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Abstract. Cohen and Odoni prove that every CM—field can be generated by an eigenvalue
of some skew—symmetric matrix with rational coefficients. It is natural to ask for the mini-
mal dimension of such a matrix. They show that every CM—field of degree 2n is generated
by an eigenvalue of a skew—symmetric matrix over Q of dimension at most 4n + 2. The
aim of the present paper is to improve this bound.

Introduction

In [4], Cohen and Odoni show that every CM—field is generated by an eigenvalue
of some skew—symmetric matrix with rational coefficients. They also ask for the
minimal dimension of such a matrix. Using a result of Bender [2], they prove that
every CM-field of degree 2n is generated by an eigenvalue of a skew—symmetric
matrix over Q of dimension at most 4n + 2. The aim of the present paper is to
show that this bound can be improved to 2n + 3 if n = 1 (mod 4), to 2n + 1 if
n =3 (mod 4), and to 2n + 4 if n is even.

We start with a general discussion of skew—symmetric matrices of given rank
and a given eigenvalue. These conditions imply some restrictions on the charac-
teristic polynomial of the matrix. Hence it is natural to study skew—symmetric
matrices having a given characteristic polynomial. It is easy to see that the char-
acteristic polynomial of a skew—symmetric matrix is even or odd. Conversely, let
P € Q[X] be a monic polynomial of degree m such that P(—X) = (—1)" P(X).
Let A = Q[X]/(P),and leto : A — A be the Q-linear involution induced by
X +— —X.We show that there exists a skew—symmetric matrix over Q with charac-
teristic polynomial P if and only if the m—dimensional unit form satisfies a certain
invariance relation with respect to (A, o) (see §1). This is just a more concep-
tual formulation of a well-known method of finding skew—symmetric (Symmetric,
orthogonal,...) matrices having a given eigenvalue (see for instance [2], [1]). After
proving some preliminary results in §2, we apply this method in §3.

E. Bayer—Fluckiger: Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1015
Lausanne, Switzerland. e-mail: eva.bayer @epfl.ch

G. Berhuy: Department of Mathematics, University of British Columbia, Vancouver BC,
V6S 1C2, Canada. e-mail: berhuy @math.ubc.ca

P. Chuard—Koulmann: Institut de Mathématiques, Université de Neuchatel, rue Emile
Argand 11, 2007 Neuchétel, Switzerland. e-mail: pascale.chuard @unine.ch

DOI: 10.1007/500229-004-0462-0



https://core.ac.uk/display/159155292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

352 E. Bayer-Fluckiger et al.

1. Skew-symmetric matrices and adjoint involutions

Let k be a field of characteristic # 2.

Adjoint involutions

Let A be a commutative k—algebra, and let T : A — A be a k—linear involution.
Letg : A x A — k be a symmetric bilinear form defined over the k—vector space
A. We say that the algebra with involution (A, 1) is adjoint to g if

q(xy,z) = q(y, t(x)z)

forall x, y,z € A. If A is given and if (A, 7) is adjoint to ¢, then we shall use the
notation T = .
The following remark will often be implicitly used in the proofs:

Remark. Assume that (A, t) >~ (A, t/) x (A”, "), for some algebras with invo-
lution (A, 7’) and (A", t”). Letq : A x A — k such that T = 7,. Then g is
isomorphic to a direct sum of symmetric bilinear forms ¢’ : A’ x A’ — k and
q" A" x A" - kwitht' =ty and 7" = 7.

Recall that A is an étale algebra if it is isomorphic to a product of a finite num-
ber of separable field extensions of finite degree of k. Let Tr : A — k be the trace
map. Then A is étale if and only if the symmetric bilinear form Tr : A x A — k,
given by (x, y) — Tr(xy), is non—degenerate.

Proposition 1.1. Suppose that A is an étale algebra. Then the following are equiv-
alent :

(a)t =14,
(D) there exists o« € A such that t(a) = «, and that q(x,y) = Tr(axt(y)).
Moreover, q is non—degenerate if and only if o € A*.

Proof. This is well-known, and follows from the fact that Tr : A x A — kisa
non—degenerate symmetric bilinear form.

Let us denote by ga,r,«) the symmetric bilinear form A x A — k given by
(x,y) — Tr(aext(y)). If the involution is trivial (that is, T is the identity) then we
set g(A,r,a) = q(A,a)- Note that g4 1) is the usual trace form of the algebra A. O

Skew—symmetric matrices

Let P € k[X]be amonic polynomial of degree m with P(—X) = (—1)" P(X) (that
is, P is even or odd). It is natural to ask whether P is the characteristic polynomial
of some skew—symmetric matrix over k. Set A = k[X]/(P),andlett : A - A
be the k—linear involution induced by 7(X) = —X. Let us denote by m. < 1 > the
m—dimensional unit form.
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Proposition 1.2. Suppose that P is separable. Then there exists a skew—symmet-
ric matrix with coefficients in k having characteristic polynomial P if and only if
(A, 7) is adjoint tom. < 1 >.

Proof. We recall the proof for the convenience of the reader.

Let V be an m—dimensional k—vector space, and let (eq, ..., ;) a basis of V.
Letbg : V x V — k be given by bo(e;, e;) = & ;.

Let M € M,, (k) such that M" = —M, and that the characteristic polynomial of
M is P.Let u : V — V be the endomorphism given by the matrix M in this basis.
Let us endow V with the A—module structure induced by u (that is, the action of X
is given by ). Then V is a free A—module of rank one. As M is skew—symmetric,
we have bo(ux, y) = bo(x, t(w)(y)) for all x, y € V. This proves that T = 1,.

Conversely, suppose that T = 13,. Let us denote by o : A — A the endomor-
phism given by multiplication by the image of X in A. Then the characteristic poly-
nomial of  is P. As T = 1p,, we have bo(ux, y) = bo(x, T(n)y) = —bo(x, ny).
Then M! = —M. This concludes the proof of the proposition. O

2. Adjoint involutions and CM-fields
Invariants of symmetric bilinear forms

Let V be a finite dimensional k—vector space, and letg : V x V — k be a non—
degenerate symmetric bilinear form. Set m = dim(V). We recall the definition of
some classical invariants. For more details, see for instance [6].

Determinant. The determinant of g, denoted by det(q), is by definition the deter-
minant of the matrix of ¢ in some k—basis of V, considered as an element of k* / k*2.

Recall that every symmetric bilinear form can be diagonalised. In other words,
there exist ay, ..., a, such thatg ~< ay, ..., ay >.

Hasse—Witt invariant. Let g ~< ay, ..., an >. The Hasse—Witt invariant of g is
by definition

wa(q) = Zi<j(a;,aj) € Bra(k),

where (a;, a;) is the quaternion algebra determined by a;, a; and Br; (k) is the sub-
group of elements of order one or two of the Brauer group of k, written additively.

Signature. Let v be an ordering of k, and let k, be a real closure of k at v.
Then over k,, the symmetric bilinear form ¢ is isomorphic to a diagonal form
< 1,...,1,—1,...,—1 >. Let us denote by r the number of 1’s and by s the
number of —1’s in this diagonalisation. Then the signature of q at v is by definition
sign,(q) =r —s.
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Adjoint involutions over separable field extensions

Let K be a separable extension of k of finite degree. Let 0 : K — K be a
non—trivial k—linear involution. Let F be the fixed field of this involution, that is
F = {x € K|o(x) = x}. Then K is a quadratic extension of F. Let 0 € F™* such
that K = F(/0).

Lemma 2.1. We have
4(K,00) =<2 > Qlq(F.a) D q(F,—a0)]-
Proof. This follows from the orthogonal decomposition K = F @ F\/60. 0O

Proposition 2.2. We have
(i) detq(k 0.0y = NF/k(—0) € k*/k*2.
(ii) sign, gk o,0) = Zw (1 — sgn, (0))sgn,, (a), where the sum is taken over all
orderings w of F extending v, and sgn,, (x) is the sign of x at w.

Proof. Apply lemma 2.1 and the formulas given in theorems 2.5.12. and 3.4.5. of
[6]. O

CM—fields

Let K be a CM-field. By definition K is a totally imaginary algebraic number field
having a non—trivial Q-linear involution ¢ : K — K, and the fixed field F of this
involution is totally real. Set n = [F : Q]. Then [K : Q] = 2n. It is well-known
that there exists a totally negative element & € F* such that K = F(+/0) (see for
instance [4]). Note that the involution o is given by a(\/é) = —/0.

Wedenotebyn. < 1 > the n—dimensional unit form. Let dr be the discriminant
of the field F, that is the determinant of g(f,1y. It is well-known that

dr =[[i —v)* mod Q*,
i<j
where the y;’s denote the conjugates of a primitive element of F'.

Proposition 2.3. Let K be a CM—field of degree 2n, with n odd. Let « € F* be
totally positive. Then we have

q(k.0.0) =< NpjQQRadr) > ® < 1, =Np/Q(0) > ®(. < 1>).

Proof. Note that o and —6« are both totally positive. Hence by lemma 2.1. it
suffices to check that for any totally positive y € F*, we have

qF.y) =< dpNpi(y) > ®(n. < 1 >).

Set by, =< dpNp/Q(y) > ®n. < 1 >). The forms g(r ) and b, have equal
dimensions and determinants. As F is totally real, dr is positive. Since y is to-
tally positive, Ng/q(y) is also positive. Therefore sign(b,) = n. We also have
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signg(r,y) = n, hence (F,y) and b, have equal signatures. This implies that
(F,y) and b), are isomorphic over R. In particular, over R the forms ¢(r,,) and
b, have equal Hasse—Witt invariants. Let us check that g(r ) and b, also have
equal Hasse-Witt invariants over the p—adic numbers Q,, for all prime numbers
p. When p # 2 this follows from [5]. By the product formula, this holds also for
p = 2. Hence g(r,y) and b, have equal dimensions, determinants, signatures and
Hasse—Witt invariants. By the Hasse-Minkowski theorem, they are isomorphic (see
for instance [6], Chap. 6). O

3. Skew-symmetric matrices associated with CM—fields

Let K be a CM-field of degree 2n. We keep the notation of §2. In particular, § € F*
is a totally negative element such that K = F (\/5). Let f € Q[X] be the minimal
polynomial of 6.

Cohen and Odoni (cf. [4]) have shown that there exist skew—symmetric matri-
ces over Q with eigenvalue +/6. In this section, we give an upper bound for the
minimal dimension of such a matrix. We deal separately with the cases n odd and
n even.

Theorem 3.1. Suppose that n is odd. Then there exists a skew—symmetric matrix
over Q of dimension 2n + 3 with eigenvalue /6.

This theorem is a consequence of prop. 3.2.— 3.6. below.

Proposition 3.2. Suppose that n is odd. Then /0 is an eigenvalue of a skew—sym-
metric matrix of dimension 2n if and only if —NF,Q(0) € Q*2.

Proof. There exists a skew—symmetric matrix over Q of dimension 2n with eigen-
value +/6 if and only if there exists a skew—symmetric matrix over Q of characteristic
polynomial f. By prop. 1.2., this holds if and only if (K, o) is adjoint to the 2n—
dimensional unit form 2n. < 1 >. Using prop. 1.1., we see that this is equivalent
with the existence of an @ € F* such that g(x ¢,a) = 2n. < 1 >. Comparing
determinants, we see that this implies that —Ng,q(6) € Q*2. Conversely, suppose
that —Ng,Q(0) € Q*2. Set @ = 2d. This is a positive rational number. By prop.
2.3., we get (K ,0,0) = 2n. < 1 >. This concludes the proof of the proposition.
]

Proposition 3.3. Suppose that n = 3 (mod 4). Then /0 is the eigenvalue of a
skew—symmetric matrix of dimension 2n + 1.

Note that the two previous propositions show that 2n + 1 is the best possible
bound when n = 3 (mod 4).
The following lemma is well-known :

Lemma 3.4. For any positive rational number a, we have

<a>Q<1,1,1,1>~2<1,1,1,1 > .
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Proof. By Lagrange’s theorem, every positive rational number is a sum of four
squares. Hence any such number « is represented by < 1, 1, 1, 1 >. On the other
hand, this form is multiplicative (see for instance [6], chap. 2). This implies the
desired statement. O

Proof of prop. 3.3.. Let P(X) = Xf(X). Notice that /6 is the eigenvalue of a
skew—symmetric matrix over Q of dimension 2n + 1 if and only if there exists a
skew—symmetric matrix over Q with characteristic polynomial P. By prop. 1.1.
and 1.2., this is the case if and only if there exist « € F* and a € Q* such that
K oa)® <a>>Q2n+1). <1>.

By prop. 2.3. we have

qd(K,0,0) 2< Np/QQRadr) > ®@ < 1, =Np/(0) > ®(n. < 1 >).
Set o = 2dfp. Then
q4K.0.0)® < —Np/Q(0) >=< —Np/Q(®) > ((n+1). <1 >)dn. <1>.
Asn+ 1= 0 (mod 4), by lemma 3.4. we have
—Np @)@ ((n+1).<1>>m+1).<1>.

Therefore
q(K,0,0)P < —NF/Q(Q) >~ 2n+1). <1>.

Hence prop. 3.3. is proved. O

Proposition 3.5. Suppose that n = 1 (mod 4). Then /0 is an eigenvalue of a
skew—symmetric matrix of dimension 2n + 3.

Proof. Letd € Q" be a sum of two squares, and suppose that d # —Ng,q(#) in
Q*/Q*2. Set P(X) = X (X% +d) f(X). Then P is a separable polynomial (this is
clear if n > 1, and this is by choice of d if n = 1). Let E = Q[X]/(P), and let
7 : E — E be the Q-linear involution induced by X +— —X. By prop. 1.2., it suf-
fices to show that (E, 7) is adjoint to the (2n + 3)—-dimensional unit form. It is easy
to see that if (E, 7) is adjoint to some non—degenerate symmetric bilinear form g
ifand only if ¢ >~ q(x,0,0)® < 2a,2ad > & < b > forsome o € F*, a,b € Q*.
Hence by prop. 1.1. it is enough to show that there exist @ € F*, a, b € Q*, such
that
qK,0,0)® <2a,2ad >® <b>=2n+3). <1>.

Seta = 2dg,a = —2Np;Q(f) and b = —dNF,@(6). Then we have, using prop.
3.3.
4K ,0,0)® < 2a,2ad > ® < b >~

<1, -Np/Q0) > ®(n. <1>)® < —Np0) >® < 1,d,d > .

As d is a sum of two squares, < d,d >~< 1,1 >. Hence the above form is iso-
morphicton. <1 > ® < —Np/Q@) > ®(n +3). <1 > .Asn + 3isdivisible
by 4, we have < —Npg,(0) > ®(n +3). <1 >~ (n + 3). < 1 >. Hence we get
the form (2n + 3). < 1 >, asclaimed. O
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As shown in prop. 3.6. below, it is sometimes possible to get a better bound:
Proposition 3.6. Suppose that n = 1 (mod 4). Then the following are equivalent:

1. /0 is an eigenvalue of a skew—symmetric matrix of dimension 2n + 1 ;
2. —=Np/Q(0) is a sum of three squares in Q.

Proof. As seen in the proof of prop. 3.2., condition (i) holds if and only if
dKoa)® <a>>Q2n+1). <1>

for some o« € F*, a € Q*. Note that if this isomorphism holds, then by com-
paring determinants we get a = —Np/(0) € Q* /Q*2. Hence we can assume
that a = —Np/(0). Comparing signatures, we get that « is totally positive. Set
B = 2adFp. Then by prop. 2.3.,

q4(K,0,q0)® < —Np/Q(0) >~

< Np/Q(B) > ® < 1, =Np/Q0) > ®(n. <1 >)® < —Np/(0) > .

This form is isomorphic to the (2n + 1)—dimensional unit form if and only if

< Nr/Q(B), =Nr/Q(0B8), —Np/Q(0) >=< 1, 1,1 >

(use lemma 3.4. and Witt cancellation). We claim that this happens if and only
if —Nr/Q(6) is a sum of three squares. The necessity of this condition is clear.
Conversely, suppose that —N£/q(6) is a sum of three squares. Then there exists a
positive b € Q* such that

<1,1,1 >~< —=Npg/(8), b, —=bNf/Q(®) > .
Seta = 2bdF, so B = b. Then Nr,q(8) = b mod squares. We get

qK,0.0)® < —NpjQ®) >~ (2n+1). <1 >,
as claimed. O

The following proposition shows that 2n + 3 is the best possible bound in the
case where n = 1 (mod 4), provided the characteristic polynomial of the matrix is
supposed to be separable.

Proposition 3.7. Suppose that n = 1 (mod 4). If /9 is an eigenvalue of a skew—
symmetric matrix of dimension 2n + 2 with separable characteristic polynomial,
then —NFp,Q(0) is a sum of three squares in Q.

Proof. If /0 is an eigenvalue of a skew—symmetric matrix of dimension 2n+2, then
its characteristic polynomial is P(X) = (X2 4+ d) f(X) for some d € Q. Suppose
that the polynomial P is separable. Apply prop 1.2. with P(X) = (X2 + d) f(X).
Set A = Q[X]/(P),andlett : A — A beinduced by X > —X.If (A, 1) is
adjoint to some symmetric bilinear form ¢, then g >~ gk 5,0)® < 2a, 2ad > for
some ¢ € F* a € Q* If such a form is isomorphic to the unit form, then « is
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totally positive, a is positive and d = —Np/(0). Using the same argument as in
the proof of prop. 3.6., we get

< Np/QQRadr), —Nr/QRadr)Np,(0) > ® < 2a, —2aNpg,p((0) >

~<1,1,1,1 > .

Multiplying this relation by 2a, using lemma 3.4., and simplifying by < 1 >, we
get that —Ng/Q(6) is a sum of three squares. O

We now deal with the case where n is even.

Theorem 3.8. Let K be a CM—field of degree 2n, n even. Then K is generated by
an eigenvalue of a skew—symmetric matrix of dimension 2n + 4.

Proof. We first prove that there exist two negative rational numbers a, b such that
w2(g(K,0,1)) = (—=NF;Q(8), —1) + (a, b). Since gk ,1) has dimension and sig-
nature 2n, over R it is isomorphic to 2n. < 1 >. Hence over R, its Hasse—Witt
invariant is trivial. Recall now that the elements of Br, (Q) are quaternion algebras.
Hence (—Np/(0), —1) + w2(q(k,0,1)) = (a, b) for some a,b € Q. Since 6 is
totally negative and n is even, we have Ng,g(0) > 0. The above relation then
shows that a and b are negative.
Set

g=@2n—3).<1>® < —NgQ®)a, —Nr/Q0)b, Nr/q®)ab > .

Let us show that ¢ >~ gk ,1). It suffices to prove that these two forms have
equal dimensions, discriminants, signatures and Hasse—Witt invariants. We have
dim(g) = 2n and det(q) = Np/Q(0). Since Nr/q(0) > 0, we have sign(q) =
2n. Moreover, wa(q) = wa(< —NpB) > ® < a,b,—ab >) = wa(<
a,b,—ab >) + (—Np;Q(#), —1) = (a, b) + (—NF,q(0), —1). Therefore g and
q(K 0,1y have equal invariants, hence they are isomorphic.

Set ¢ =< Np,(0), —a, —b, ab >. Then we have

dDgko1) = 2n—4). <1>® << —a,—b,Np0) >>.

The Hasse—Witt invariant of a 3—fold Pfister form is trivial. Moreover, the Pfis-
ter form << —a, —b,Nf/Q(0) >> has dimension 8, trivial discriminant and
signature 8, so it is isomorphic to the 8—dimensional unit form. Hence we get
¢ D qk,01) = 2n+4). < 1 >.By [3], th. 1, there exists an algebraic number
field L with a Q-linear involution r anda 8 € L, such that ¢ > gz, ¢ g). The proof
shows that L is generated by an element p with an even irreducible polynomial g,
and such that 7 (p) = —p. Moreover, there are infinitely many choices for L, hence
we can assume that f # g. Applying prop. 1.2. with P = fg gives the desired
result. O



CM-fields and skew—symmetric matrices 359

References

(1]

(2]
(3]
(4]
(5]
(6]

Bayer—Fluckiger, E.: Ideal lattices. Proceedings of the Conference Number Theory
and Diophantine Geometry: Baker 60, Ziirich (1999), Cambridge University Press,
2002, pp. 168-184

Bender, E.A.: Characteristic polynomials of symmetric matrices. Pacific J. Math. 25,
433-441 (1968)

Berhuy, G.: On hermitian trace forms over hilbertian fields. Math. Z. 217, 561-570
(2001)

Cohen, S.D., Odoni, R.-W.K.: Galois groups associated with CM—fields, skew—sym-
metric matrices and orthogonal matrices. Glasgow Math. J. 32, 35-46 (1990)
Kriiskemper, M.: On the scaled trace forms and the transfer of a number field extension.
J. Number Th. 40, 105-119 (1992)

Scharlau, W.: Quadratic and Hermitian Forms, Grundlehren Math. Wiss. 270, Springer
Verlag, 1985



