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Abstract. Most combinatorial optimization problems cannot be solved exactly. A class of
methods, called metaheuristics, has proved its efficiency to give good approximated solu-
tions in a reasonable time. Cooperative metaheuristics are a sub-set of metaheuristics, which
implies a parallel exploration of the search space by several entities with information exchange
between them. The importance of information exchange in the optimization process is related
to the building block hypothesis of evolutionary algorithms, which is based on these two ques-
tions: what is the pertinent information of a given potential solution and how this information
can be shared? A classification of cooperative metaheuristics methods depending on the nature
of cooperation involved is presented and the specific properties of each class, as well as a way
to combine them, is discussed. Several improvements in the field of metaheuristics are also
given. In particular, a method to regulate the use of classical genetic operators and to define
new more pertinent ones is proposed, taking advantage of a building block structured represen-
tation of the explored space. A hierarchical approach resting on multiple levels of cooperative
metaheuristics is finally presented, leading to the definition of a complete concerted coopera-
tion strategy. Some applications of these concepts to difficult proteomics problems, including
automatic protein identification, biological motif inference and multiple sequence alignment
are presented. For each application, an innovative method based on the cooperation concept
is given and compared with classical approaches. In the protein identification problem, a
first level of cooperation using swarm intelligence is applied to the comparison of mass
spectrometric data with biological sequence database, followed by a genetic programming
method to discover an optimal scoring function. The multiple sequence alignment problem
is decomposed in three steps involving several evolutionary processes to infer different kind
of biological motifs and a concerted cooperation strategy to build the sequence alignment
according to their motif content.

Keywords: cooperative metaheuristics, evolutionary algorithm, motif inference, multiple
sequence alignment, protein identification, proteomics, swarm intelligence

1. Introduction

Metaheuristics are generic methods for non-exact solving of difficult (NP-
hard) combinatorial problems (Michalewicz and Fogel, 2000; Yagiura and
Ibaraki, 2001). Their global strategy consists in an efficient exploration of
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the search space in order to localize reasonably “good” solutions for a given
objective function. They can be viewed as toolboxes of optimization methods
that can be combined together and with specific heuristics to develop an
exploration strategy dedicated to a particular problem. A large variety of
such optimization methods is available; they can be classified according
to different criteria reflecting a particular property to be emphasized. For
example, they are often classified into deterministic and non-deterministic
categories depending on the use (or not) of a stochastic process for the explor-
ation of the search space. We are interested in another metaheuristics property
leading to classify between cooperative and non-cooperative methods. The
non-cooperative metaheuristics are those which explore a unique point of the
search space at a given time, like hill climbing, simulated annealing, taboo
search, etc. Cooperative metaheuristics correspond to a parallel exploration
of the search space by a set of coexisting potential solutions; each solution
cooperate with the others by information exchange in order to select new
promising potential solutions. This aspect is strongly linked with the concept
of building blocks (BB) (Goldberg, 1989, 2002), that are relevant sub-parts of
solutions shared by most of the good solutions, because information exchange
is a way to detect and transmit building blocks between solutions. We distin-
guish three sub-classes of cooperative metaheuristics according to the origin
of the decision and the nature of information exchange. In the first one,
referred to as “centralized cooperation”, cooperation between entities is set
by an external oracle that selects both the cooperating entities and the content
of the exchange. For example, in a classical evolutionary algorithms, cooper-
ation consists in sub-solution exchange performed by the crossover operator.
More generally, the centralized cooperation approach can be viewed in a
logical framework as a centralized multi-agent system where a master agent
set and controls communication between agents (chromosomes/solutions of
the evolutionary algorithm). The second sub-class, referred to as “individual
cooperation”, corresponds to a system in which entities set communication
themselves however without any prior information from the other entities.
For example, the parallel version of evolutionary programming, based on
the injection island model (Fernandez et al., 2000; Golubski, 2002; Lin et
al., 1994), is a two level cooperation metaheuristics. The first level is the
centralized cooperation between chromosomes in each island and the second
level is an individual cooperation between islands. In this second level, each
island sends data to its own selection of other islands independently of the
other agents needs. The island model not only provides efficient exploration
ability but it is also a common way to preserve diversity (Punch, 1998). The
swarm intelligence metaheuristics (Bonabeau et al., 1999) is another example
of individual cooperation process since the communication between entities
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(ants for example) is performed by an indirect vector, i.e., the pheromone.
Each entity decides how much and where to deposit pheromones, with no
knowledge of the states of other ants. This sub-class of communication can
also be assimilated to the blackboard model of multi-agent systems. Finally,
the third sub-class, referred to as “concerted cooperation”, embodies a
cooperation process in which each exchange depends on a mutual agreement
between entities. Therefore, the direction and the content of the communica-
tion are defined dynamically, in order to optimize the gain of each participant.
This model can be much more complex than those described in the other
two sub-classes. It implies the definition of a strategy of cooperation for
each entity based on knowledge regarding its proper state and possibility of
improvement, the information content of the other entities, the strategies of
the other entities, etc. However, the exploration of the search space is much
more dynamic and “intelligent” due to the association of two factors: first,
the diversity, which is preserved by isolation of potential solutions inside
agents; second, the flexible and directed property of the information exchange
mechanism between entities. Moreover, a hierarchy of multiple concepts can
emerge spontaneously from the dynamic association of entities optimizing
different objective functions.

Proteomics (Pennington and Dunn, 2001; Wilkins et al., 1997) can be
defined as the study of the protein expression pattern of a given tissue or
organism at a given time. This involves knowing about large number of dif-
ferent proteins, their possible variants (modifications, mutations, fragments
. . .), their corresponding amino acid sequence and potential interactions
between these proteins. The commonly used technique for proteome analysis
involves four steps: protein separation (for example by two-dimensional elec-
trophoresis), protein digestion which produces a set of peptides, measurement
of the peptides and peptide fragments masses by mass spectrometry, compar-
ison of mass data with proteic or translated genomic sequence databases.
Matched masses are used to identify proteins and their possible variants.
The understanding of the possible biological functions of the identified new
proteins, protein variants or protein complexes rely on various information
sources (experimental data, sequence and/or annotation databases, literature
. . .). This approach must be automated or partially automated to analyze in
real time the large amount of data generated in high-throughput environments
commonly set in recent years.

In our research group, we develop different methods for the automation
of proteomics data analysis. From our point of view, most of these analyzes
can be regarded as difficult combinatorial optimization problems such as, for
example, efficient learning of properties from data, classification of complex
sets of information, extraction of grammatical structure from sequences, etc.
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We apply cooperative metaheuristic approaches in a hierarchical way to
manage a wide variety of proteomics problems.

2. Exploiting Tandem Mass Spectrometric Data for Protein
Identification

Protein identification is a major issue in proteomics. In a global approach, the
challenge is to identify all proteins present in a sample. In high-throughput
identification projects, the identification tool should be fast, fully automated
and robust. Alternatively, proteins of clinical interest can be targeted by differ-
ential expression between two samples. In this case, the identification tool
must be particularly tolerant when identifying mutated or modified proteins.

Nowadays, the most widely used technique in protein identification is
mass spectrometry (MS). After purification, each protein is digested using a
specific enzyme. The masses of the resulting peptides are then measured. The
obtained mass list, called a MS spectrum, may already be used for identifica-
tion by “peptide mass fingerprint”, but additional information on the protein
sequence can improve the reliability of identification: each peptide is further
fragmented (ideally, the fragmentation occurs on the peptidic bonds joining
together the amino acids). The fragmentation process generates ionic frag-
ments carrying one or several charges. The fragment masses are measured,
leading to a MS/MS spectrum, which includes the mass of the source peptide
molecular weight (the parent mass) and of a peak list representing the masses
and the intensities of the detected ionic fragments. The identification consists
in comparing by the mean of a scoring function the experimental MS/MS
spectrum with theoretical peptides or a nucleic sequences referenced in a
database (Gras and Muller, 2001).

All existing identification methods from MS/MS data are confronted
with combinatorial problems and conveniently justify the use of heuristic
strategies. The first and major source of combinatory is the MS/MS spectrum
itself. The fragmentation process is hardly foreseeable and depends, among
other things, on the amount of energy used by the mass spectrometer, on
the number and the repartition of the charges carried by the peptide, and
on its sequence. As a result, some positions on the peptide are possibly
not fragmented. Moreover, the masses finally measured are modified by
various factors, including the exact position of the fragmentation related to
the peptidic bond, the number of charges on the ionic fragment, the possible
loss of molecules (as water or ammonium), the isotopic pattern of the peak
. . . Another source of combinatory is possible modifications (adjunction of
specific molecule on amino acid) or mutations in the source peptide, resulting
in shifts in some of the measured masses.
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2.1. Swarm intelligence for multiple tag extraction

We present here a new method of protein identification from MS/MS data,
called Popitam (Hernandez et al., 2002), in which we deliberately chose to
favor non-deterministic cooperative strategies when confronted with combin-
atorial problems. Our algorithm can be shortly described as follows: after
a preprocessing step, in which a given number of peaks in the spectrum are
selected according to their intensity, the MS/MS spectrum is transformed into
a direct acyclic graph (Dancik et al., 1999) and is compared with theoretical
peptides from a database, leading to a ranked list of scored candidate peptides.
The graph allows structuring the MS/MS spectrum, and then capturing infor-
mation about the peptide sequence coming from the relative positions of the
peaks in the spectrum. The vertices, which are built from the peaks, represent
masses of hypothetical “ideal” fragments. They are scored according to the
credibility level that can be assigned to them. Vertices whose masses differ
by the mass value of one or two amino acids are connected by an edge.
Reference to Dancik et al. (1999) provides a more complete description of
the “spectrum graph”. As a result, the graph represents all possible complete
sequences and sub-sequences that can possibly be built from the spectrum.
The sequences can be constructed by moving from one vertex to another by
following existing edges. Only a few sections among the huge possibilities
of paths in the graph represent real sub-sequences of the source peptide.
Identification methods based on tag search typically try to extract tags (or
complete sequences) from the graph (Chen et al., 2001; Dancik et al., 1999;
Schlosser and Lehmann, 2002; Taylor and Johnson, 1997) and used to select
candidate sequences from the database (Mann and Wilm, 1994). In Popitam,
on the contrary, the database is used to direct the search and to emphasize
relevant sections in the graph from which the peptides can be scored. Several
pieces of information are taken into account, as for example, the intensity of
the peaks, the credibility score of the vertices, or the linear correlation of the
error between the masses of the vertices and the masses computed from the
theoretical peptides (Gras et al., 1999, 2000).

Although the search is directed by a theoretical sequence, the search
space can be vast, particularly if modifications or mutations are allowed.
In Popitam, the graph exploration process is performed by an Ant Colony
Optimization (ACO) algorithm (even if the computing time is rather long
compared to other algorithms). ACO algorithms, directly inspired from the
ant foraging behavior, are well suited to “shortest paths” problems and can
be easily adapted to a specific problem. The search is parallelized, as several
ants work at the same time, and the exploring approach is stochastic. The
method can be classified as constructive, because the solution is built step
by step by moving from adjacent states (partial solutions) of the problem.
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It can also be classified as cooperative, since ants communicate indirectly
by the mean of the pheromone trail. For a given spectrum, the complete
identification process consists in applying the ACO algorithm to each peptide
of the considered sequence database, leading to a ranked list of theoretical
peptides. A description of the ACO used is given in Dorigo and Di Caro
(1999). In our application, the transition rule used to move from a vertex
to another connected one takes into account four pieces of information: (1)
the visibility, symbolizing the a priori desirability of the move, and repre-
sented by the credibility scores of the vertices, (2) the knowledge acquired
in previous iterations, symbolizing the a posteriori desirability of the move,
and represented by the amount of pheromone deposited on the edges, (3) a
description of the theoretical sequence being compared, and (4) the memory
of the parsed vertices.

A first version of Popitam, denoted as the “Full Path algorithm”, has been
implemented and tested. As suggested in the name, this version works by
searching for complete paths (named Lk) in the graph when comparing a
theoretical sequence with the experimental spectrum. In other words, the
ants start on the initial vertex and can go forward as long as the current
vertex has one or more successors. Once an ant has completed a path Lk

and hence, built a complete sequence from the MS/MS spectrum, it evaluates
the quality of the solution using a scoring function. This is a key process
of Popitam’s algorithm. The score represents the similarity Sk between the
current peptide and the path used by ant k. The function also contributes
to the final identification score of the current peptide (S+). The goal is to
include relevant information, represented by several sub-scores, in Sk (and
S+). We have, for the moment, four sub-scores: a coverage score covS, which
is the coverage percentage between the theoretical peptide from the database
and the sequence parsed in the graph; an intensity score intS corresponding
to the mean of the peak intensities included in Lk; a relevancy score relS,
computed from the credibility values associated with the vertices in Lk, and
a regression score regS, measuring the linear deviation between the experi-
mental masses of the peaks included in Lk and the corresponding theoretical
masses computed from the theoretical peptide. Each sub-score is scaled so
that it varies between 0 and 1. Still other information can be added, such as
expert rules set by biologists used to studying MS/MS data.

2.2. Discovery of an optimal identification scoring function by Genetic
Programming

We have used Genetic Programming (GP) (Koza, 1992) to find a scoring
function that efficiently discriminates the good peptide from the others of
the database. Evolutionary algorithms (EA) are stochastic search methods
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inspired by natural mechanisms. GP applies EA to a population of computer
programs. Programs are hierarchical structures of dynamically varying size
and shape. A program can also be seen as a parsed tree with ordered branches
in which the internal nodes are functions and the leaves are the so-called
terminals of the problem. GP provides a way to search the space of all
possible programs composed of functions and terminals to find a solution
appropriate to the given problem. The evolutionary process starts with a
population composed of M random programs. Then this population applies
the Darwinian principle of survival of the fittest and genetic mechanisms
borrowed from biology to breed a new population of programs. This breeding
process is repeated during G generations in order to produce better and better
approximations to an optimal solution of the given problem by exchanging
“genetic information” (BB) of promising points of the search space. The
evolution is guided by a fitness function that determines how each program
in the population solves the problem.

There are several preparatory steps to use GP such as determining the
set of terminals, the set of functions, the fitness measure and the parameters
for controlling the run. For our problem, a program is an arithmetic function
involving information from the identification process. The set of functions,
named F, is composed of standard arithmetic operators of addition, subtrac-
tion, division, multiplication and power. The set of terminals, named T,
consists of the four sub-scores previously described and constants, named
C, generated between –5.00 and +5.00. Thus, F = {+, –, ÷, ×, ∧} and T =
{intS, relS, regS, covS, C}.

The fitness function is the driving force of the evolution. It measures the
adequacy of a program to the given problem. For our problem, the fitness
indicates how a scoring function encoded by a program is able to discrim-
inate, for a given MS/MS spectrum, the correct peptide from the others of the
database. The fitness of a program is computed by using its scoring function
to identify a learning set of MS/MS spectra with the “full path” algorithm.
For each learning spectrum a fitness value is computed from the ranked list
of results of the identification. This fitness value is computed with a fitness
function based on the optimization method of SmartIdent (Gras et al., 1999).
The fitness of a program is the average of the fitness values obtained for each
spectrum of the learning set.

Genetic operators are the engines of the evolution. They allow producing
offspring by combining and modifying the “genetic information” contained
in the individuals of the population. We have used three different operators
named crossover, mutation and permutation. They operate on parent trees that
are selected from the population with a tournament selection method of size N
(Blickle and Thiele, 1995). The crossover operates on two parent trees. The



102 ROBIN GRAS ET AL.

process begins by independently selecting a crossover point in each parent
tree. Then the sub-trees, which roots are a crossover point, are exchanged,
giving rise to two offspring trees. The mutation operator consists in replacing
a sub-tree of a parent tree by a new sub-tree randomly generated. Finally the
permutation operator works by selecting a random internal node of a parent
tree and permuting the order of its arguments. The best run was obtained with
the following main parameters: M = 40, G = 50, N = 3. The set of learning
spectra used to evaluate the fitness of programs is composed of 174 MS/MS
spectra. Each of these learning spectra has been identified by spectrometry
experts. The optimized scoring function obtained by GP is the following:

(covS · (x)x)4,9, with x = (int S + cov S) · 4, 9perS (1)

2.3. Results

Popitam’s Full Path algorithm was tested with a set of 271 MS/MS spectra
obtained from nucleolar proteins purified by SDS-PAGE and 2D electro-
phoresis, digested with trypsin and analyzed with a Q-TOF mass spectrometer
(Scherl et al., 2002). A quality value p has been computed for each of them,
according to (Pevzner et al., 2001). This value represents the average of the
ion type b and y frequencies observed in the spectra. Popitam was able to
correctly identify 86.7% of the spectra. Table 1 shows the success rate of
Popitam according to the value p. We consider here a spectrum as identified
if its parent peptide is in the first position of the peptide list of results. These
results have been obtained with the optimized scoring function (equation 1)
and are better than those obtained with an empirical scoring function defined
by a spectrometry expert (83%).

3. A Hierarchical Cooperative Multiple Sequence Alignment
Combining Local Similarities

3.1. Introduction

In this section, we describe a cooperative multiagent strategy that takes
advantage of concerted cooperation to achieve a fully automated clustering
of biological sequences. Clustering leads to the emerging construction of
a multiple sequence alignment based on regular single motifs (section 3.2)
and linked dyad motifs (section 3.3). During evolution, DNA sequences
are subject to mutation. These mutations may have very different outcomes
depending on where they occur. A point mutation that does not affect the
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Table 1. Success rate of Popitam according to the value of p

p spectrum number % success

[0;0.1[ 0 —

[0.1;0.2[ 7 0%

[0.2;0.3[ 22 45,5%

[0.3;0.4[ 59 84,7%

[0.4;0.5[ 97 91,8%

[0.5;0.6[ 61 100%

[0.6;0.7[ 23 100%

[0.7;0.8[ 2 100%

[0.8;0.9[ 0 —

[0.9;1] 0 —

[0;1] 271 86.7%

survival of an organism is likely to remain and be passed on future genera-
tions. On the other hand, a mutation on a regulatory site (TATA-box of a gene
promoter for example) may have dramatic consequences on the survival of
the organism. Thus, this mutation is not likely to propagate to future genera-
tions. Considering a set of biological sequences known to be related (a set of
promoters or a family of protein sequences for instance), common features or
similar sub-words shared by all the sequences can be determined. We suspect
that these similar sub-words have been kept by an evolutionary pressure,
because they are involved in a biological process. Then the problem can be set
as follows: given a set of sequences, extract one word (of a constrained length)
per sequences such that all extracted words share a maximum global simil-
arity. These extracted words will then constitute a local multiple alignments
and the corresponding motif is members of regular motifs of Chomsky’s
hierarchy. This problem is addressed in section 3.2.

The three-dimensional shape of a protein bears on the protein function.
This shape is constrained by physico-chemical interactions, which determine
to the secondary and tertiary structures. Physico-chemical interactions are
known, but it is very difficult to precisely predict their involvement in the
folding of a linear sequence of amino acids into a structured protein. Motifs
used in biology to characterize families of proteins are often single words that
represent conserved regions in the corresponding set of related sequences.
However, this kind of motif may not be descriptive enough because protein
properties depend greatly on physico-chemical interactions between distant
regions. Thus, a descriptive motif should at least be made up of regions linked
by some dependence. This problem is addressed in section 3.3.
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MSA is a very difficult problem ever present in bioinformatics. The
alignment of a collection of biological sequences significantly contributes
to the field of protein characterization: it applies to phylogenetic analysis,
structural modeling or functional annotation transfer from characterized to
new sequences (Mullan, 2002). Several heuristic MSA algorithms have been
developed so far, ranging from traditional progressive methods (Feng and
Doolittle, 1987; Higgins and Sharp, 1989; Thompson et al., 1994) to compu-
tationally expensive score optimization strategies (Gotoh, 1996; Morgenstern,
1999; Notredame et al., 2000; Stoye, 1998). The quality of alignments
produced is highly dependent on the initial data (Lassmann and Sonnhammer,
2002). None of these methods performs well in the variety of situations raised
by biological data, for example low sequence identity, complex or inverted
sequence similarity architecture, or variable sequence length.

3.2. A strategy to explore the local multiple alignment search space

Local multiple alignment consists in choosing exactly one word per sequence,
so that all chosen words are maximally conserved. Several tools already exist.
They differ in several points: the selected strategy that explores the search
space, and the objective function to be optimized. We can distinguish three
main categories. First, methods dedicated to infer gapped-words, which have
exact occurrences in a given number of sequences. These methods are essen-
tially Pratt (Jonassen et al., 1995) and Splash (Califano, 2000). The second
category looks for a set of occurrences at a Hamming distance of k or at most
k of an external unknown word (the hypothetic common ancestor). We can
cite Smile (Marsan and Sagot, 2000), Winnover (Pevzner and Sze, 2000),
Projection (Buhler and Tompa, 2002), and Multiprofiler (Keich and Pevzner,
2002). The third category contains methods that look for a set of occur-
rences strongly conserved from the point of view of information content. This
problem has been shown to be NP-hard (Akutsu et al., 2000). The main ones
are the Gibbs Site Sampler (Lawrence et al., 1993), Meme (Bailey and Elkan,
1994), and Consensus (Hertz and Stormo, 1999). Our interest is in this third
category. Our method called MoDEL (Motif Discovering with Evolutionary
Learning) (Hernandez et al., 2002) is based on a centralized cooperative
metaheuristics that is used to find good seeds. Its efficiency rests on the use
of two complementary search spaces: (1) the search space made up by all
possible words of a given length, (2) the search space made up of all possible
alignments of this given length. An evolutionary algorithm samples the word
search space, in order to find goods seeds in the alignment search space. These
good seeds are then optimized using a simple hill-climbing operator. We show
significant improvement in the exploring capacities over other cited methods.
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3.2.1. Definitions
Let S = {S1, S2, . . ., SN} be a set consisting of N sequences of length T (to
simplify, we suppose that all sequences have the same length). Si,j is the jth

symbol of the ith sequence. S is defined over a fixed size alphabet � = {σ1,
σ2, . . . , σK} with K = |�| (4 for DNA and 20 for proteins). Let M = {m1,
m2, . . . , mW} be a word of length W defined on �. The whole possible M
defines the search space M of size KW. Let P = {p1, p2, . . . , pN} be a position
vector, which define occurrences in the sequence set. pi is a position on Si

and defines the sub-word of length W beginning at pi. Thus, P represent a set
of words or a local multiple alignment of S. The whole possible P define the
search space P, of size (T – W + 1)N.

The purpose of our method is to find the point of P that maximizes an
objective function. As an information content measure, we use the Kullback-
Leibler distance (also known as the relative entropy). We first estimate a
frequency matrix F from the alignment as follows: for k = 1, . . . , K and j = 0,
. . . , W – 1:

Fk,j = 1

N

N∑
i=1

(k, Si,pi+j) with j(k, a) =
{

1 if a = σk

0 else
(2)

Information content is calculated from this matrix by:

I (F, F 0) =
K∑

i=1

W∑
j=1

Fi,j log
Fi,j

F0
i

(3)

where F0 is the background frequency estimated once, during the initializ-
ation step, from S. For convenience, instead of using I(F, F0), we will use
I(P).

We now define how the two search spaces are mapped together. Operators
were defined to allow the projection of a point from M to P (MtoP) and
inversely a point from P to M (PtoM). In the case of the MtoP operator, a
position vector should be obtained from a word. This is achieved by aligning
the word M with all the sequences of S. More formally; for i = 1, . . . , N and
j = 1, . . . , T – W + 1:

pi = argmax
j

W∑
k=1

H(Si,j+k−1, mk) with H(a, b) =
{

1 if a = b
0 else

(4)

In this way, pi corresponds to the position on Si where the match count
is maximal. This procedure often leads to a position vector with several
ambiguous pi. This is due to multiple maximum positions on a single
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sequence. In this case, we use a greedy algorithm to clear up ambiguities.
Let us stress an important property of MtoP operator. All selected positions
on S will share a much greater similarity than positions selected by chance
since positions on S originate from an alignment. Any point of P obtained by
a projection from M will have a fitness value widely greater than a random
point of P . This feature allows us to directly find good points in P that
will act as seeds. We also defined the complementary operator PtoM. In this
case, a relation strip from the alignment space to the word space is defined as
follow: considering the frequency matrix F (equation 2) we can derive from
a point of P (an alignment) the corresponding word, which is the most likely
word according to F. More formally, for i = 1, . . . , K and j = 1, . . . , W:

mj = σk with k = argmax
i

Fi,j (5)

It is important to note that these two operators are not symmetrical, a point of
M projected to P and projected back to M will not necessarily be the same
as the initial one. However, this feature will be used during the exploration.
Finally, we define now Q, a sub-space of P , which is made up by all point in
P that can be reached from M by a projection. The size of this sub-space is
at most equal to M’s one.

3.2.2. Exploration
The overall strategy of MoDEL is to produce reasonably good points of P
to act as seeds for a hill-climbing optimization. An evolutionary algorithm
is used to sample the Q search space in order to produce these seeds. We
used a very similar Hill climbing approach, as the one used by the Gibbs Site
Sampler (Lawrence et al., 1993). Given a position vector P = {p1, p2, . . . ,
pN}, only one pi dimension is modified at once, keeping the others fixed. This
dimension is then sampled on all possible values (corresponding to the T –
W + 1 possible sub-words of Si), and is updated to the value that maximizes
the overall information content I(P). All dimensions are modified one after the
other, either in a predefined order or in a random without replacement order.
The whole process is performed until complete convergence, which usually
takes less than ten cycles. This hill climbing process is coupled together with
a phase shift correction (Lawrence et al., 1993) consisting in moving, several
positions to the left or to the right, the whole alignment to ensure not being in
a shifted sub-optimal position.

A classical evolutionary process is performed to generate seeds of P by
exploring Q. The particularity is that moves are made on M while fitness
values are calculated on P , through the MtoP operator. Chromosomes contain
a word and a fitness value. The population contains 200 chromosomes. The
evolutionary process uses a set of seven genetic operators, including several
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original ones in addition to classical operators like crossover or mutation.
Binary operators consist in three different crossovers: (1) the simple crossover
(SCOP), (2) the point-crossover (PCOP), which allows swapping symbols
independently with a probability of 0.35 for each position, (3) the slide-
crossover (SCOP), which is more distinctive. If we consider two words that
are converging in the same direction except a shift of one, two or more
symbols, performing a classical crossover will not be constructive, because
some non-homologous information will be exchanged. Instead of aligning
each chromosome exactly in front of the other, a slide is performed to search
for a layout that maximizes a similarity score. The aim is to increase the
likelihood that swapped positions correspond to homologous information.
The score of a particular layout will be given by the Hamming distance (sum
of matches) of the two overlapped sub-words, divided by the total length of
the alignment. Exchanges are performed on the overlapped sub-words, in
the same manner as the point-crossover. Unary operators are the mutation
and the slide. Slide operator (SOP): all symbols in the word are shifted one
position to the left or to the right. The missing symbol is reinitialized. The
mutation (MOP) simply reinitializes positions in the word. The two remaining
operators (MPMHC & MPMPS) have a very local range. Whereas preceding
operators perform a move from M to M search space, these two perform
a move from M to M via the P search space. They consist, for a word of
M, in using a P optimization (hill climbing and phase shifts) on its corre-
sponding position vector. MPMHC uses the hill climbing optimization, and
MPMPS uses the phase shifts. The new word is produced by projecting the
optimized P point back to M. Due to the very local range of these two
operators, their probability has to be low. We give in Figure 1 an overview
of the interconnection of the two search spaces via the different operators.

3.2.3. Results
We compared the exploration capacities of MoDEL and the Gibbs Site
Sampler. As far as we know, no published method generates a sequence set
containing a known maximum alignment, just above noise level (necessary
condition for the problem being hard). We chose to evaluate these methods on
random sequences. We realize that no alignment will be statistically signifi-
cant, but our aim is to compare the exploration strategy of the two methods.
500 different sequences sets were generated. Each set contains 25 sequences
of length 1000, cardinal = 4 and each symbol is equiprobable. The goal is
to find the most conserved alignment of length 15. One may ask if these
sequence sets are suitable for a neighboring exploration strategy (locally
monotone). We can point that both MoDEL and the Gibbs Site sampler
give much higher results compared to random exploration. We can there-
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Figure 1. MoDEL uses two representations: (1) M, the search space of words and P the
search space of local multiple alignments. M is sampled by an evolutionary algorithm. Genetic
operators are represented by the MtoM arrow. Randomly chosen good solutions of M are sent
to the P search space to act as seeds. This is done through the MtoP projection operator.
PtoP arrow represents the non-cooperative optimizations in P (hill climbing and phase shifts),
which are applied to these seeds. PtoM projection is used by MtoMviaP operators (MPMHC
et MPMPS).

fore assume that these search spaces present locally monotone properties and
are suitable for a local heuristic exploration. We adjusted the parameters of
the two methods to give a comparable CPU time to both of them. Model
performed a number of 900 generations per run. The Gibbs Sampler para-
meters were chosen with the intention of maximizing its performance while
allowing the same CPU-time for both methods. CPU-time in seconds was 529
for MoDEL and 636 for the Gibbs Site Sampler (Pentium4 1.5GHz). Model
found a better result in 90% of the sequence sets, both methods were equal in
5%, and the Gibbs Site Sampler found a better result in 5%.

3.3. Linked dyad motif discovery from combination of conserved regions

3.3.1. A covariation measure for structural motifs
Since biological mechanisms leading to the three-dimensional protein folding
are not sufficiently known yet to be used efficiently for our problem, we
focused on the idea of using covariation to detect a statistical dependence
between conserved regions in a set of sequences. Thus, we hope that regions
correlated in this way have a real biological meaning (Fukami-Kobayashi et
al., 2002; Rigden, 2002).

We define a linked dyad as a pair of conserved motifs (position vectors of
section 3.2) with a significant covariation value between them. In linguistic
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terms, linked dyads belong to the upper class of context dependent languages
in Chomsky’s hierarchy and thus are considered very difficult (NP-hard) to
infer from examples. Our goal is to infer such motifs from a given sequence
set, and because it is unrealistic to achieve that by an exact method, we will
use an evolutionary cooperative metaheuristic based on concepts defined in
MoDEL.

If we have a set of sequences on alphabet � and two position vectors
of length N (with N the number of considered sequences), we define as
the mutual information measure between the two vectors P1 = {P1[1], . . . ,
P1[N]} and P2 = {P2[1], . . . , P2[N]}. This definition can be extended that to
measure the covariation between two conserved patterns P 1...W

1 and P 1...W
2 of

same size W beginning at position vectors P1 and P2:

CL(P1, P2) = C(P 1...W
1 , P 1...W

2 ) =
∑

i=1...W

M(P i
1 , P

i
2 ) where

P 1
1 = P1 and P i

1 [k] = P1[k] + i − 1 (6)

We also compute:C̄L(P1, P2) =
∑

i=1...L

M(P i
1 , P L−i+1

2 ) (7)

which takes into account the reverse order corresponding to “palindromic”
covariation. We then select pairs of position vectors with high value of CL

or C̄L. However, we note a drawback for this measure: two non-conserved
position vectors have a high CL (and C̄L) value. This phenomenon has no
effect in our search because we use MoDEL as a first step for extracting
conserved regions as candidate for the covariation measurement.

3.3.2. Evolutionary strategy for linked dyad discovery
MoDEL works well to find independent conserved regions, but the diversity
of the population obtained after several generations is poor: weaker chro-
mosomes are discarded during the evolutionary process and the resulting
solutions are always slight variations of the best one. To avoid that, we use the
concept of ecological niches (Goldberg, 1989). Each chromosome fitness is
balanced with a distance between the chromosome and the rest of the popula-
tion. Thus the fitness of a “weak” chromosome with a few neighbors (similar
chromosomes) in the population is as good as that of a “strong” chromosome
with many neighbors. So the population will be distributed among many
optima, and not only around one unique optimum like in MoDEL. With this
modification the MoDEL evolutionary process finally yields several different
conserved regions. If we use MoDEL as a generator of conserved regions, we
can compute the covariation between all possible pairs of such regions and
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keep the best pairs. Depending on the number of possible pairs, conserved
regions can be combined via a heuristic step.

3.3.3. Preliminary results
In order to validate our hypothesis on covariation measurement, we have
implemented a generator which produces sequences similar to those of the
Pevzner’s challenge (Pevzner and Sze, 2000), though, instead of regular
motifs linked dyads are inserted. Given a consensus word, it is inserted in
each sequence with a given number of errors. Then, for each of its occur-
rences, a second word, which is a morphic transformation of the first one,
is inserted. Any mutation in the first word will be reflected onto the second
one, creating two sets of words complying with our definition of a linked
dyad. This morphism is a simple mathematical function from � to � that
changes a word into another word of same length, letter by letter, from right
to left or from left to right. Given �, we randomly generated this morphism.
Some errors are allowed during the transformation. Thus the second part of
the linked dyad can be less conserved than the first part. We have used this
generator to create sets of 50 sequences of length 100, with inserted linked
dyads of length 15 (for each sub-word), at most 4 errors in the first sub-word
and at most 4 errors in the morphic transformation.

We used MoDEL (modified as described above) on these sets of sequ-
ences, and calculated the covariation values of all possible pairs composed
of regions generated by the evolutionary process. The best covarying pair
always corresponded to the inserted dyad (i.e., the position vectors were
identical). The parameters applied were a run of 50 generations on a popula-
tion of 200 chromosomes of length 15. Note that we gave the chromosomes
the appropriate length; with a smaller (resp. greater) length, we would have
retrieved regions that are included (resp. contained) in the inserted regions.
The evolutionary process took 40s (on a Sun Ultra 10), using 10Mb of
memory. The covariation computation is very time consuming (about 20 min)
if we consider all the pairs, but is reduced to a few seconds with a heuristic
approach selecting the most promising pairs.

3.4. A cooperative multiple sequence alignment algorithm based on
biological domain composition

MSA requires a very flexible heuristic to produce a biologically meaningful
alignment, keeping time and computation resources within reasonable ranges
and preserving robustness with regard to the initial data set (the number
of sequences, the degree of similarity between sequences, the variability in
domain composition and organization). Several difficulties are encountered:
the choice of a pertinent scoring system and the efficient exploration of the



COOPERATIVE METAHEURISTICS FOR EXPLORING PROTEOMIC DATA 111

search space, which is exponential to the number of sequences. MSA is
therefore highly combinatorial and requires strong heuristic strategies since
exhaustive methods are impracticable, even for reasonably sized data.

A concerted cooperative multiagent approach, which is a distributed,
dynamic and highly adjustable tool, is appropriate in this situation. The
particularity of our strategy rests on the application of a novel distributed clus-
tering stage based on biological domains to produce a hierarchy of clusters
assembling naturally into a multiple alignment. The heuristics lies in split-
ting the problem into a variable number of agents that consider only a single
domain at a time and achieve a dynamic assembly of sequences around this
domain. Each agent strives towards a multi-objective goal, the maximization
of the number of sequences on one hand, the optimization of the domain
fitness on the other hand. Concerted cooperation is driving the process
towards a high quality clustering of the data set, escaping local optima. This
strategy, unlike traditional clustering methods, does not require to pre-set the
number of clusters and tolerates overlapping clusters. The process is robust
with regard to starting conditions. Since this approach is entirely founded on
the notion of domains, it should be able to take advantage of any single piece
of information contained in biological domains. The term ‘biological domain’
covers here not only regular motifs (section 3.2), but also linked dyad motifs
(section 3.3). Moreover, domains found only in a sub-set of sequences should
also be considered during the alignment process. Finally, the order in which
the different domains are organized in the sequences should not impair on the
procedure but rather bring additional information. Basic concepts, and a first
draft of this novel MSA algorithm as well as preliminary results are presented
in the following text.

3.4.1. Clusters and sequences scoring system relies on domain information
The dependency on pairwise similarity, either global or local, is a major
weakness of the existing sequence clustering or alignment methods. The
global measure is not optimal to describe the homogeneity of a group of
biological sequences, since it does not reflect their domain architecture,
which is fundamental to their biological function. We propose a new simil-
arity criterion that does not rely on pairwise comparisons but includes the
relative entropy of a regular motif inferred across all sequences on the one
hand (section 3.2, equation (3)); and the co-variation measure of linked dyad
motifs on the other hand (section 3.3, equations (6) and (7)). This two-
component similarity criterion is local and hence it accounts for complex
domain architecture with potential inversions. In addition, it is determined by
the information content across all sequences and as such embodies transversal
information that represents simultaneously the conservation of all considered
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sequences. Therefore, it is more suitable than a pairwise score to charac-
terize homogeneity within a group of sequences. Finally, the contribution of
each sequence to this similarity measure is computed and serves as a basis
for sequence exchange between cooperating agents or clusters during the
optimization process.

3.4.2. Cooperative agents exploration of the search space
Exploration of the partition space, especially when overlapping clusters are
authorized, is a NP-hard problem. To bypass this situation, we propose a
cooperative heuristic that distributes the exploration among a variable number
of agents, each agent being responsible for one cluster. As a result, the
original NP-hard problem is split into several sub-problems. The optimization
of a single sequence family can be properly addressed by a single agent.
Each agent cooperates with other agents to perform a local optimization
on the corresponding sequence family. Concerted cooperation is a decision-
based communication procedure that results in sequence exchange between
agents. Individual actions on sequences are also performed. This approach
can be seen as a balance between two procedures: intensification and diver-
sification of the search. Intensification tends to focus on promising points
of the search space, whereas diversification directs the search towards yet
unexplored points.

Intensification implies small moves in the search space. It is mostly achi-
eved by concerted cooperation between agents. The cooperation is guided
by two components: first, the agent’s strategy, which is dependent on its own
state and second, the state of its potential partner. More precisely, agents’ size
and fitness as well as sequence scores guide the choice for a partner and the
type of sequence to be exchanged. Once an agreement is reached between
two partners, the actions are executed. Diversification induces more radical
moves in the search space. It encompasses birth of new agents, death of
incompetent agents, fission of low-fitness agents or fusion of similar agents.
Agents have also the possibility of picking new sequences from the initial set
randomly, to maintain some diversity and avoid local optima. Inversely, they
can trash bad sequences to avoid uncontrolled growth of the family and speed
the convergence towards a stable sequence cluster.

Each agent pursues two goals simultaneously: the gathering of a maximum
of sequences on the one hand, the optimization of the fitness on the other.
Agents use a multi-objective optimization strategy (Coello Coello et al.,
2002) in order to select actions that will reach their final objective as closely
as possible, that is define a cluster of a biologically meaningful sequence
family. Once the clustering process has reached an equilibrium state, then a
multiple alignment can be constructed. The sequence family of each agent
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embodies a building block of the whole cluster set. During the optimization
process, agents self-organize into a hierarchical structure. The assembly of
all families guided by the natural hierarchy present among agents will lead to
an emerging multiple sequence alignment.

3.4.3. First draft
In the present chapter, we describe a first draft of the clustering algorithm
involving cooperative agents. A parallel implementation has been performed
using the ‘message passing interface’ package MPI (Pacheco, 1997). The
global algorithm follows an asynchronous course where each agent performs
a succession of actions independently of other agents’ progress. Once the
agents are initialized, they run a number of MoDEL generations to compute
a preliminary best motif with its relative entropy, set as the agent’s fitness.
The contribution of each sequence to the agent’s fitness is also computed.
These scores and the best motif found so far are sent to all other agents so that
they acknowledge each other. The agents check the information received from
other agents, if any and update their data. After this communication step, if
the fitness of an agent is low and promotes cooperation, a different communi-
cation procedure prompts the agent to decide which exchange should take
place with which partner and actually sends the sequences. When this second
communication is over, the agent looks for putative received sequences. It
decides whether or not to pick new sequences or trash some poor scoring
sequences. Finally, the agent updates its sequence set and starts again the
succession of actions of the algorithm.

We describe here a simplified version of the decision algorithm accom-
plished by each agent when a cooperation process is initiated. Each agent
computes the similarity between its own motif and the partner’s motif. If this
measure is above a set threshold, a highly scored sequence, absent from the
partner’s sequence set, is sent to the partner. If the two motifs are not similar,
in 30% of cases a poorly scored sequence, absent from the partner’s sequence
set, is sent; in 70% of the cases no action is undertaken.

3.4.4. Preliminary results
Our clustering approach was tested on artificially-generated DNA (cardinal 4)
sequence families in which a conserved motif of length 15 with 2 errors
was inserted (Pevzner and Sze, 2000). A set of 100 sequences, 5 families
(5 different motifs) of 20 sequences of length 600, was produced. A popula-
tion of 14 agents received each a random subset of 46 sequences from the
initial set. The subset was iteratively updated during the clustering process,
by sequence exchange between agents as described in section 3.4.3. Each
iteration implies 10 generations of MoDEL to focus on a promising motif
of the current subset. A total of 50 iterations requires 71 seconds CPU-time
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when distributed on a cluster of 14 Pentium4 1.5GHz processors. This whole
clustering procedure was repeated 100 times on different data sets for statist-
ical reasons. The results obtained were the following: among the 5 families
contained in the initial set, a mean of 4.31 was identified by the agents after
50 iterations. At the end of the procedure, each cluster contained a mean
of 52.2% of sequences from its identified family, the remaining was distrib-
uted among the 4 other families. Finally, each cluster contained on average
69.5% of the sequences from its identified family (14 sequences out of 20).
Although this version of the algorithm still lacks many subtleties proposed in
the conceptual method, it produced encouraging results, confirming the suit-
ability of the scoring system. Indeed, the contribution of each sequence to the
entropy of the inferred motif is appropriate to distinguish blocks of sequences
with a common property and drives the process towards the emergence of
accurate clusters.

4. Optimization of the Use of Genetic Operators for an Efficient
Exploration

When it comes to the optimization of GA, the most common questions are:
how to explore the search space more efficiently? How to avoid being trapped
in local optima? When is it necessary to force the exploration in different
regions of the search space, and when is it necessary to exploit the solutions
already available by performing a local search? These questions are related
to the control of the parameters of the GA, for example the number of chro-
mosomes, the different probabilities of the operators or the duration of the
simulation. Usually the values of these parameters are either kept constant or
modified in a constant way, without knowing the effective influence (either
positive or negative) of such a method on the results. Most of the time,
the tuning of these values is made by hand. This approach can be tedious,
and even intractable when too many parameters are taken into account. It
would be more interesting to automatically adapt the parameters of the GA
according to what is happening during the simulation. Therefore, whatever
would be the values of the parameters, they would be changed all along
the simulation to optimize the exploration and the exploitation of the search
space. Davies (1991) introduced the discussion on the choice of operator
parameters and on how to avoid the hand tuning of their values. The prin-
ciple consists of changing the probabilities according to their contribution
in building good solutions. This method has been (successfully) applied by
Notredame and Higgins (1996) in a GA dedicated to multiple alignment.
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4.1. Self-adaptation of genetic operators

We chose to work on self-adaptation of genetic operators, that is the possi-
bility of adapting the probability of occurrence of the operator during the
evolutionary process. We have developed a method allowing the explora-
tion/exploitation ratio to be modified by changing the probabilities of the
operators according to their potential in generating new chromosomes. The
method has been applied to the discovery of motifs in biological sequences
(Hernandez et al., 2002). Each operator is characterized by a simple redund-
ancy score defined as 1 – (x/y), where y is the number of chromosomes on
which the operator is applied, and x is the number of new chromosomes –
never seen before across the whole simulation – generated by the operator.
During the evolutionary process, goal redundancy values are fixed. The prob-
ability of applying each operator is adapted so that the operator redundancy
converges toward the goal redundancy. Changing this goal redundancy there-
fore helped us in determining and changing the general direction of the GA.
It led to slightly better performances than leaving the probabilities constant,
but the computing time was also slightly increased.

4.2. Representation of the explored space to optimize exploration

We wish to study an improved way of exploiting building blocks properties
of cooperative metaheuristics, and more specifically of GA. GA are believed
to be successful mostly because they are manipulating short, highly fit sub-
components called building blocks (BB). BB are identified and assembled
by the GA, and are recombined to form high performance solutions (Gold-
berg, 2002; Holland, 1975). BB are in competition, and the best ones take
the advantage among the population. Some problems are hard for this BB
concept, i.e., they are a challenge for the recombination process. Such prob-
lems are called deceptive, because they mislead the GA by imposing badly-fit,
low order BB to be assembled in well-fit, higher order BB. An example of
such problems is the Royal Road functions (Jones, 1993) (RRf).

RRf are multimodal and deceptive, which means that the global solution is
neighbored by bad solutions, making the search harder than for more classical
functions. The chromosomes are usually bit strings of 0 s and 1 s. To find
the global solution (1 s in every position), the GA has to assemble BB that
contributes to the fitness of the chromosome by an amount depending on the
content in 1 s within BB. These functions are, by their multimodal properties,
ideal to search for the different combinations of BB. Even if their use as test
functions for GA has been discussed (Mitchell et al., 1995), they remain in
our case a good challenge.
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We define a representation of the explored space in order to localize BB
and to guide the exploration process in promising areas of the search space
by “wise” (or at least less stochastically driven) genetic operators. This repre-
sentation is a tree structure, and every chromosome is stocked in this tree. By
investigating its characteristics (like the number of times a certain part of a
chromosome was seen in the simulation, or which part of the tree contains
chromosomes with the highest fitness), it should allow the definition of a
more accurate selection of parts of the sub-space that are more interesting at
a certain time, according to a certain criterion.

Our first results show that even with a simple self-adaptation, both the
number of evaluations and the computing time required to find the optimum
are improved over classical deceptive functions (Pelikan et al., 1999). The
results were obtained on an average in 100 independent runs. The simulations
were stopped when the optimum was found. The size of the chromosomes
was increasing from 30 to 90 bits and the various complexities were computed
from regression curves. For the 3-deceptive function the complexity for the
number of evaluations decreased from O(n2.8) up to O(n2.2), and the time
complexity decreased from O(n4) up to O(n3.2). For the 5-trap function
the complexity for the number of evaluations decreased from O(n3.1) up to
O(n2.3), and the time complexity decreased from O(n4.3) up to O(n3.3).

5. Conclusion

We presented in this paper a new classification of metaheuristics considering
the property of cooperation between entities exploring the search space. This
classification involves three sub-classes: centralized, individual and concerted
cooperation depending on how the cooperation is accomplished. We gave new
definitions and described new developments of these approaches, and tried to
show their individual benefits. We emphasized the importance of a combi-
nation of these methods to maximally profit of their specific characteristics
for complex structured problems. In this case, a hierarchical division of the
problem into independent tasks can lead to spread and simplify optimization
steps. The results of these optimizations are then associated to produce a
global solution benefiting from the structures appearing in the different levels
considered.

We applied all these techniques to two central problems of proteomics:
automatic protein identification and multiple sequence alignment based on
motif inference. We gave a short overview of the state of the art of these
problems and some possible improvements to manage all their inherent
difficulties. We presented our metaheuristic approaches for each proteomic
problem taking into account a maximum of these difficulties. We gave also
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some promising preliminary results obtained with our tools using real data
for protein identification, learning of a discriminating score, motif inference
or sequence clustering.

We are currently working on several enhancements of our methods. From
the application point of view, we try to integrate some new biological expert
knowledge in the parsing of the graph structure and in the protein identifi-
cation scoring function. We also designed a new algorithm based on tag
matching which will allow the detection of all possible modifications. We
work on the extension of motif representation allowing variable length, gaps
inside motif or multiple alphabet representation. A wide variety of improve-
ments are also currently under study for the metaheuristic aspects. We work
on a better management of the building block concept in swarm intelligence
and in evolutionary algorithms. For example, if we can represent explicitly
the possible building blocks in genetic programming then we can use a multi
level parallel algorithm to discover and combine them. We will extend our
explored space representation to control the use of the genetic operators
and to define smarter new operators for genetic algorithms. We will develop
adaptive strategies for agents that enable a mutual agreement and increase the
diversification aspect of concerted cooperation using new operators like birth
or death of agents. Finally, we plan to integrate a multi objective optimization
approach (Coello Coello et al., 2002) to our methods because most of the
biological problems imply several independent properties with inconsistent
maximum values.
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