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Abstract. Cohen and Odoni prove that every CM–field can be generated by an eigenvalue
of some skew–symmetric matrix with rational coefficients. It is natural to ask for the mini-
mal dimension of such a matrix. They show that every CM–field of degree 2n is generated
by an eigenvalue of a skew–symmetric matrix over Q of dimension at most 4n + 2. The
aim of the present paper is to improve this bound.

Introduction

In [4], Cohen and Odoni show that every CM–field is generated by an eigenvalue
of some skew–symmetric matrix with rational coefficients. They also ask for the
minimal dimension of such a matrix. Using a result of Bender [2], they prove that
every CM–field of degree 2n is generated by an eigenvalue of a skew–symmetric
matrix over Q of dimension at most 4n + 2. The aim of the present paper is to
show that this bound can be improved to 2n + 3 if n ≡ 1 (mod 4), to 2n + 1 if
n ≡ 3 (mod 4), and to 2n + 4 if n is even.

We start with a general discussion of skew–symmetric matrices of given rank
and a given eigenvalue. These conditions imply some restrictions on the charac-
teristic polynomial of the matrix. Hence it is natural to study skew–symmetric
matrices having a given characteristic polynomial. It is easy to see that the char-
acteristic polynomial of a skew–symmetric matrix is even or odd. Conversely, let
P ∈ Q[X] be a monic polynomial of degree m such that P(−X) = (−1)mP (X).
Let A = Q[X]/(P ), and let σ : A → A be the Q–linear involution induced by
X �→ −X. We show that there exists a skew–symmetric matrix over Q with charac-
teristic polynomial P if and only if the m–dimensional unit form satisfies a certain
invariance relation with respect to (A, σ ) (see §1). This is just a more concep-
tual formulation of a well–known method of finding skew–symmetric (symmetric,
orthogonal,...) matrices having a given eigenvalue (see for instance [2], [1]). After
proving some preliminary results in §2, we apply this method in §3.
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1. Skew–symmetric matrices and adjoint involutions

Let k be a field of characteristic �= 2.

Adjoint involutions

Let A be a commutative k–algebra, and let τ : A → A be a k–linear involution.
Let q : A × A → k be a symmetric bilinear form defined over the k–vector space
A. We say that the algebra with involution (A, τ) is adjoint to q if

q(xy, z) = q(y, τ (x)z)

for all x, y, z ∈ A. If A is given and if (A, τ) is adjoint to q, then we shall use the
notation τ = τq .

The following remark will often be implicitly used in the proofs:

Remark. Assume that (A, τ) � (A′, τ ′) × (A′′, τ ′′), for some algebras with invo-
lution (A′, τ ′) and (A′′, τ ′′). Let q : A × A → k such that τ = τq . Then q is
isomorphic to a direct sum of symmetric bilinear forms q ′ : A′ × A′ → k and
q ′′ : A′′ × A′′ → k with τ ′ = τq ′ and τ ′′ = τq ′′ .

Recall that A is an étale algebra if it is isomorphic to a product of a finite num-
ber of separable field extensions of finite degree of k. Let Tr : A → k be the trace
map. Then A is étale if and only if the symmetric bilinear form Tr : A × A → k,
given by (x, y) �→ Tr(xy), is non–degenerate.

Proposition 1.1. Suppose that A is an étale algebra. Then the following are equiv-
alent :

(a) τ = τq ;
(b) there exists α ∈ A such that τ(α) = α, and that q(x, y) = Tr(αxτ(y)).

Moreover, q is non–degenerate if and only if α ∈ A∗.

Proof. This is well–known, and follows from the fact that Tr : A × A → k is a
non–degenerate symmetric bilinear form.

Let us denote by q(A,τ,α) the symmetric bilinear form A × A → k given by
(x, y) �→ Tr(αxτ(y)). If the involution is trivial (that is, τ is the identity) then we
set q(A,τ,α) = q(A,α). Note that q(A,1) is the usual trace form of the algebra A. 	


Skew–symmetric matrices

Let P ∈ k[X] be a monic polynomial of degree m with P(−X) = (−1)mP (X) (that
is, P is even or odd). It is natural to ask whether P is the characteristic polynomial
of some skew–symmetric matrix over k. Set A = k[X]/(P ), and let τ : A → A

be the k–linear involution induced by τ(X) = −X. Let us denote by m. < 1 > the
m–dimensional unit form.
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Proposition 1.2. Suppose that P is separable. Then there exists a skew–symmet-
ric matrix with coefficients in k having characteristic polynomial P if and only if
(A, τ) is adjoint to m. < 1 >.

Proof. We recall the proof for the convenience of the reader.
Let V be an m–dimensional k–vector space, and let (e1, . . . , em) a basis of V .

Let b0 : V × V → k be given by b0(ei, ej ) = δi,j .
Let M ∈ Mm(k) such that Mt = −M , and that the characteristic polynomial of

M is P . Let µ : V → V be the endomorphism given by the matrix M in this basis.
Let us endow V with the A–module structure induced by µ (that is, the action of X

is given by µ). Then V is a free A–module of rank one. As M is skew–symmetric,
we have b0(µx, y) = b0(x, τ (µ)(y)) for all x, y ∈ V . This proves that τ = τb0 .

Conversely, suppose that τ = τb0 . Let us denote by µ : A → A the endomor-
phism given by multiplication by the image of X in A. Then the characteristic poly-
nomial of µ is P . As τ = τb0 , we have b0(µx, y) = b0(x, τ (µ)y) = −b0(x, µy).
Then Mt = −M . This concludes the proof of the proposition. 	


2. Adjoint involutions and CM–fields

Invariants of symmetric bilinear forms

Let V be a finite dimensional k–vector space, and let q : V × V → k be a non–
degenerate symmetric bilinear form. Set m = dim(V ). We recall the definition of
some classical invariants. For more details, see for instance [6].

Determinant. The determinant of q, denoted by det(q), is by definition the deter-
minant of the matrix of q in some k–basis of V , considered as an element of k∗/k∗2.

Recall that every symmetric bilinear form can be diagonalised. In other words,
there exist a1, . . . , am such that q �< a1, . . . , am >.

Hasse–Witt invariant. Let q �< a1, . . . , am >. The Hasse–Witt invariant of q is
by definition

w2(q) = �i<j (ai, aj ) ∈ Br2(k),

where (ai, aj ) is the quaternion algebra determined by ai, aj and Br2(k) is the sub-
group of elements of order one or two of the Brauer group of k, written additively.

Signature. Let v be an ordering of k, and let kv be a real closure of k at v.
Then over kv , the symmetric bilinear form q is isomorphic to a diagonal form
< 1, . . . , 1, −1, . . . ,−1 >. Let us denote by r the number of 1’s and by s the
number of −1’s in this diagonalisation. Then the signature of q at v is by definition
signv(q) = r − s.
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Adjoint involutions over separable field extensions

Let K be a separable extension of k of finite degree. Let σ : K → K be a
non–trivial k–linear involution. Let F be the fixed field of this involution, that is
F = {x ∈ K|σ(x) = x}. Then K is a quadratic extension of F . Let θ ∈ F ∗ such
that K = F(

√
θ).

Lemma 2.1. We have

q(K,σ,α) �< 2 > ⊗[q(F,α) ⊕ q(F,−αθ)].

Proof. This follows from the orthogonal decomposition K = F ⊕ F
√

θ . 	

Proposition 2.2. We have

(i) detq(K,σ,α) = NF/k(−θ) ∈ k∗/k∗2.
(ii) signvq(K,σ,α) = �w(1 − sgnw(θ))sgnw(α), where the sum is taken over all

orderings w of F extending v, and sgnw(x) is the sign of x at w.

Proof. Apply lemma 2.1 and the formulas given in theorems 2.5.12. and 3.4.5. of
[6]. 	


CM–fields

Let K be a CM–field. By definition K is a totally imaginary algebraic number field
having a non–trivial Q–linear involution σ : K → K , and the fixed field F of this
involution is totally real. Set n = [F : Q]. Then [K : Q] = 2n. It is well–known
that there exists a totally negative element θ ∈ F ∗ such that K = F(

√
θ) (see for

instance [4]). Note that the involution σ is given by σ(
√

θ) = −√
θ .

We denote by n. < 1 > the n–dimensional unit form. Let dF be the discriminant
of the field F , that is the determinant of q(F,1). It is well–known that

dF =
∏

i<j

(γi − γj )
2 mod Q∗2,

where the γi’s denote the conjugates of a primitive element of F .

Proposition 2.3. Let K be a CM–field of degree 2n, with n odd. Let α ∈ F ∗ be
totally positive. Then we have

q(K,σ,α) �< NF/Q(2αdF ) > ⊗ < 1, −NF/Q(θ) > ⊗(n. < 1 >).

Proof. Note that α and −θα are both totally positive. Hence by lemma 2.1. it
suffices to check that for any totally positive γ ∈ F ∗, we have

q(F,γ ) �< dF NF/Q(γ ) > ⊗(n. < 1 >).

Set bγ =< dF NF/Q(γ ) > ⊗(n. < 1 >). The forms q(F,γ ) and bγ have equal
dimensions and determinants. As F is totally real, dF is positive. Since γ is to-
tally positive, NF/Q(γ ) is also positive. Therefore sign(bγ ) = n. We also have
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signq(F,γ ) = n, hence (F, γ ) and bγ have equal signatures. This implies that
(F, γ ) and bγ are isomorphic over R. In particular, over R the forms q(F,γ ) and
bγ have equal Hasse–Witt invariants. Let us check that q(F,γ ) and bγ also have
equal Hasse–Witt invariants over the p–adic numbers Qp for all prime numbers
p. When p �= 2 this follows from [5]. By the product formula, this holds also for
p = 2. Hence q(F,γ ) and bγ have equal dimensions, determinants, signatures and
Hasse–Witt invariants. By the Hasse–Minkowski theorem, they are isomorphic (see
for instance [6], Chap. 6). 	


3. Skew–symmetric matrices associated with CM–fields

Let K be a CM–field of degree 2n. We keep the notation of §2. In particular, θ ∈ F ∗
is a totally negative element such that K = F(

√
θ). Let f ∈ Q[X] be the minimal

polynomial of θ .
Cohen and Odoni (cf. [4]) have shown that there exist skew–symmetric matri-

ces over Q with eigenvalue
√

θ . In this section, we give an upper bound for the
minimal dimension of such a matrix. We deal separately with the cases n odd and
n even.

Theorem 3.1. Suppose that n is odd. Then there exists a skew–symmetric matrix
over Q of dimension 2n + 3 with eigenvalue

√
θ .

This theorem is a consequence of prop. 3.2.– 3.6. below.

Proposition 3.2. Suppose that n is odd. Then
√

θ is an eigenvalue of a skew–sym-
metric matrix of dimension 2n if and only if −NF/Q(θ) ∈ Q∗2.

Proof. There exists a skew–symmetric matrix over Q of dimension 2n with eigen-
value

√
θ if and only if there exists a skew–symmetric matrix over Q of characteristic

polynomial f . By prop. 1.2., this holds if and only if (K, σ) is adjoint to the 2n–
dimensional unit form 2n. < 1 >. Using prop. 1.1., we see that this is equivalent
with the existence of an α ∈ F ∗ such that q(K,σ,α) � 2n. < 1 >. Comparing
determinants, we see that this implies that −NF/Q(θ) ∈ Q∗2. Conversely, suppose
that −NF/Q(θ) ∈ Q∗2. Set α = 2dF . This is a positive rational number. By prop.
2.3., we get q(K,σ,α) � 2n. < 1 >. This concludes the proof of the proposition.
	


Proposition 3.3. Suppose that n ≡ 3 (mod 4). Then
√

θ is the eigenvalue of a
skew–symmetric matrix of dimension 2n + 1.

Note that the two previous propositions show that 2n + 1 is the best possible
bound when n ≡ 3 (mod 4).

The following lemma is well–known :

Lemma 3.4. For any positive rational number a, we have

< a > ⊗ < 1, 1, 1, 1 >�< 1, 1, 1, 1 > .
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Proof. By Lagrange’s theorem, every positive rational number is a sum of four
squares. Hence any such number a is represented by < 1, 1, 1, 1 >. On the other
hand, this form is multiplicative (see for instance [6], chap. 2). This implies the
desired statement. 	

Proof of prop. 3.3.. Let P(X) = Xf (X). Notice that

√
θ is the eigenvalue of a

skew–symmetric matrix over Q of dimension 2n + 1 if and only if there exists a
skew–symmetric matrix over Q with characteristic polynomial P . By prop. 1.1.
and 1.2., this is the case if and only if there exist α ∈ F ∗ and a ∈ Q∗ such that
q(K,σ,α)⊕ < a >� (2n + 1). < 1 >.

By prop. 2.3. we have

q(K,σ,α) �< NF/Q(2αdF ) > ⊗ < 1, −NF/Q(θ) > ⊗(n. < 1 >).

Set α = 2dF . Then

q(K,σ,α)⊕ < −NF/Q(θ) >�< −NF/Q(θ) > ⊗((n + 1). < 1 >) ⊕ n. < 1 > .

As n + 1 ≡ 0 (mod 4), by lemma 3.4. we have

−NF/Q(θ) ⊗ ((n + 1). < 1 >) � (n + 1). < 1 > .

Therefore
q(K,σ,α)⊕ < −NF/Q(θ) >� (2n + 1). < 1 > .

Hence prop. 3.3. is proved. 	

Proposition 3.5. Suppose that n ≡ 1 (mod 4). Then

√
θ is an eigenvalue of a

skew–symmetric matrix of dimension 2n + 3.

Proof. Let d ∈ Q∗ be a sum of two squares, and suppose that d �= −NK/Q(θ) in
Q∗/Q∗2. Set P(X) = X(X2 + d)f (X). Then P is a separable polynomial (this is
clear if n > 1, and this is by choice of d if n = 1). Let E = Q[X]/(P ), and let
τ : E → E be the Q–linear involution induced by X �→ −X. By prop. 1.2., it suf-
fices to show that (E, τ) is adjoint to the (2n+ 3)–dimensional unit form. It is easy
to see that if (E, τ) is adjoint to some non–degenerate symmetric bilinear form q

if and only if q � q(K,σ,α)⊕ < 2a, 2ad > ⊕ < b > for some α ∈ F ∗, a, b ∈ Q∗.
Hence by prop. 1.1. it is enough to show that there exist α ∈ F ∗, a, b ∈ Q∗, such
that

q(K,σ,α)⊕ < 2a, 2ad > ⊕ < b >� (2n + 3). < 1 > .

Set α = 2dK , a = −2NF/Q(θ) and b = −dNF/Q(θ). Then we have, using prop.
3.3.

q(K,σ,α)⊕ < 2a, 2ad > ⊕ < b >�
< 1, −NF/Q(θ) > ⊗(n. < 1 >)⊕ < −NF/Q(θ) > ⊗ < 1, d, d > .

As d is a sum of two squares, < d, d >�< 1, 1 >. Hence the above form is iso-
morphic to n. < 1 > ⊕ < −NF/Q(θ) > ⊗(n + 3). < 1 > . As n + 3 is divisible
by 4, we have < −NF/Q(θ) > ⊗(n + 3). < 1 >� (n + 3). < 1 >. Hence we get
the form (2n + 3). < 1 >, as claimed. 	
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As shown in prop. 3.6. below, it is sometimes possible to get a better bound:

Proposition 3.6. Suppose that n ≡ 1 (mod 4). Then the following are equivalent:

1.
√

θ is an eigenvalue of a skew–symmetric matrix of dimension 2n + 1 ;
2. −NF/Q(θ) is a sum of three squares in Q.

Proof. As seen in the proof of prop. 3.2., condition (i) holds if and only if

q(K,σ,α)⊕ < a >� (2n + 1). < 1 >

for some α ∈ F ∗, a ∈ Q∗. Note that if this isomorphism holds, then by com-
paring determinants we get a = −NF/Q(θ) ∈ Q∗/Q∗2. Hence we can assume
that a = −NF/Q(θ). Comparing signatures, we get that α is totally positive. Set
β = 2αdF . Then by prop. 2.3.,

q(K,σ,qα)⊕ < −NF/Q(θ) >�
< NF/Q(β) > ⊗ < 1, −NF/Q(θ) > ⊗(n. < 1 >)⊕ < −NF/Q(θ) > .

This form is isomorphic to the (2n + 1)–dimensional unit form if and only if

< NF/Q(β), −NF/Q(θβ), −NF/Q(θ) >�< 1, 1, 1 >

(use lemma 3.4. and Witt cancellation). We claim that this happens if and only
if −NF/Q(θ) is a sum of three squares. The necessity of this condition is clear.
Conversely, suppose that −NF/Q(θ) is a sum of three squares. Then there exists a
positive b ∈ Q∗ such that

< 1, 1, 1 >�< −NF/Q(θ), b, −bNF/Q(θ) > .

Set α = 2bdF , so β = b. Then NF/Q(β) = b mod squares. We get

q(K,σ,α)⊕ < −NF/Q(θ) >� (2n + 1). < 1 >,

as claimed. 	

The following proposition shows that 2n + 3 is the best possible bound in the

case where n ≡ 1 (mod 4), provided the characteristic polynomial of the matrix is
supposed to be separable.

Proposition 3.7. Suppose that n ≡ 1 (mod 4). If
√

θ is an eigenvalue of a skew–
symmetric matrix of dimension 2n + 2 with separable characteristic polynomial,
then −NF/Q(θ) is a sum of three squares in Q.

Proof. If
√

θ is an eigenvalue of a skew–symmetric matrix of dimension 2n+2, then
its characteristic polynomial is P(X) = (X2 + d)f (X) for some d ∈ Q. Suppose
that the polynomial P is separable. Apply prop 1.2. with P(X) = (X2 + d)f (X).
Set A = Q[X]/(P ), and let τ : A → A be induced by X �→ −X. If (A, τ) is
adjoint to some symmetric bilinear form q, then q � q(K,σ,α)⊕ < 2a, 2ad > for
some α ∈ F ∗, a ∈ Q∗. If such a form is isomorphic to the unit form, then α is
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totally positive, a is positive and d = −NF/Q(θ). Using the same argument as in
the proof of prop. 3.6., we get

< NF/Q(2αdF ), −NF/Q(2αdF )NF/Q(θ) > ⊕ < 2a, −2aNF/Q(θ) >

�< 1, 1, 1, 1 > .

Multiplying this relation by 2a, using lemma 3.4., and simplifying by < 1 >, we
get that −NF/Q(θ) is a sum of three squares. 	


We now deal with the case where n is even.

Theorem 3.8. Let K be a CM–field of degree 2n, n even. Then K is generated by
an eigenvalue of a skew–symmetric matrix of dimension 2n + 4.

Proof. We first prove that there exist two negative rational numbers a, b such that
w2(q(K,σ,1)) = (−NF/Q(θ), −1) + (a, b). Since q(K,σ,1) has dimension and sig-
nature 2n, over R it is isomorphic to 2n. < 1 >. Hence over R, its Hasse–Witt
invariant is trivial. Recall now that the elements of Br2(Q) are quaternion algebras.
Hence (−NF/Q(θ), −1) + w2(q(K,σ,1)) = (a, b) for some a, b ∈ Q. Since θ is
totally negative and n is even, we have NF/Q(θ) > 0. The above relation then
shows that a and b are negative.

Set

q = (2n − 3). < 1 > ⊕ < −NF/Q(θ)a, −NF/Q(θ)b, NF/Q(θ)ab > .

Let us show that q � q(K,σ,1). It suffices to prove that these two forms have
equal dimensions, discriminants, signatures and Hasse–Witt invariants. We have
dim(q) = 2n and det(q) = NF/Q(θ). Since NF/Q(θ) > 0, we have sign(q) =
2n. Moreover, w2(q) = w2(< −NF/Q(θ) > ⊗ < a, b, −ab >) = w2(<

a, b, −ab >) + (−NF/Q(θ), −1) = (a, b) + (−NF/Q(θ), −1). Therefore q and
q(K,σ,1) have equal invariants, hence they are isomorphic.

Set φ =< NF/Q(θ), −a, −b, ab >. Then we have

φ ⊕ q(K,σ,1) � (2n − 4). < 1 > ⊕ << −a, −b, NF/Q(θ) >> .

The Hasse–Witt invariant of a 3–fold Pfister form is trivial. Moreover, the Pfis-
ter form << −a, −b, NF/Q(θ) >> has dimension 8, trivial discriminant and
signature 8, so it is isomorphic to the 8–dimensional unit form. Hence we get
φ ⊕ q(K,σ,1) � (2n + 4). < 1 >. By [3], th. 1, there exists an algebraic number
field L with a Q–linear involution τ and a β ∈ L, such that φ � q(L,τ,β). The proof
shows that L is generated by an element ρ with an even irreducible polynomial g,
and such that τ(ρ) = −ρ. Moreover, there are infinitely many choices for L, hence
we can assume that f �= g. Applying prop. 1.2. with P = fg gives the desired
result. 	




CM–fields and skew–symmetric matrices 359

References

[1] Bayer–Fluckiger, E.: Ideal lattices. Proceedings of the Conference Number Theory
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