3 be a bounded polyhedral domain. Given a vector f ∈ L2(�)3, we
consider the following problem: find a velocity u ∈ H 1

0 (�)3 and a pressure
p ∈ L2

0(�), such that

ν(∇u,∇v)� − (p,∇ · v)� = (f, v)�, v ∈ V := H 1
0 (�)3,

(q,∇ · u)� = 0, q ∈ M := L2
0(�).

(1)

Here, L2
0(�) denotes the subspace of L2(�) of functions with vanishing mean

value in � and, for D ⊆ R3, (u, v)D denotes the scalar product in L2(�) or
L2(�)3.

In order to approximate (1), we replace the continuous spaces V ×M by
two finite element spaces VN ×MN ⊂ V ×M . Let (uN, pN) ∈ VN ×MN

be the solution of the corresponding discrete problem:
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ν(∇uN,∇vN)� − (pN,∇ · vN)� = (f, vN)�, vN ∈ VN,

(qN,∇ · uN)� = 0, qN ∈ MN.
(2)

A crucial role in the analysis and approximation of (1) is played by the inf–sup
condition

inf
0 �=p∈L2

0(�)

sup
0 �=v∈H 1

0 (�)3

(∇ · v, p)�

|v|1,� ‖p‖0,�

≥ γ > 0,(3)

which ensures its well-posedness. The corresponding discrete inf–sup con-
dition for the finite element spaces (VN, MN) (also referred to as divergence
stability) ensures the well-posedness and quasi-optimality of (2). Indeed, if
a stability condition (3) holds for the discrete velocity and pressure spaces,
with a constant γN , then (2) has a unique solution, and the following error
estimates hold

‖u− uN‖1,� ≤ Cγ−1
N EV (u, N)+ Cν−1EP (p, N),

‖p − pN‖0,� ≤ Cγ−2
N EV (u, N)+ Cγ−1

N EP (p, N),

where

EV (u, N) := inf
v∈VN

‖u− v‖1,�,

EP (p, N) := inf
q∈MN

‖p − q‖0,�,

are the best approximation errors of the solution (u, p) of (1); see, e.g., [6].
We now specify a particular choice of finite element spaces. Given an af-

fine hexahedral mesh T and a polynomial degree k ≥ 2, in order to discretize
(1), we consider the following finite element spaces:

VN = S
k,1
0 (�; T )3 := {

u ∈ H 1
0 (�)3 | u|K ∈ Qk(K)3

}
,

MN = S
k−2,0
0 (�; T ) := {

p ∈ L2
0(�) | p|K ∈ Qk−2(K)

}
.

(4)

Here Qk(K) is the space of polynomials of maximum degree k in each vari-
able on K . The mesh T is said to be regular if it is geometrically conforming,
or irregular if hanging nodes are present; see, e.g., [11,12]. These spaces are
also known as Pk–Pk−2 in the spectral element literature. In the following,
we also use the polynomial spaces Qr,s,m of polynomials of degree r , s, and
m in the first, second, and third variable, respectively.

3 Geometric meshes

In order to resolve boundary layers and/or singularities, geometrically grad-
ed meshes can be employed. They are determined by a mesh grading fac-
tor σ ∈ (0, 1) and the number of layers n, the thinnest layer having width
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Level 2

Level 1

Level 3

Fig. 1. Hierarchic structure of a boundary layer mesh

proportional to σn. Robust exponential convergence of hp finite element ap-
proximations is achieved if n is suitably chosen. For singularity resolution,
n is required to be proportional to the polynomial degree k; see [2,3]. For
boundary layers, the width of the thinnest layer needs to be comparable to that
of the boundary layer; see [8,13,14]. In practical applications, for boundary
layers of fixed width, and edge and corner singularities, n is usually cho-
sen proportional to the polynomial degree k, with the assumption that k is
sufficiently large.

3.1 Construction of geometric boundary layer meshes

A geometric boundary layer mesh T n,σ
bl is, roughly speaking, the tensor prod-

uct of meshes that are geometrically refined towards the faces. Figure 1 shows
the construction of a geometric boundary layer mesh T n,σ

bl .
The mesh T n,σ

bl is built by first considering an initial shape-regular macro-
triangulation Tm, possibly consisting of just one element, which is succes-
sively refined. This process is illustrated in Figure 1. Every macro-element
can be refined isotropically (not shown) or anisotropically in order to obtain
so-called face, edge, or corner patches (Figure 1, level 2). Here and in the
following, we only consider patches obtained by triangulating the reference
cube Q̂ := I 3, with I := (−1, 1). A patch for an element K ∈ Tm is obtained
by using an affine mapping FK : Q̂→ K . The stability properties proven for
patches on the reference cube are equally valid for an arbitrary shape-regular
element K ∈ Tm, with a constant that is independent of the diameter of K .
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A face patch is given by an anisotropic triangulation of the form

Tf := {Kx × I × I | Kx ∈ Tx},(5)

where Tx is a mesh of I := (−1, 1), geometrically refined towards, say
x = 1, with grading factor σ ∈ (0, 1) and total number of layers n; see
Figure 1 (level 2, left).

An edge patch is given by

Te = T bl
e := {Kxy × I | Kxy ∈ Txy},(6)

where Txy is a triangulation of Ŝ := I 2 obtained by first considering an irreg-
ular corner mesh, geometrically refined towards a vertex of Ŝ, say (x, y) =
(1, 1), with grading factor σ and n refinement levels (see Figure 2, level 2,
left). The elements of this macro-mesh are then anisotropically refined to-
wards the two edges x = 1 and y = 1, in order to obtain a regular mesh Txy .
We refer to Figure 1 (level 2, center) for an example.

In order to build a corner patch Tc, we first consider an initial, irreg-
ular, corner mesh Tc,m, geometrically refined towards a vertex of Q̂, say
(x, y, z) = (1, 1, 1), with grading factor σ and n refinement levels; see the
mesh in bold lines in Figure 1 (level 2, right). The elements of this macro-
mesh are then anisotropically refined towards the three faces x = 1, y = 1,
and z = 1 in order to obtain a regular mesh Tc.

The number of elements in a face, edge, and corner patch with n layers
is O(n), O(n2), and O(n3), respectively. Consequently, if n=O(k), as is
required for exponential convergence, the corresponding FE spaces have
O(k4), O(k5), and O(k6) degrees of freedom, respectively.

Our main result is the following theorem; see [9–11] for the corresponding
two-dimensional result.

Theorem 3.1 Let T = T n,σ
bl be a geometric boundary layer mesh. Then,

there exists a constant C that depends on the grading factor σ , but is inde-
pendent of k, n, and the aspect ratio of T , such that, for any n and k ≥ 2,

inf
0 �=p∈S

k−2,0
0 (�,T )

sup
0 �=v∈S

k,1
0 (�,T )3

(∇ · v, p)�

|v|1,� ‖p‖0,�

≥ Ck−3/2.(7)

3.2 Construction of geometric edge meshes

When only singularities and no boundary layers are present (as, e.g., in Stokes
flows or in nearly incompressible elasticity), it is not necessary to refine geo-
metrically towards the faces. The corresponding geometric edge meshes T n,σ

edge

are tensor products of meshes that are geometrically refined towards the edges
only. Figure 2 shows the construction of a geometric edge mesh T n,σ

edge.
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Level 1

Level 2

Level 3

Fig. 2. Hierarchic structure of a geometric edge mesh T n,σ
edge

As in the case of a boundary layer mesh, T n,σ
edge is built by first consid-

ering an initial shape-regular macro-triangulation Tm, possibly consisting of
just one element, which is successively refined. This process is illustrated in
Figure 2. Every macro-element can be refined isotropically (not shown) or
anisotropically in order to obtain so-called edge or corner patches (Figure 2,
level 2).

An edge patch Te is given by

Te = T edge
e := {Kxy × I | Kxy ∈ Txy},(8)

where Txy is an irregular corner mesh, geometrically refined towards a vertex
of Ŝ with grading factor σ and n refinement levels; see Figure 2 (level 2, left).

In order to build a corner patch Tc, we first consider an initial, irregular,
corner mesh Tc,m, geometrically refined towards a vertex of Q̂, with grading
factor σ and n refinement levels; see the mesh in bold lines in Figure 2 (level 2,
right). The elements of this macro-mesh are then refined towards the three
edges adjacent to the vertex. We note that the macro-mesh Tc,m is the same
as for a boundary layer mesh, but Tc is in general irregular. Figure 3 shows
the difference between corner patches for boundary layer and edge meshes.

The number of elements in an edge and a corner patch with n layers is
O(n) and O(n2), respectively. Consequently, if n = O(k), as is required
for exponential convergence, the corresponding FE spaces have O(k4) and
O(k5) degrees of freedom, respectively; see [3].

In section 9, we show that Theorem 3.1 also holds for an edge mesh
T = T n,σ

edge.
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Fig. 3. Geometrically refined corner patches for boundary layer (left) and edge (right)
meshes

4 Macro-element technique

In order to prove Theorem 3.1, we repeatedly use a macro-element technique;
see [15,16,9,11]. Given a mesh T , it is enough to prove the divergence-sta-
bility for a couple of low dimensional spaces, typically S

2,1
0 (�, T )3 and

S
0,0
0 (�, T ), on a macro-mesh contained in or coinciding with T , and the

stability of local higher order spaces defined on the single elements K of the
macro-mesh, S

k,1
0 (K)3 and S

k−2,0
0 (K) in this case.

The following theorem holds.

Theorem 4.1 Let F be a family of irregular or regular affine meshes on the
reference element Q̂, also containing the trivial triangulation T̂ = Q̂. On
a bounded polyhedral domain � ⊂ R3, let T be an affine mesh which is
obtained from a (coarser) affine shape-regular macro-element mesh Tm in
the following way: Some elements of Tm are further partitioned into FK(T̂ )

where T̂ ∈ F and FK is the affine mapping between Q̂ and K . Let k ≥ 2 be
a polynomial degree. Assume that there exists a space XN ⊆ S

k,1
0 (�, T )3 ⊂

H 1
0 (�)3 such that

inf
0 �=p∈S

0,0
0 (�,Tm)

sup
0 �=v∈XN

(∇ · v, p)�

|v|1,� ‖p‖0,�

≥ C1,(9)

with a constant C1 > 0 independent of k. Assume further that the family F
is uniformly stable in the sense that there holds

inf
0 �=p∈S

k−2,0
0 (Q̂,T̂ )

sup
0 �=v∈S

k,1
0 (Q̂,T̂ )3

(∇ · v, p)Q̂

|v|1,Q̂‖p‖0,Q̂

≥ C2 k−1,(10)

for all T̂ ∈ F and all k.
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Then the spaces S
k,1
0 (�, T )3 and S

k−2,0
0 (�, T ) satisfy (7) with a constant

C that can be bounded by

C ≥ C̃
C2

κ3
min{1, C2

1},

where κ is the aspect ratio of the elements of Tm and C̃ is independent of k,
κ , C1, and C2.

We refer to [15,16,9,11] for a proof. In particular we note that a shape-
regular macro-mesh Tm is required since locally refined meshes FK(T̂ ) are
employed for K ∈ Tm.

We apply the macro-element technique recursively in our analysis. This
is illustrated in Figure 1. At the top level, we have the shape-regular macro-
mesh Tm, which is successively refined. Every macro-element can be refined
isotropically (not shown), or anisotropically towards a face (second level,
left), or an edge (second level, center), or a corner (second level, right). The
divergence stability for the shape-regular macro-mesh at the top level and
the isotropically refined patches is well-known; see [16]. We then prove the
stability of the single patches for the higher order spaces:

• Face patch. We build a Fortin operator, generalizing the analysis in [10,
Sect. 3].

• Edge patch. We use a macro-element technique applied to a refined aux-
iliary edge mesh and next construct a Fortin operator that maps the refined
velocity space into that on the original edge patch.

• corner patch. For the corner patch, we generalize the two-dimensional
analysis in [11, Sect. 4]. We prove the stability for low order spaces on
the corner mesh in bold lines in Figure 1 (second level, right) and then
use the stability of the other patches. We note that the refined elements of
this macro-mesh are face and edge patches.

5 Shape-regular meshes with hanging nodes

In this section we prove a lower bound for the inf–sup constant of conform-
ing velocity and pressure pairs on isotropic meshes with hanging nodes that
decreases as k−1, thus generalizing the result for regular meshes in [16]. This
result, which also generalizes the two-dimensional one in [11] and is of in-
terest in itself, will then be employed for the analysis of edge and corner
patches. For simplicity we only consider a particular mesh in full detail, but
note that our construction can be employed for more general irregular meshes
in a straightforward way. We consider the mesh Tc,m, which is a macro-mesh
employed for the construction of an edge patch; see Section 3. We note that
Tc,m is not quasi-uniform.
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We first need to introduce a low-order velocity space L1,1
0 (Q̂, Tc,m) on the

corner macro-mesh Tc,m.

S
1,1
0 (Q̂, Tc,m)3 ⊂ L1,1

0 (Q̂, Tc,m) ⊂ S
2,1
0 (Q̂, Tc,m)3.

Given an element K ∈ Tc,m such that K = FK(Q̂), we introduce some no-
tations associated to its faces. Let the faces of Q̂ perpendicular to the x̂-axis
be

�̂x
1 := {x̂ = −1} × (−1, 1)2,

�̂x
2 := {x̂ = +1} × (−1, 1)2.

The two other sets of faces �̂
j

i , for j = y, z and i = 1, 2, are defined in
a similar way. Let �

j

i , for j = x, y, z and i = 1, 2, be the corresponding
faces of K and nj,i the unit vectors which are perpendicular to them, pointing
outward.

To the two x-faces of Q̂, �̂x
i , i = 1, 2, we can associate the two functions

q̂x,1 := (1− x̂) · (1+ ŷ)(1− ŷ) · (1+ ẑ)(1− ẑ),

q̂x,2 := (1+ x̂) · (1+ ŷ)(1− ŷ) · (1+ ẑ)(1− ẑ),

respectively. We note that q̂x,1, for instance, vanishes on all the faces except
on �̂x

1 and, when restricted to this face, is a polynomial in Q2. The functions
q̂j,i , for j = y, z and i = 1, 2, associated to the other faces can be defined in
a similar way by suitable permutations of the indices.

We now define, for j = x, y, z and i = 1, 2, the vector functions

wj,i := nj,i

(
q̂j,i ◦ F−1

K

) ∈ Q2(K)3,

and the local space

L1(K) := Q1(K)3 ⊕ span{wj,i; j = x, y, z; i = 1, 2}.
The corresponding global space is

L1,1
0 (Q̂, Tc,m) = L1,1

0 (Q̂) :=
{
v ∈ H 1

0 (Q̂)3| v|K ∈ L1(K), K ∈ Tc,m

}
.

Before proving the divergence stability for the low-order spaces L1,1
0 (Q̂,

Tc,m) and S
0,0
0 (Q̂, Tc,m), we need to introduce a Clément-type interpolation

operator for the three-dimensional irregular mesh Tc,m. We begin by introduc-
ing some notations for the corner macro-mesh Tc,m = T n,σ

c,m , refined towards
a vertex, e.g., V = (1, 1, 1).

The corner macro-mesh T n,σ
c,m can be constructed recursively. This is il-

lustrated in Figure 4. Let T 0,σ
c,m = Q̂. Then, T 1,σ

c,m is obtained by partitioning
T 0,σ

c,m into eight elements by dividing its sides in a σ :(1− σ) ratio. Let

T 1,σ
c,m = {�i,1, 1 ≤ i ≤ 8},
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Fig. 4. Recursive construction of an irregular corner mesh Tc,m

with �8,1 denoting the element that contains V . At the next refinement level
l = 2, we partition �8,1 into eight parallelepipeds in a similar way. The final
mesh T n,σ

c,m is obtained after l = n refinement steps. At an intermediate re-
finement level 1 ≤ l ≤ n−1, there are seven new parallelepipeds introduced
at level l that do not touch V :

{�i,l, 1 ≤ i ≤ 7}, 1 ≤ l ≤ n− 1.

For l = n, let

{�i,n, 1 ≤ i ≤ 8},
be the new eight parallelepipeds obtained after the last refinement. We remark
that the {�i,l, 1 ≤ i ≤ 7, l ≤ n} are disjoint and that

� =
(

n⋃
l=1

7⋃
i=1

�i,l

)
∪�8,n.

We next consider the linear space S
1,1
0 (Q̂,T n,σ

c,m ). It is spanned by the n nodal
basis functions {φl} associated to the regular nodes {Pl, 1 ≤ l ≤ n} of T n,σ

c,m .
We note that Pl is the node that is common to the elements {�l,i, 1 ≤ i ≤ 7}
at level l; (see Figure 4) and that

Ol := supp {φl} =
(⋃7

i=1 �i,l

)
∪
(⋃7

i=1 �i,l+1

)
, 1 ≤ l ≤ n− 1,

On := supp {φn} =
⋃8

i=1 �i,n.

Let finally E(T n,σ
c,m ) be the set of all faces e of the elements in T n,σ

c,m and, for
e ∈ E(T n,σ

c,m ), let he be the diameter of e.
Our Clément type operator is then defined in the following way.
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Definition 5.1 Given u ∈ H 1
0 (Q̂), let

Iu :=
n∑

l=1

al φl ∈ S
1,1
0 (Q̂, T n,σ

c,m ),

where

al :=

∫
Ol

u dx

|Ol| , 1 ≤ l ≤ n,

and |Ol| is the volume of Ol .

The following error estimate holds; see [11, Prop. 4.5] for the correspond-
ing two-dimensional result.

Lemma 5.2 There exists a constant C that depends on σ but is otherwise
independent of T n,σ

c,m such that∑
K∈T n,σ

c,m

h−2
K ‖u− Iu‖2

0,K +
∑

K∈T n,σ
c,m

|u− Iu|21,K

+
∑

e∈E(T n,σ
c,m )

h−1
e ‖u− Iu‖2

0,e ≤ C|u|2
1,Q̂

.

Proof. Given an element K = �i,l , of diameter hK , let ωK be the union of the
supports of the basis functions associated to its nodes. We note in particular
that for 2 ≤ l ≤ n and 1 ≤ i ≤ 7 these functions are φl−1 and φl , for l = 1
and 1 ≤ i ≤ 7 we only have φ1, and for l = n and i = 8 we only have φn.
We can then write

‖Iu‖2
0,K ≤ 2

∑
Ol⊃K

|al|2 ‖φl‖2
0,K

≤ 2
∑

Ol⊃K

|K|
|Ol| ‖u‖

2
0,Ol

≤ 2
∑

Ol⊃K

‖u‖2
0,Ol

≤ 4‖u‖2
0,ωK

.(11)

We now define

ũ := u− |ωK |−1
∫

ωK

u dx.

Using (11), we can write

‖u− Iu‖0,K = ‖ũ− I ũ‖0,K ≤ 3‖ũ‖0,ωK
.

Since the diameter of ωK is comparable to hK , using the Poincaré inequality,
we obtain

‖u− Iu‖0,K ≤ ChK |ũ|1,ωK
= ChK |u|1,ωK

,(12)



782 A. Toselli, C. Schwab

with a constant C that only depends on the shape of ωK , and thus on σ but
not on hK .

Using an inverse estimate on K , we can write

|Iu|1,K = |I ũ|1,K ≤ Ch−1
K ‖I ũ‖0,K ≤ Ch−1

K (‖ũ‖0,ωK
+ ‖ũ− I ũ‖0,K).

By applying the Poincaré inequality on ωK and (12), we obtain

|Iu|1,K ≤ C|u|1,ωK
,(13)

with a constant that only depends on σ .
We are now left with the bounds for the face contributions. Given a face

e ⊂ ∂K , we can use a trace estimate and obtain

h−1
e ‖u− Iu‖2

0,e ≤ C(h−2
K ‖u− Iu‖2

0,K + |u− Iu|21,K).

We note that the constant C depends on the aspect ratio of K , and thus on σ ,
but not on hK . Using (12) and (13), we find

h−1
e ‖u− Iu‖2

0,e ≤ C|u|21,ωK
.(14)

The proof is concluded by using (12), (13), and (14) and by summing over
the elements. ��

For the macro-mesh T n,σ
c,m , we are now ready to prove the following result.

Lemma 5.3 There exists a constant C, depending on σ , but otherwise inde-
pendent of T n,σ

c,m , such that

inf
0 �=p∈S

0,0
0 (Q̂,T n,σ

c,m )

sup
0 �=v∈L1,1

0 (Q̂,T n,σ
c,m )

(∇ · v, p)Q̂

|v|1,Q̂‖p‖0,Q̂

≥ C.(15)

Proof. The proof is similar to [11, Th. 4.9] and presented here for complete-
ness.

We first need to define some local spaces associated to the patches {Ol}.
For 1 ≤ l ≤ n, we set

S0,0(Ol) := {p ∈ L2(Ol)| p|K ∈ Q0, K ⊂ Ol}
L1,1

0 (Ol) := {v ∈ H 1
0 (Ol)

3| v|K ∈ L1(K), K ⊂ Ol}
Nl := Q0(Ol),

and consider the orthogonal decomposition
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S0,0(Ol) = Nl ⊕Wl.(16)

We then define E(Ol) as the set of all interelement faces in Ol and E0(Ol) as
the subset of E(Ol) of faces that do not have hanging nodes in their mid-point.
Analogous definitions hold for the global sets E(T n,σ

c,m ) and E0(T n,σ
c,m ).

On each patch Ol , we define a mesh-dependent seminorm by

|p|2Ol
:=

∑
e∈E0(Ol )

he

∫
e

|[p]e|2ds, p ∈ S0,0(Ol),

where [p]e is the jump of p across a face e. The global seminorm is defined
by

|p|2h :=
∑

e∈E0(T n,σ
c,m )

he

∫
e

|[p]e|2ds,

A scaling argument gives, for p ∈ Wj ,

sup
0 �=v∈L1,1

0 (Ol )

(∇ · v, p)Oj

|v|1,Oj

≥ γ̃ |p|Oj
,(17)

with γ̃ depending on the shape of Oj , and thus depending on σ but not on h

or l.
Given p ∈ S

0,0
0 (Q̂, T n,σ

c,m ), we set pl := p|Ol
. According to (16), we have

the decomposition

pl = cl + ql,

where cl ∈ Nl is constant and ql ∈ Wl . The stability condition (17) implies
that, for each ql there exists vl ∈ L1,1

0 (Ol), such that

(∇ · vl, ql)Ol
≥ γ̃ |ql|2Ol

, |vl|1,Ol
≤ |ql|Ol

,

and therefore

(∇ · vl, pl)Ol
≥ γ̃ |pl|2Ol

, |vl|1,Ol
≤ |pl|Ol

.

If we define v :=∑n
l=1 vl , we have

(∇ · v, p)Q̂=
n∑

l=1

(∇ · vl, p)Q̂=
n∑

l=1

(∇ · vl, pl)Ol
≥ γ̃

n∑
l=1

|pl|2Ol
≥ C|pl|2h,

and

|v|2
1,Q̂
≤

n∑
l=1

|vl|21,Q̂
≤ C|pl|2h,

which are equivalent to
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sup
0 �=v∈L1,1

0 (Q̂,T n,σ
c,m )

(∇ · v, p)Q̂

|v|1,Q̂

≥ C1|p|h.(18)

We now show that we can replace the seminorm with a norm in (18). The
continuous stability condition (3) ensures that for p ∈ S

0,0
0 (Q̂, T n,σ

c,m ) there

exists v ∈ H 1
0 (Q̂), such that

(∇ · v, p)Q̂ ≥ γ ‖p‖2
0,Q̂

, |v|2
1,Q̂
≤ ‖p‖2

0,Q̂
.

We define u ∈ S
1,1
0 (Q̂,T n,σ

c,m )3 by

ui := Ivi, i = x, y, z.

Using integration by parts over the elements, Cauchy–Schwarz, and
Lemma 5.2, we find

(∇ · u, p)Q̂ = (∇ · (u− v), p)Q̂ + (∇ · v, p)Q̂

≥
∑

e∈E0(T n,σ
c,m )

∫
e

((u− v) · n) [p]eds + γ ‖p‖2
0,Q̂

≥ −
⎛
⎝ ∑

e∈E(T n,σ
c,m )

h−1
e ‖u− v‖2

0,e

⎞
⎠

1/2

|p|h + γ ‖p‖2
0,Q̂

≥ ‖p‖2
0,Q̂

(
C3 − C2

|p|h
‖p‖0,Q̂

)
.

Since |u|1,Q̂ ≤ C‖p‖0,Q̂, we have

sup
0 �=u∈L1,1

0 (Q̂,T n,σ
c,m )

(∇ · u, p)Q̂

|u|1,Q̂

≥ ‖p‖0,Q̂

(
C4 − C5

|p|h
‖p‖0,Q̂

)
.(19)

Combining (18) and (19), we then have

sup
0 �=v∈L1,1

0 (Q̂,T n,σ
c,m )

(∇ · v, p)Q̂

|v|1,Q̂

≥ ‖p‖0,Q̂ min
t≥0

f (t),

with t := |p|h/‖p‖0,Q̂ and f (t) := max{C4 − C5t, C1t}. The proof is con-
cluded by noticing that mint≥0 f (t) = (C1C4)/(C1 + C5) > 0. ��

We then obtain the following stability result for the irregular mesh Tc,m,
by using Lemma 5.3 and the stability result for single elements K ∈ Tc,m.
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Theorem 5.4 Let Tc,m be a corner macro-mesh with grading factor σ and n

layers. Then, there exists a constant C, that depends on σ , but is independent
of k and n, such that

inf
0 �=p∈S

k−2,0
0 (Q̂,Tc,m)

sup
0 �=v∈S

k,1
0 (Q̂,Tc,m)3

(∇ · v, p)Q̂

|v|1,Q̂‖p‖0,Q̂

≥ Ck−1.(20)

Proof. It is enough to use Theorem 4.1 with T = Tc,m and Tm = Tc,m. ��

6 Face patches

A face patch is given by a mesh Tf of the form (5). For this patch, we prove
that the inf–sup constant γN is independent of Tx and, consequently, of σ and
n. In addition it decreases as Ck−1, as in the case of shape-regular meshes.

In this section, we generalize the analysis in [10, Sect. 3] for bound-
ary layer patches in two-dimensions, by building a Fortin operator �k :
H 1

0 (Q̂)3 −→ S
k,1
0 (Q̂, Tf ), that satisfies the following property.

Theorem 6.1 There exists a constant C, independent of k and the diameter
and the aspect ratio of Tf , such that, for all v ∈ H 1

0 (Q̂)3,

|�kv|1,Q̂ ≤ Ck|v|1,Q̂,(21)

(∇ · v, p)Q̂ = (∇ ·�kv, p)Q̂, p ∈ S
k−2,0
0 (Q̂, Tf ).(22)

It is then immediate to see that if the inf–sup condition (3) for the con-
tinuous spaces H 1

0 (Q̂)3–L2
0(Q̂) holds and a Fortin operator �k that satisfies

Theorem 6.1 can be found, the following inf–sup condition for the discrete
spaces holds

inf
0 �=p∈S

k−2,0
0 (Q̂,Tf )

sup
0 �=v∈S

k,1
0 (Q̂,Tf )3

(∇ · v, p)Q̂

|v|1,Q̂‖p‖0,Q̂

≥ Ck−1,(23)

with a constant C that is independent of k and of the diameter and the aspect
ratio of Tf .

6.1 The Fortin operator for the face patch

We begin by defining an operator on the reference cube Q̂. We first need to
define some of the geometric objects of Q̂:
Let the faces of Q̂ perpendicular to the x-axis be

�x
± := {x = ±1} × (−1, 1)2.
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The two other sets of faces �i
±, i = y, z, are defined in a similar way. The

edges of Q̂ parallel to the x, y, and z-axis are denoted by Ex
j , E

y

j , and Ez
j ,

j = 1, . . . , 4, respectively. Finally, let {Pi, i = 1, · · · , 8} be the set of
vertices of Q̂. Similar definitions hold for an element K ∈ Tf .

Definition 6.2 Let r, s, m ≥ 2 and v ∈ Hε+3/2(Q̂), ε > 0. We define
u = Ir,s,m v as the unique polynomial in Qr,s,m(Q̂) satisfying the following
(r + 1)(s + 1)(m+ 1) conditions:

u(Pi) = v(Pi), i = 1, . . . , 8,(24) ∫
Ex

i

(u− v)p dx = 0, p ∈ Qr−2, i = 1, . . . , 4,(25)

∫
E

y
i

(u− v)p dy = 0, p ∈ Qs−2, i = 1, . . . , 4,(26)

∫
Ez

i

(u− v)p dz = 0, p ∈ Qm−2, i = 1, . . . , 4,(27)

∫
�x±

(u− v)p dydz = 0, p ∈ Qs−2,m−2,(28)

∫
�

y
±
(u− v)p dxdz = 0, p ∈ Qr−2,m−2,(29)

∫
�z
±
(u− v)p dxdy = 0, p ∈ Qr−2,s−2,(30)

∫
Q̂

(u− v)p dxdydz = 0, p ∈ Qr−2,s−2,m−2.(31)

We note that Ir,s,m cannot be defined on the whole space H 1(Q̂) since
values at the edges or vertices of ∂Q̂ are not defined in general. However, it
can be defined on the space

H(Q̂) := {v ∈ H 1(Q̂) | v = 0 on �
y
± and �z

±}.
In this case, v can be assumed to be zero on ∂Q̂ \ (�x

− ∪ �x
+) in Definition

6.2.
An interpolation operator IK

r,s,m can also be defined on an affinely mapped

element K = FK(Q̂) ∈ Tf , for functions in H(K). Here, H(K) is defined
in a similar way as H(Q̂).

Our Fortin operator is then defined locally using the operators {IK
r,s,m}.

Definition 6.3 Let v = (vx, vy, vz) ∈ H 1
0 (Q̂)3. We define

u = (ux, uy, uz) := �kv

as the unique vector in S
k,1
0 (Q̂, Tf )3 that satisfies, for i = x, y, z and K ∈ Tf ,
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ui := IK
k,k,kvi, on K.

Note that �k is well defined, since, for v ∈ H 1
0 (Q̂)3, the restrictions of

vi to K ∈ Tf , for i = x, y, z, belong to H(K).

6.2 Proof of Theorem 6.1

Let I(Q̂) be the set of polynomials on Q̂ and I0(Q̂) its subspace of polyno-
mials that vanish on �

y
± and �z

±.
We will first consider the operator Ir,s,m : I(Q̂) −→ Qr,s,m(Q̂) and

introduce a suitable basis for the two polynomial spaces, which allows a
convenient representation of Ir,s,m.

Let {Li(x), i ∈ N0} be the set of Legendre polynomials of degree i

on I . We also set L−1 = L−2 = 0. We consider the one-dimensional basis
{Ui(x), i ∈ N0} defined by

U0(x) = 1, U1(x) = x, Ui(x) =
x∫

−1

Li−1(t)dt i ≥ 2.(32)

The set {Ui(x)Uj (y)Ul(z); i, j, l ∈ N0} is thus a basis for I(Q̂). Indeed,
each v ∈ I(Q̂) can be uniquely written as

v(x, y, z) =
∞∑
i=0

∞∑
j=0

∞∑
l=0

aijlUi(x)Uj (y)Ul(z),(33)

where only finitely many terms are non-vanishing. For a polynomial v ∈
Qr,s,m(Q̂) the sum is taken for i ≤ r , j ≤ s, l ≤ m.

We recall that, if γi := 1
2i+1 , i ∈ N0, with γ−1 = 1 and γ−2 = 0, we have∫

I

Li(x)Lj (x)dx = 2γiδij ,(34)

and

Ui(x) = γi−1 (Li(x)− Li−1(x)) , i ∈ N0.(35)

In addition, using (32), (34), and (35), we can show the identities

∫
I

Ui(x)Uj (x)dx =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2γ 2
i−1γi, j = i = 0, 1,

2γ 2
i−1(γi + γi−2), j = i ≥ 2,

−2γi−1γiγi+1, j = i + 2, i ≥ 0,

−2γi−3γi−2γi−1, j = i − 2, i ≥ 2,

0, otherwise.

(36)
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Lemma 6.4 Let v ∈ I(Q̂) be written in the form (33). Then

‖vx‖2
0,Q̂

=
∞∑
i=1

∞∑
j,l=0

8γi−1γjγl

(
(γj−1γl−1ai,j,l − γj−1γl+1ai,j,l+2)

− (γj+1γl−1ai,j+2,l − γj+1γl+1ai,j+2,l+2)
)2

,(37)

‖vy‖2
0,�x± := ‖vy‖2

0,�x− + ‖vy‖2
0,�x+

=
1∑

i=0

∞∑
j=1

∞∑
l=0

8 γj−1γl(γl−1ai,j,l − γl+1ai,j,l+2)
2,(38)

‖v‖2
0,�x± := ‖v‖2

0,�x− + ‖v‖
2
0,�x+

=
1∑

i=0

∞∑
j,l=0

8 γjγl

(
(γj−1γl−1ai,j,l − γj−1γl+1ai,j,l+2)

− (γj+1γl−1ai,j+2,l − γj+1γl+1ai,j+2,l+2)
)2

.(39)

The corresponding expressions for ‖vy‖2
0,Q̂

, ‖vz‖2
0,Q̂

, ‖vz‖2
0,�x±

, and for the

norms on the other faces are obtained by permutations of the indices.

Proof. The proof of (37) can be carried out in a similar way as in the two-di-
mensional case (see [10]) and as in the simpler case where v ∈ I(Q̂)∩H 1

0 (Q̂)

(see [16]).
For (38), it is enough to realize that the restriction of v to a face, e.g.,

x = 1,

v(1, y, z) =
1∑

i=0

∞∑
j=1

∞∑
l=0

aijlUi(1)Uj (y)Ul(z),

is a polynomial in y and z. The expressions for the L2-norm of the deriv-
atives of a polynomial in two variables proven in [10, Lem. 3.14], can be
thus employed. The proof of (39) can be carried out in a similar way as for
(37). ��
Lemma 6.5 Let v ∈ I(Q̂) be written in the form (33). Then

u(x, y, z) = (Ir,s,mv)(x, y, z) =
r∑

i=0

s∑
j=0

m∑
l=0

aijlUi(x)Uj (y)Ul(z).

Proof. Let

u(x, y, z) =
r∑

i=0

s∑
j=0

m∑
l=0

bijlUi(x)Uj (y)Ul(z).
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We first note that the only contributions that do not vanish on the boundary
in the expansions of v and u are for 0 ≤ i ≤ 1 or 0 ≤ j ≤ 1 or 0 ≤ l ≤ 1.

Condition (24) ensures that

bijl = aijl, 0 ≤ i, j, l ≤ 1,(40)

since u− v vanishes at the vertices of Q̂.
We next consider condition (25), with p(x) = L′n−1(x), n = 2, . . . , r ,

and the edge

Ex
1 = {(x, y, z), x ∈ I, y = −1, z = −1}.

We have
r∑

i=0

(bi00 − bi01 − bi10 + bi11)

∫
I

UiL
′
n−1dx

=
∞∑
i=0

(ai00 − ai01 − ai10 + ai11)

∫
I

UiL
′
n−1dx.

Integrating by parts and using (40), we obtain

bn00 − bn01 − bn10 + bn11 = an00 − an01 − an10 + an11, n = 2, . . . , r.

Using (25) for the remaining edges, we obtain the four conditions, for n =
2, . . . , r ,

(bn00 − an00)± (bn01 − an01)± (bn10 − an10)+ (bn11 − an11) = 0,

and finally

bnij = anij , 2 ≤ n ≤ r, 0 ≤ i, j ≤ 1.(41)

Using (26) and (27), we find, in a similar way,

binj = ainj , 2 ≤ n ≤ s, 0 ≤ i, j ≤ 1,(42)

bijn = aijn, 2 ≤ n ≤ m, 0 ≤ i, j ≤ 1.(43)

We next consider condition (28), with

p(y, z) = L′n−1(y)L′q−1(z), n = 2, . . . , s, q = 2, . . . , m,

and the face �x
−. We have

s∑
j=0

m∑
l=0

(b0j l − b1j l)

∫
I

UjL
′
n−1dy

∫
I

UlL
′
q−1dz

=
∞∑

j=0

∞∑
l=0

(
a0j l − a1j l

) ∫
I

UjL
′
n−1dy

∫
I

UlL
′
q−1dz.
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Integrating by parts and using (40), (41), (42), and (43), we obtain

(b0nq − b1nq)− (a0nq − a1nq) = 0, n = 2, . . . , s, q = 2, . . . , m.

Using then (25) for �x
+, we obtain the two conditions, for n = 2, . . . , s and

q = 2, . . . , m,

(b0nq − a0nq)± (b1nq − a1nq) = 0,

and finally

binq = ainq, 2 ≤ n ≤ s, 2 ≤ q ≤ m, 0 ≤ i ≤ 1.(44)

Using (29) and (30), we find, in a similar way,

bniq = aniq, 2 ≤ n ≤ r, 2 ≤ q ≤ m, 0 ≤ i ≤ 1,(45)

bnqi = anqi, 2 ≤ n ≤ r, 2 ≤ q ≤ s, 0 ≤ i ≤ 1.(46)

We finally consider condition (31), with

p(x, y, z) = L′n−1(x)L′q−1(y)L′t−1(z), 2 ≤ n ≤ r, 2 ≤ q ≤ s, 2 ≤ t ≤ m.

We have
r∑

i=0

s∑
j=0

m∑
l=0

bijl

∫
I

UiL
′
n−1dx

∫
I

UjL
′
q−1dy

∫
I

UlL
′
t−1dz

=
∞∑
i=0

∞∑
j=0

∞∑
l=0

aijl

∫
I

UiL
′
n−1dx

∫
I

UjL
′
q−1dy

∫
I

UlL
′
t−1dz.

Integrating by parts and using the previously proven conditions, we obtain

bnqt = anqt , 2 ≤ n ≤ r, 2 ≤ q ≤ s, 2 ≤ t ≤ m,

which concludes the proof. ��
Lemma 6.6 Let v ∈ I0(Q̂) be written in the form (33) and u := Ir,s,mv.
Then

‖ux‖2
0,Q̂
≤ C sm ‖vx‖2

0,Q̂
,(47)

‖uy‖2
0,Q̂
≤ C rm ‖vy‖2

0,Q̂
+ C m Sy,(48)

‖uz‖2
0,Q̂
≤ C rs ‖vz‖2

0,Q̂
+ C s Sz,(49)

where

Sy :=
1∑

i=0

s∑
j=1

m−2∑
l=0

4γr−1γj−1γl(γl−1aijl − γl+1ai,j,l+2)
2,

Sz :=
1∑

i=0

s−1∑
j=0

m∑
l=1

4γr−1γjγl−1(γj−1aijl − γj+1ai,j+2,l)
2.
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Proof. We will first prove a bound for ux in case v ∈ I(Q̂). Using Lemma
6.5 and (37), we see that the sums in (37) can be decomposed into four parts

‖ux‖2
0,Q̂
=

r∑
i=1

s−2∑
j=0

m−2∑
l=0

+
r∑

i=1

s−2∑
j=0

m∑
l=m−1

+
r∑

i=1

s∑
j=s−1

m−2∑
l=0

+
r∑

i=1

s∑
j=s−1

m∑
l=m−1

= A+ B1 + B2 +D.

Using (37), we immediately have

A ≤ ‖vx‖2
0,Q̂

.

We next consider B1 and note that B1 consists of just two terms in l, for
l = m− 1 and l = m. We first consider the term for l = m and suppose that
m is odd. We can write, for i and j fixed,

(γj−1γm−1aijm − γj+1γm−1ai,j+2,m)

=
m−3

2∑
l=0

[−(γj−1γ2lai,j,2l+1 − γj+1γ2lai,j+2,2l+1)

+(γj−1γ2l+2ai,j,2l+3 − γj+1γ2l+2ai,j+2,2l+3)]

+(γj−1ai,j,1 − γj+1ai,j+2,1).

Taking the square of both sides, we obtain

(γj−1γm−1aijm − γj+1γm−1ai,j+2,m)2

≤ (m− 1)

m−3
2∑

l=0

[−(γj−1γ2lai,j,2l+1 − γj+1γ2lai,j+2,2l+1)

+(γj−1γ2l+2ai,j,2l+3 − γj+1γ2l+2ai,j+2,2l+3)]2

+2(γj−1ai,j,1 − γj+1ai,j+2,1)
2.

The term for l = m − 1 can be bounded in a similar way: for odd m, we
obtain

(γj−1γm−2ai,j,m−1 − γj+1γm−2ai,j+2,m−1)
2

≤ (m− 1)

m−3
2∑

l=0

[−(γj−1γ2l−1ai,j,2l − γj+1γ2l−1ai,j+2,2l)

+(γj−1γ2l+1ai,j,2l+2 − γj+1γ2l+1ai,j+2,2l+2)]2

+2(γj−1ai,j,0 − γj+1ai,j+2,0)
2.

Analogous expressions can be found for even m. Using (37), we obtain

B1 ≤ Cm‖vx‖2
0,Q̂
+ C

r∑
i=1

s−2∑
j=0

1∑
l=0

4γi−1γjγm−1(γj−1ai,j,l − γj+1ai,j+2,l)
2.
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In a similar way, we also find

B2 ≤ Cs‖vx‖2
0,Q̂
+ C

r∑
i=1

1∑
j=0

m−2∑
l=0

4γi−1γs−1γl(γl−1ai,j,l − γl+1ai,j,l+2)
2.

We finally consider the last term D and note that D consists of four terms in
j and l, for j = s − 1, s and l = m− 1, m, which can be bounded as before,
by employing one telescoping series for j and one for l. We obtain

D ≤ Csm‖vx‖2
0,Q̂

+Cm

r∑
i=1

1∑
j=0

m−2∑
l=0

4γi−1γs−1γl(γl−1ai,j,l − γl+1ai,j,l+2)
2

+Cs

r∑
i=1

s−2∑
j=0

1∑
l=0

4γi−1γjγm−1(γj−1ai,j,l − γj+1ai,j+2,l)
2

+C

r∑
i=1

1∑
j=0

1∑
l=0

4γi−1γm−1γs−1a
2
i,j,l .

We note that the corresponding bounds for uy and uz can be found by per-
mutations of the indices. Inequality (47) can be found by noticing that, if
v ∈ I0(Q̂), we have

aijl = 0, 0 ≤ j ≤ 1 or 0 ≤ l ≤ 1.

Inequalities (48) and (49) can be found in a similar way. ��
Lemma 6.7 Let v ∈ I0(Q̂) and u := Ir,s,mv. Then

‖uy‖2
0,Q̂
≤ C rm ‖vy‖2

0,Q̂
+ C

m

r
‖vy‖2

0,�x±,(50)

‖uz‖2
0,Q̂
≤ C rs ‖vz‖2

0,Q̂
+ C

s

r
‖vz‖2

0,�x±,(51)

‖uy‖2
0,Q̂
≤ C rm ‖vy‖2

0,Q̂
+ C

ms4

r
‖v‖2

0,�x±,(52)

‖uz‖2
0,Q̂
≤ C rs ‖vz‖2

0,Q̂
+ C

sm4

r
‖v‖2

0,�x±,(53)

‖uy‖2
0,Q̂
≤ C rm ‖vy‖2

0,Q̂
+ C

ms2

r
‖v‖2

1/2,00,�x±,(54)

‖uz‖2
0,Q̂
≤ C rs ‖vz‖2

0,Q̂
+ C

sm2

r
‖v‖2

1/2,00,�x±,(55)

where

‖v‖2
1/2,00,�x± := ‖v‖2

H
1/2
00 (�x−)

+ ‖v‖2
H

1/2
00 (�x+)

.
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Proof. We only consider the terms in uy in detail. Those in uz can be treated
in a similar way.

We immediately find (50) by using (38) and noting that γr−1 ≤ C/r .
In order to prove (52), we need to bound

Sy =
1∑

i=0

s∑
j=1

m−2∑
l=0

4γr−1γj−1γl(γl−1aijl − γl+1ai,j,l+2)
2

=
s∑

j=1

m−2∑
l=0

4γr−1γj−1γl(γl−1a0j l − γl+1a0,j,l+2)
2

+
s∑

j=1

m−2∑
l=0

4γr−1γj−1γl(γl−1a1j l − γl+1a1,j,l+2)
2

=: S0 + S1.

We first consider S0. Recalling that γs−1 ≤ γj−1, for j ≤ s, we can write

S0 ≤ 4
γr−1

γs−1

m−2∑
l=0

γl

s∑
j=1

γ 2
j−1(γl−1a0j l − γl+1a0,j,l+2)

2.(56)

We next set, for a fixed l,

Aj := γj−1(γl−1a0j l − γl+1a0,j,l+2),

and denote J = J (l) ≤ s the index j such that

A2
J = max

0≤j≤s
{A2

j }.

We first assume that J is even. If A2
J > 0, then J ≥ 2 since aijl = 0 for

0 ≤ j ≤ 1. Noting that A0 = 0, we can then write

AJ = −
J−2

2∑
j=0

(A2j − A2j+2),

and bound A2
J by

A2
J ≤

J

2

J−2
2∑

j=0

[(γ2j−1γl−1a0,2j,l − γ2j−1γl+1a0,2j,l+2)

− (γ2j+1γl−1a0,2j+2,l − γ2j+1γl+1a0,2j+2,l+2)]2.



794 A. Toselli, C. Schwab

Using this bound and (56), we find

S0 ≤ 4
γr−1

γs−1

m−2∑
l=0

γl s A2
J (l)

≤ 4
γr−1

γs−1

m−2∑
l=0

γl s
J

2

J−2
2∑

j=0

[(γ2j−1γl−1a0,2j,l − γ2j−1γl+1a0,2j,l+2)

−(γ2j+1γl−1a0,2j+2,l − γ2j+1γl+1a0,2j+2,l+2)]
2

≤ 2
γr−1

γ 2
s

m−2∑
l=0

γl s
2
∞∑

j=0

γj [(γj−1γl−1a0,j,l − γj−1γl+1a0,j,l+2)

−(γj+1γl−1a0,j+2,l − γj+1γl+1a0,j+2,l+2)]
2,

and, using (39),

S0 ≤ C
s4

r
‖v‖2

0,�x± .

We note that, in case A2
J = 0, this bound trivially holds. The case of J odd

can be treated in a similar way.
Using a similar bound for S1, we find (52).
Using now (50), (52), and an interpolation argument between the spaces

L2(�x
−) × L2(�x

+) and H 1
0 (�x

−) × H 1
0 (�x

+), we find (55); see the proof of
[10, Th. 3.5] for more details. ��

The following corollary is a straightforward consequence of (54), (55),
Lemma 6.7, the trace theorem, and the Poincaré inequality.

Corollary 6.8 Let v ∈ I0(Q̂) and u := Ir,s,mv. Then

‖uy‖2
0,Q̂
≤ C rm ‖vy‖2

0,Q̂
+ C

ms2

r
|v|2

1,Q̂
,(57)

‖uz‖2
0,Q̂
≤ C rs ‖vz‖2

0,Q̂
+ C

sm2

r
|v|2

1,Q̂
.(58)

We are now ready to give a bound for the case of a general element in Tf .

Lemma 6.9 Let v ∈ H 1(K), with K = (x1, x2) × (−1, 1)2. Suppose in
addition that v vanishes on all of ∂K except on �x

− and �x
+. Then there exists

a constant C > 0, independent of v, r , s, m, and K such that

|IK
r,s,mv|21,K ≤ C

(
max{sm, rm, rs} + ms

r
max{s, m}

)
|v|21,K .

If, in addition, r = s = m = k ≥ 2, then

|IK
k,k,kv|1,K ≤ Ck|v|1,K .
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Proof. We first note that, since I0(Q̂) is dense in H(Q̂), (47), (57), and (58)
also hold for v ∈ H(Q̂).

Let now h := (x2 − x1)/2. Then, FK : Q̂→ K is given by

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎢⎣h x̂ + x1 + x2

2
ŷ

ẑ

⎤
⎥⎦ .

If v̂ := v ◦ FK , we have

‖v̂x̂‖2
0,Q̂
= h‖vx‖2

0,K, ‖(Ir,s,mv̂)x̂‖2
0,Q̂
= h‖(IK

r,s,mv)x‖2
0,K

‖v̂ŷ‖2
0,Q̂
= 1

h
‖vy‖2

0,K, ‖(Ir,s,mv̂)ŷ‖2
0,Q̂
= 1

h
‖(IK

r,s,mv)y‖2
0,K,

‖v̂ẑ‖2
0,Q̂
= 1

h
‖vz‖2

0,K, ‖(Ir,s,mv̂)ẑ‖2
0,Q̂
= 1

h
‖(IK

r,s,mv)z‖2
0,K .

In addition, we have

|v̂|2
1,Q̂
≤ 1

h
|v|21,K .

Inequalities (47), (57), and (58) then give

h ‖(IK
r,s,mv)x‖2

0,K ≤ C sm h ‖vx‖2
0,K,

h−1 ‖(IK
r,s,mv)y‖2

0,K ≤ C rm h−1 ‖vy‖2
0,K + C

ms2

r
h−1 |v|21,K,

h−1 ‖(IK
r,s,mv)z‖2

0,K ≤ C rs h−1 ‖vz‖2
0,K + C

sm2

r
h−1 |v|21,K,

which concludes the proof. ��
We are now ready to prove Theorem 6.1:

Inequality (21) is a direct consequence of Lemma 6.9. We then note that,
since the pressure space S

k−2,0
0 (Q̂, Tf ) consists of discontinuous functions,

it is enough to prove (22) on a single element K ∈ Tf . Let p ∈ S
k−2,0
0 (Q̂, Tf )

and v ∈ H 1
0 (Q̂)3. We have

(∇ · v, p)K = −(v,∇p)K + (v · n, p)∂K.

Since ∇p and p are polynomials of degree k − 2 on K , using the definition
of �k, we find

(∇ · v, p)K = −(�kv,∇p)K + (�kv · n, p)∂K = (∇ · (�kv), p)K,

which concludes the proof.
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Fig. 5. Auxiliary shape-regular edge mesh T̃e (left) obtained from a macro-mesh T̃e,m

(right)

7 Edge patches

An edge patch is given by a mesh Te of the form (6). For this patch, we
prove that the inf–sup constant γN depends on σ , but is independent of n and
the aspect ratio of the elements of Te. In addition we show a lower bound
that decreases as Ck−3/2. As a tool for the proof, we first introduce a refined
auxiliary mesh T̃e ⊂ Te for which the inf–sup constant decreases as k−1. We
then construct a Fortin operator that maps the velocity space on T̃e into that
on Te.

The auxiliary edge mesh T̃e is shown in Figure 5 and is obtained by refin-
ing Te in the z-direction in a minimal way, in order to obtain a shape-regular
mesh. We note that T̃e can also be obtained by first considering an initial
shape-regular, irregular macro-mesh T̃e,m, geometrically refined towards an
edge, say (x, y) = (1, 1), with grading factor σ and n layers. The elements of
T̃e,m are then geometrically refined towards the two faces x = 1 and y = 1.
Since T̃e ⊂ Te, we have the inclusions

S
k,1
0 (Q̂, Te)

3 ⊂ S
k,1
0 (Q̂, T̃e)

3, S
k−2,0
0 (Q̂, Te) ⊂ S

k−2,0
0 (Q̂, T̃e).

We have the following stability result

Lemma 7.1 Let T̃e be an auxiliary edge triangulation with grading factor
σ and n layers. Then, there exists a constant C, that depends on σ , but is
independent of k, n, and the aspect ratio of T̃e, such that

inf
0 �=p∈S

k−2,0
0 (Q̂,T̃e)

sup
0 �=v∈S

k,1
0 (Q̂,T̃e)3

(∇ · v, p)Q̂

|v|1,Q̂‖p‖0,Q̂

≥ Ck−1.(60)

Proof. We use Theorem 4.1 with � = Q̂, T = T̃e, and Tm = T̃e,m. The irreg-
ular mesh T̃e,m is shape-regular and a stability result for low-order spaces can
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be proven in the same way as for Lemma 5.3: there exists a constant C, only
depending on σ , such that

inf
0 �=p∈S

0,0
0 (Q̂,T̃e,m)

sup
0 �=v∈S

2,1
0 (Q̂,T̃e,m)3

(∇ · v, p)Q̂

|v|1,Q̂‖p‖0,Q̂

≥ C,(61)

which proves (9). We finally note that the anisotropically refined elements in
T̃e,m are particular face patches and that (10) then holds. ��

Despite the fact that a better bound for the inf–sup condition for the aux-
iliary mesh is obtained here (see Theorem 7.4), T̃e is not computationally
efficient since it has a number of elements that grows exponentially with the
number of layers n. Since the polynomial degree k needs to be of the same
order as n in order to achieve exponential convergence, this would impose a
number of degrees of freedom that grows exponentially with k.

We next define a one-dimensional projection. Let χ : [0,+∞) → R

be a Lipschitz continuous cut-off function that is equal to one in [0, 1], de-
creases to zero in [1, 1 + μ], μ > 0, and is equal to zero in [1 + μ,∞). If
k′ = (1+ μ)k − 1, we define πχ,k : H 1

0 (I )→ Qk′(I ) as

πχ,k

( ∞∑
i=2

aiUi

)
=

∞∑
i=2

χ

(
i

k

)
aiUi,

where the polynomials {Ui} have been introduced in Section 6.2. The fol-
lowing stability properties hold. We refer to Lemma 3.2, Lemma 3.3, and
Remark 3.4 in [4] for a proof.

Lemma 7.2 There is a constant C > 0 independent of k and χ , such that

|πχ,kv|21,I ≤ |v|21,I ,

‖πχ,kv‖2
0,I ≤ Cμ‖χ ′‖2

∞ ‖v‖2
0,I .

For our analysis we make a particular choice of χ . We impose that χ

decreases linearly from one to zero in [1, 1+ μ] and set μ = 1/k. We note
that k′ = k. Let πk : H 1

0 (I ) → Qk(I ) be the operator corresponding to this
choice of χ . We have

πk

( ∞∑
i=2

aiUi

)
=

∞∑
i=2

χ

(
i

k

)
aiUi =

k∑
i=2

aiUi.

Lemma 7.3 There is a constant C > 0 independent of k such that

|πzv|1,I ≤ |v|1,I ,

‖πzv‖0,I ≤ C
√

k ‖v‖0,I .
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Proof. It is enough to apply Lemma 7.2 with μ = 1/k and ‖χ ′‖∞ = 1/

μ = k. ��

We next define the operator �e : S
k,1
0 (Q̂, T̃e)

3 → S
k,1
0 (Q̂,Te)

3

�e = Ixy ◦ πk
z = πk

z ,

where Ixy is the identity operator for functions in x and y and πk
z is the op-

erator πk applied to functions in z. We note that �e is well-defined since
for a fixed z the restrictions of velocities in S

k,1
0 (Q̂, T̃e)

3 and S
k,1
0 (Q̂,Te)

3

coincide. The operator �e provides a Fortin operator and allows to prove the
following result.

Theorem 7.4 Let Te be an edge triangulation with grading factor σ and n

layers. Then, there exists a constant C, that depends on σ , but is independent
of k, n, and the aspect ratio of Te, such that

inf
0 �=p∈S

k−2,0
0 (Q̂,Te)

sup
0 �=v∈S

k,1
0 (Q̂,Te)3

(∇ · v, p)Q̂

|v|1,Q̂‖p‖0,Q̂

≥ Ck−3/2.(62)

Proof. Using the definition of πz and Lemma 7.3 we can easily prove

(∇ · (�eṽ), p)Q̂ = (∇ · ṽ, p)Q̂, ṽ ∈ S
k,1
0 (Q̂, T̃e)

3, p ∈ S
k−2,0
0 (Q̂,Te),

|�eṽ|21,Q̂
≤ Ck|ṽ|2

1,Q̂
, ṽ ∈ S

k,1
0 (Q̂, T̃e)

3.

Let now p ∈ S
k−2,0
0 (Q̂, Te). Thanks to Lemma 7.1, we can find a velocity

ṽ ∈ S
k,1
0 (Q̂, T̃e)

3 such that

(∇ · ṽ, p)Q̂ = ‖p‖2
0,Q̂

, |ṽ|1,Q̂ ≤ Ck‖p‖0,Q̂.

If v = �eṽ, we then have

(∇ · v, p)Q̂ = (∇ · ṽ, p)Q̂ = ‖p‖2
0,Q̂

and

|v|2
1,Q̂
≤ Ck|ṽ|2

1,Q̂
≤ Ck3‖p‖2

0,Q̂
,

which concludes the proof. ��
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8 Corner patches

A corner patch is given by a geometric mesh Tc, with grading factor σ and
n layers. For this patch, we prove that the inf–sup constant γN depends on
σ , but is independent of n and the aspect ratio of Tc. In our analysis, we
generalize the result in [11, Sect. 4] for two-dimensional corner patches.

Our stability result is given in the next theorem and is obtained by us-
ing Lemma 5.3 and noticing that the anisotropically refined elements in the
macro-mesh T n,σ

c,m are particular face and edge patches; see Section 3.1 and
Figure 1.

Theorem 8.1 Let Tc be a corner patch with grading factor σ and n layers.
Then, there exists a constant C, that depends on σ , but is independent of k,
n, and the aspect ratio of Tc, such that

inf
0 �=p∈S

k−2,0
0 (Q̂,Tc)

sup
0 �=v∈S

k,1
0 (Q̂,Tc)3

(∇ · v, p)Q̂

|v|1,Q̂‖p‖0,Q̂

≥ Ck−3/2.(63)

Proof. It is enough to use Theorem 4.1 with � = Q̂, T = Tc, and Tm = Tc,m.
��

9 Stability on geometric edge meshes

We now consider the case of geometric edge meshes T = T n,σ
edge, introduced

in Section 3.2. As before, we employ a macro-element technique, described
in Figure 2.

At the top level, we have the shape-regular macro-mesh Tm, which is
successively refined, either isotropically, or anisotropically towards an edge
(second level, left) or a corner (second level, right). The divergence stability
for the shape-regular macro-mesh at the top level and the isotropically refined
patches is proven in [16]. We then need to prove the stability of the single
patches for the higher order spaces.

9.1 Edge patches

For an edge patch, the same analysis for the case of a boundary layer mesh in
Section 7 can be carried out here. Indeed, an edge patch is given by a mesh
Te of the form (8), where the two-dimensional triangulation Txy is an irregu-
lar corner mesh, with grading factor σ and n layers. The following theorem
holds.
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Theorem 9.1 Let Te be an edge triangulation with grading factor σ and n

layers. Then, there exists a constant C, that depends on σ , but is independent
of k, n, and the aspect ratio of Te, such that

inf
0 �=p∈S

k−2,0
0 (Q̂,Te)

sup
0 �=v∈S

k,1
0 (Q̂,Te)3

(∇ · v, p)Q̂

|v|1,Q̂‖p‖0,Q̂

≥ Ck−3/2.(64)

Proof. We first consider an auxiliary shape-regular edge mesh T̃e,m ⊂ Te;
see Figure 5. In the same way as for Lemma 7.1, we can prove that there
exists a constant C only depending on σ such that

inf
0 �=p∈S

k−2,0
0 (Q̂,T̃e,m)

sup
0 �=v∈S

k,1
0 (Q̂,T̃e,m)3

(∇ · v, p)Q̂

|v|1,Q̂‖p‖0,Q̂

≥ Ck−1.

The Fortin operator

�e = Ixy ◦ πk
z = πk

z : S
k,1
0 (Q̂, T̃e,m)3 −→ S

k,1
0 (Q̂, Te)

3

then enables to prove the result, as for the proof of Theorem 7.4. ��

9.2 Corner patches

For a corner patch, the analysis is similar to that in Section 8. A corner patch
is given by a mesh Tc obtained by refining an initial irregular corner mesh
Tc,m towards the edges only. The following theorem holds.

Theorem 9.2 Let Tc be a corner patch with grading factor σ and n layers.
Then, there exists a constant C, that depends on σ , but is independent of k,
n, and the aspect ratio of Tc, such that

inf
0 �=p∈S

k−2,0
0 (Q̂,Tc)

sup
0 �=v∈S

k,1
0 (Q̂,Tc)3

(∇ · v, p)Q̂

|v|1,Q̂‖p‖0,Q̂

≥ Ck−3/2.(65)

Proof. We use a macro-element technique with Tc,m as macro-mesh. The
macro-mesh Tc,m is the same as in the case of boundary layer meshes and,
consequently, Lemma 5.3 holds. The proof is concluded by noticing that the
anisotropically refined elements in Tc,m are particular edge patches and by
using Theorem 4.1 with T = Tc and Tm = Tc,m. ��
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