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Abstract In this paper, a novel model for turbulent premixed combustion in the
corrugated flamelet regime is presented, which is based on transporting a joint
probability density function (PDF) of velocity, turbulence frequency and a scalar
vector. Due to the high dimensionality of the corresponding sample space, the PDF
equation is solved with a Monte-Carlo method, where individual fluid elements are
represented by computational particles. Unlike in most other PDF methods, the
source term not only describes reaction rates, but accounts for “ignition” of reactive
unburnt fluid elements due to propagating embedded quasi laminar flames within
a turbulent flame brush. Unperturbed embedded flame structures and a constant
laminar flame speed (as expected in the corrugated flamelet regime) are assumed.
The probability for an individual particle to “ignite” during a time step is calculated
based on an estimate of the mean flame surface density (FSD), latter gets transported
by the PDF method. Whereas this model concept has recently been published [21],
here, a new model to account for local production and dissipation of the FSD is
proposed. The following particle properties are introduced: a flag indicating whether
a particle represents the unburnt mixture; a flame residence time, which allows to
resolve the embedded quasi laminar flame structure; and a flag indicating whether
the flame residence time lies within a specified range. Latter is used to transport
the FSD, but to account for flame stretching, curvature effects, collapse and cusp
formation, a mixing model for the residence time is employed. The same mixing
model also accounts for molecular mixing of the products with a co-flow. To validate
the proposed PDF model, simulation results of three piloted methane-air Bunsen
flames are compared with experimental data and very good agreement is observed.
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1 Introduction

Most combustion applications operate at highly turbulent flow conditions, such
that accurate descriptions of turbulence, chemistry and their interaction are crucial
for reliable predictions. Whereas for non-premixed combustion various models
depend on the mixture fraction, for premixed turbulent combustion no such general
approach exists. One existing approach is the model by Bray et al. [1]. In their original
version it is assumed that the gas is either unburnt or fully burnt. In the transport
equation for an averaged progress variable, turbulent convection and mean source
term are unclosed. Although progress has been made in modeling the mean source
term, this still is an issue in that context; as well as a general closure for turbulent
convection capable of properly accounting for counter-gradient diffusion. Another
approach are flamelet models [11] based on the level-set formulation [8]. An iso-
surface of a non-reacting scalar G describes the position of the flame front, for which
a transport equation is solved. Issues due to counter-gradient diffusion are avoided
with this approach and it allows to study instantaneous flame dynamics. It is not
straightforward however, to achieve closure for turbulent premixed flames. In [12],
the transport equation of the joint PDF of velocity and a progress variable was solved
by a Monte-Carlo method for flamelet and distributed combustion. With the help
of idealized premixed turbulent flame simulations, they have compared a standard
PDF closure with combined reaction-diffusion formulation. Their results confirm the
bimodal distribution of the progress variable for fast reactions made in the original
BML approach.

Here a new modeling approach for premixed turbulent flames in the corrugated
flamelet regime is presented. It has to be mentioned that this approach shares the
same concept as [21], however, there is a major difference in the calculation of
the mean flame surface density. Whereas in [21], modeling of flame stretching,
curvature effects, and collapse and cusp formation are treated consistently with the
classical formulation for FSD transport equations by a flame stretch factor, here,
these effects are modeled via mixing model for the flame residence time. While the
former model is consistent with existing ones at the moment closure level, and thus
profits from all the corresponding experience, the latter is closed in a more “ad-hoc”,
but more robust way. The approach is based on solving a transport equation for
the joint PDF of velocity, turbulence frequency and a scalar vector with a hybrid
particle/finite volume method [7, 13]. Like in other joint velocity composition PDF
methods turbulent convection appears in closed form. The source term describes the
rate at which unburnt particles get “ignited” by the embedded propagating quasi
laminar flame, i.e. it reflects the coupled fine-scale convection–diffusion–reaction
dynamics in the flame. For closure, the particle properties c∗ ∈ {0, 1} and τ ∗ ≥ 0
are introduced. Similar as in the BML model, the progress variable c∗ is zero, if a
particle represents the unburnt gas mixture; otherwise c∗ = 1. The flame residence
time τ ∗ is zero if c∗ = 0; else it represents the elapsed time since c∗ switched from
zero to one. This allows to resolve the embedded quasi laminar flame structure by
mapping τ ∗ onto the space coordinate of a precomputed one dimensional laminar
flame profile. To estimate the mean flame surface density 〈�〉 and thus the particle
“ignition” probability P, the binary indicator function d(τ ∗) ∈ {0, 1} is introduced; it
is zero except if 0 ≤ τa < τ ∗ ≤ τa + τd, where τd is a specified small time constant and
τa defines the flame surface. Flame stretching, curvature effects, collapse and cusp
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formation are accounted for by a mixing model for τ ∗. Numerical results of three
piloted premixed jet flames and comparisons with corresponding experimental data
demonstrate the generality and accuracy of this new approach.

In the following section, a general outline of the joint PDF method is presented.
Then the closure for combustion is explained, the tabulation procedure is discussed
and it is shown how molecular mixing is modeled. Finally, numerical validation
studies are presented and conclusions are given.

2 Joint PDF Method

In this section, a brief outline of the PDF modeling framework used here is presented.
Let g̃ be the one-point one-time Eulerian mass-weighted joint PDF of (Favre)
fluctuating velocity u = (u1, u2, u3)

T , turbulence frequency ω and the scalar vector
� = (�1, . . . , �Ns) (Ns is the number of scalars). The corresponding sample space
variables are v = (v1, v2, v3)

T for the fluctuating velocities, θ for the turbulence
frequency and � = (�1, . . . , �Ns) for the scalars. Then, the mass density function
(MDF) G is defined as

G(v, θ, �, x, t) = 〈ρ〉 (�, x, t) g̃(v, θ, �; x, t), (1)

where 〈ρ〉 is the mean density. Here, the first scalar represents the (inert) mixture
fraction Z , i.e. �1 = Z , the second scalar the progress variable c and the third
one the flame residence time τ . From the Navier-Stokes and scalar conservation
equations the transport equation for G can be derived exactly [13]; it reads

∂G
∂t

+ ∂G
(

˜U j + v j
)

∂x j
− ∂ ˜Ui

∂x j

∂Gv j

∂vi
+ 1

〈ρ〉
∂〈ρ〉ũiu j
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Favre-averaged quantities are denoted as ·̃, Reynolds-averaged quantities as 〈·〉 and
volume weighted conditional expectations as 〈·|·〉. The variable p means pressure,
ρ density, τij is the viscous stress tensor, Jβ is the molecular diffusion flux of
scalar β and Sβ is the source term of scalar β. Moreover, the source Sc describes
discontinuous evolutions; here in particular transitions (jumps) of �2 = c from zero
to one. In the case of a continuously evolving progress variable Sc would vanish. Note
that the left-hand side of Eq. 2 is closed (below it is explained how ˜U is provided);
the conditional expectations on the right-hand side (rhs) on the other hand require
modeling. Here, the simplified Langevin model (SLM) [4] is used to close the first
rhs-term and another stochastic model is employed for the turbulence frequency [15]
in the second rhs-term. It will become clear later that the molecular diffusion flux in
the third rhs-term is non-zero only for the scalars �1 and �3, for which a modified
IEM mixing model [20] is devised (see Section 6). The fourth rhs-term is non-zero
only for scalar �3 = τ , i.e. Sβ = δ3β�2, where δαβ is the Kronecker delta. Therefore
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τ (which by definition is zero for c = 0) represents the time, which elapsed since c
switched from zero to one. The probability for this transition from c = 0 to c = 1 is
the topic of the following two sections.

Note that Eq. 2 is not complete, since ˜U cannot be extracted from the MDF G.
Therefore, simultaneously to the modeled version of Eq. 2, the Reynolds averaged
Navier-Stokes (RANS) equations are solved to provide the mean velocity. Vice
versa, the unclosed terms in the RANS equations are obtained from G. For the
RANS equations a finite volume solver is employed and due to the high dimension-
ality of the sample space a Monte Carlo method is used to solve Eq. 2. In the Monte
Carlo method Lagrangian particles consistently evolve in the v-θ -�-space according
to stochastic differential equations (SDE), such that the MDF is represented by the
particle ensemble density. Such internally consistent hybrid particle/finite volume
PDF solution algorithms proved to be much more efficient than stand-alone particle
methods; more details are provided in [7].

3 Combustion Modeling Approach

In this section, the general framework of the new combustion model for turbulent
premixed combustion in the corrugated flamelet regime is presented [21]. To simplify
the explanations, we consider the computational particles in the PDF solution algo-
rithm, which can also be viewed as representative fluid elements. Essential for the
proposed modeling approach are the individual particle properties Z ∗, c∗ ∈ {0, 1} and
τ ∗ ≥ 0 representing the mixture fraction, a progress variable and a flame residence
time. Moreover, we introduce the function d(τ ∗) (from now on denoted as d∗),
which is one for 0 ≤ τa < τ ∗ ≤ τa + τd, and zero otherwise. The scalars c∗ and τ ∗ are
crucial to model the turbulent flame brush; the mixture fraction Z ∗ on the other
hand quantifies the level of molecular mixing between the reaction products and
a potential co-flow stream. Next, the roles of these particle properties are further
detailed.

The scalar c∗ is a flag indicating whether a particle represents the unburnt reactive
mixture. In that case c∗ = 0, else c∗ = 1. In the case of infinitely thin embedded
flames c∗ can be interpreted as a normalized temperature; similar as in the BML
model [1]. Here, however, the embedded flame structure is not infinitely thin and
to account for that, the flame residence time τ ∗ is useful. As already mentioned,
it is non-zero only if c∗ = 1 and reflects the time which elapsed since c∗ switched
from zero to one, i.e. since the particle was “reached” by the embedded flame
surface (marking the very front of the embedded flame). Since at this point the
corrugated flamelet regime is considered, the embedded flame structure and the
laminar flame speed sL are assumed to remain unaffected by the turbulent eddies and
can be obtained from precomputed steady laminar 1D flames. Note that for these
calculations complex mechanisms can be considered. Now it is straightforward to
consistently map τ ∗ onto the spatial coordinate of that 1D flame and to retrieve mass
fractions and temperature via cheap table look-up. More about tabulation and look-
up follows in Section 5. A sketch of such a steady laminar premixed flame profile
is depicted in Fig. 1, where the temperature varies from Tu in the unburnt mixture
to the adiabatic equilibrium temperature Tb on the burnt side. Shown is also the
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Fig. 1 Sketch of a steady
laminar 1D flame profile
showing T (solid line), c
(dashed line) and τ

c

1

0

0 τ

b

Tu

T

T

variation of c along the flame and the arrow at the bottom indicates the increasing
flame residence time τ from left to right where c = 1.

The crucial remaining question is: when does the c∗ value of a particle switch from
zero to one? During a given time step, this occurs with the probability P and a model
therefore will be introduced in the following section.

To summarize, during each time step the position X∗ of a computational particle
evolves according to its individual velocity ˜U(X∗) + u∗, whereas the fluctuating
velocity u∗ is updated according to the simplified Langevin model (SLM) [4] and
the turbulent frequency ω∗ by solving another stochastic model equation [15]. Then,
if the value of c∗ is zero, it is set to one with probability P and if c∗ = 1, the
flame residence time is incremented by the time step size. Now mass fractions and
temperature are retrieved from the precomputed tables and a modified IEM model
is employed to account for micro-mixing of the flame residence time and the mixture
fraction (mixing of products with a potential co-flow stream); details regarding micro-
mixing are provided in Section 6.

4 Ignition Probability

In the corrugated flamelet regime, the probability P that a particle is “reached” by
the embedded flame during a time step of size 
t is a function of the mean flame
surface density 〈�〉 and the laminar flame speed sL (which is assumed constant here).
For infinitesimal small time steps one can write P = F
t, but to always ensure that
P ∈ [0, 1] the formulation

P = 1 − e−F
t (3)

is employed; note that F is the ignition probability density. To derive an expression
for P, an ergodic statistical fine scale picture of turbulent premixed flames is
considered. A sketch of an instantaneous snapshot is depicted in Fig. 2, where the
solid line represents the embedded flame front at time t within a volume �. The
shaded area �d represents the fluid volume, which was “consumed” by this flame
front since the time t − τd. Note that �d is approximately equal to AFld, where AF

is the flame surface area and ld the average separation distance between the flame
front and a fluid element, which was located on the flame front at time t − τd. Taking
the ensemble average of many such realizations leads to

〈�d〉 ≈ 〈AFld〉 = 〈AF〉l1D
d + 〈AFδld〉 (4)
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Fig. 2 Sketch of an
instantaneous flame surface
with the volumes �u (left) and
�d (shaded)

Ωu Ωd

fresh gas

burnt gas

whereas the decomposition ld = l1D
d + δld with the corresponding separation distance

l1D
d from a laminar 1D flame calculation and the perturbation δld is employed. Note

that the last term in Eq. 4 requires modeling; e.g. flame stretching results in negative
values. For fix τd one now can write

〈AF〉 = lim
τd→0

〈�d〉 − 〈AF δld〉
l1D
d

. (5)

With these definitions, the mean flame surface density can be expressed as

〈�〉 = 〈AF〉
�

= lim
τd→0

〈�d〉 − 〈AF δld〉
l1D
d �

, (6)

which requires modeling of 〈AF δld〉; note that 〈�d〉 = 〈d〉� can be calculated in this
PDF modeling framework. Thus, from Eq. 6 one obtains the expression

〈�〉 ≈ 〈d〉
l1D
d

− 〈AF δld〉
l1D
d �

. (7)

Without considering that parts of the flame surface may propagate into itself,
the probability for an unburnt fluid element to be “reached” by the propagating
embedded flame sheet during the next infinitesimal time interval is

Fdt = 〈�〉sL�

�u
dt ≈ 1

1 − 〈c〉
(

〈d〉 − 〈AFδld〉
�

)

sL

l1D
d

dt, (8)

where �u = (1 − 〈c〉)� is the volume of unburnt gas. Note that the laminar flame
speed sL is assumed to be a function of the unburnt gas composition and temperature
only and that expression (8) is only correct, if all particles with c∗ = 0 have the same
density ρ = ρu, i.e. if the flame sheet marks the very front of the embedded flame
where T ≈ Tu. With this result based on the above assumptions, for small time steps
of length 
t, one obtains the expression

P ≈ 1 − e−F
t (9)

for the ignition probability. Here the effect of 〈AF δld〉 and that the flame can run into
itself is approximately captured by a mixing model for τ ; more details are provided
in Section 6.
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Fig. 3 Sketch of the fuel lean
branch of the normalized
temperature T̂ as a function of
Z and τ , where Zst and Z f
are the stoichiometric mixture
fraction and the mixture
fraction at the fuel lean border
of the flamable range,
respectively
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5 Tabulation

To generalize the combustion model for scenarios where Z of the unburnt reactive
mixture varies, multiple laminar 1D flames have to be precomputed and tabulated;
i.e. for an adequate number of mixture fraction values in the flammable range. Be-
tween these selected Z values, linear interpolation is applied. Outside the flammable
range, diffusion dominates and therefore the species mass fractions and temperature
are linearly interpolated between the corresponding mixture fraction values. In
general, the current model can easily be extended to include fuel rich conditions. But
since rich conditions do not occur within the considered flames (flames F1–F3), the
stoichiometric-to-rich branch has been omitted in the present description. A sketch
of the lean branch of the resulting temperature manifold, i.e. of Tm(Z , τ ), is depicted
in Fig. 3. The temperature, and similarly also species mass fractions, can be tabulated
as functions of mixture fraction and flame residence time and thus can be retrieved
during PDF simulations by simple and cheap look-up operations.

These precomputed tables have some similarities with the ones used in the
flamelet generated manifolds (FGM) method [19] or in the flame prolongation of the
ILDM method (FPI) [3]. There however, different “control variables” are employed.

6 Molecular Mixing

For the closure of the third rhs-term in Eq. 2, which here affects the Z ∗ and τ ∗ values
of the computational particles, a variety of micro-mixing models have been devised
in the past [6, 10, 18, 20]. In the context of the proposed PDF method, the interaction
by exchange with the mean (IEM) model is employed to account for molecular
mixing of mixture fraction and temperature. Then, under the assumption that the
temperature must lie on the manifold Tm(Z , τ ) and since it is a monotonous function
of both Z and τ , it is straight forward to determine the new pair (Z ∗, τ ∗) from the
new values of Z ∗ and T∗, i.e. after the mixing model has been applied for Z ∗ and
T∗, the mapping (Z ∗, T∗) → (Z ∗, τ ∗) is applied. Note that a one to one mapping
of the flame residence time on the precomputed laminar 1D flame only holds in
the absence of mixing with a coflow. Therefore, the mapping employed in our
work includes the mixture fraction. Note that changing the statistics of τ ∗ influences
the local values of 〈d〉 and thus also the estimated mean flame surface density
as well as the ignition probability. It is questionable, however, whether a mixing
model designed for inert scalars like mixture fractions can directly be employed to
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describe the effect on τ ∗. With this ad-hoc ansatz for flame surface production and
dissipation, best results have been achieved with a mechanical-to-scalar time scale
ratio of 8. Note that here mixing of τ is motivated primarily to account for flame
stretching, curvature effects, collapse and cusp formation, and secondary to account
for mixing between products and co-flow. This is a different motivation than in other
combustion modeling approaches, where the mechanical-to-scalar time scale ratio
had to be adjusted for reactive flows, since some scalar gradients are affected by
chemistry. Lindstedt and Vaos [9] investigated the influence of varying C� in the
range [2.0, 8.0] for a turbulent premixed combustion model based on a transported
joint composition PDF method with a reduced chemical reaction scheme. Stöllinger
and Heinz [17] showed good agreement of a piloted premixed burner with a value of
Cφ = 12.0; also within a joint composition PDF framework combined with a skeletal
mechanism. More recently, Rowinski and Pope [14] presented a detailed study of Cφ

and concluded that increasing Cφ improves the prediction of the flame temperature,
whereas a value of approximately 2.0 is most appropriate for inert scalars like the
mixture fraction.

7 Results

For validation, numerical calculations for three axisymmetric premixed piloted
bunsen flames [2] were performed. Each of these flames has three inflow streams, i.e.
an unburnt reactive jet encircled by a hot pilot, both surrounded by a slow ambient
air co-flow. The jet bulk velocities are U0 = 30 m/s (flame F3), U0 = 50 m/s (flame
F2) and U0 = 65 m/s (flame F1), and the reference turbulent kinetic energies are
k0 = 3.82 m2/s2, k0 = 10.8 m2/s2 and k0 = 12.7 m2/s2, respectively. The adiabatic
temperature of the fully burnt mixture is Tb = 2248 K and that of the unburnt jet
stream and the co-flow is Tu = 298 K. The measurement errors are estimated to
be less than 1 % for the mean velocity and to be less than 10 % for the mean
temperature. Profiles at the jet inflow of mean and root mean square (rms) velocities
˜U1 and urms

1 , respectively, are directly adopted from [2] and the estimation ũ1u2 ≈
0.5urms

1 urms
2 is used for the velocity covariance (subscripts 1 and 2 indicate axial and

radial components, respectively). The turbulence frequency ω at the jet inflow is
set proportional to (ũiui/3)0.5/D, where D = 0.012 m is the jet diameter. Pilot and
co-flow have uniform mean velocities, i.e. 1.3 m/s in the hot pilot, 1.0 m/s in the
cold pilot and 0.5 m/s in the co-flow. The rms-velocities are u1 = u2 = 0.1 m/s for
the pilot and u1 = u2 = 0.05 m/s for the co-flow. The turbulence frequency for the
pilot is 103 s−1 and 102 s−1 for the co-flow. From now on it is convenient to consider
the following normalized quantities: the normalized mean axial velocity Û = ˜U/U0,
the normalized turbulent kinetic energy k̂ = ˜k/k0 and the normalized temperature
T̂ = (T − Tu)/(Tb − Tu). Normalized temperature and mixture fraction are T̂ = 0
and Z = 1 in the jet, T̂ = 0 and Z = 0 in the co-flow, and T̂ = 0.8 and Z = Z p such
that T̂m(Z p, τ → ∞) = 0.8.

For the simulations presented in this paper, the simplified manifold T̂m(Z , τ ) =
T̂st(τ )Z was employed, whereas T̂st(τ ) is the normalized temperature along the
profile of a premixed 1D flame with stoichiometric mixture (Zst). In the manifold,
by construction c is one where 0.05 ≤ T̂ and zero otherwise and the function d(τ )
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Fig. 4 Radial profiles of the normalized mean downstream velocity Û1 for the three cold cases at
several downstream locations (circles: experiment; solid lines: numerical simulation)

is chosen such that it is one for 0.2 ≤ T̂ ≤ 0.8 and zero otherwise; note that this
defines τd = 0.227 10−3s and ld = 0.386 10−3 m. For molecular mixing with the co-
flow, Cφ values in the range between 2 and 10 were considered. The best agreement
for flame F3 was obtained for C� = 8; the same value was then also employed for the
simulations of flames F2 and F1.

For the computations a rectangular plane of 0.6 m in axial direction (starting at
the nozzle exit) and 0.1 m in radial direction (starting at the symmetry-axis) was
considered and a 50 × 50 non-equidistant grid with an average of 20 computational
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Fig. 5 Radial profiles of the normalized turbulent kinetic energy k̂ for the three cold cases at several
downstream locations (circles: experiment; solid lines: numerical simulation)
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Fig. 6 Radial profiles of the normalized mean downstream velocity Û for all three flames at several
downstream locations (circles: experiments; solid lines: numerical simulation)

particles per cell was used. To investigate the numerical convergence with respect
to grid refinement and particle number, an additional simulation of flame F3 on a
80 × 80 grid and 30 particles per cell in average was performed; comparison with
the result obtained with the 50 × 50 grid and 20 particles per cell shows very little
difference.
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Fig. 7 Radial profiles of the normalized turbulent kinetic energy k̂ for all three flames at several
downstream locations (circles: experiments; solid lines: numerical simulation)
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Fig. 8 Radial profiles of the normalized mean temperature ˜T̂ for all three flames at several
downstream locations (circles: experiment; solid lines: numerical simulation)

In Figs. 4 and 5, the normalized mean downstream velocity Û1 and the normalized
turbulent kinetic energy k̂ of the non-reactive flow cases are presented. The solid
lines represent the simulation results and the circles the experimental data. In general
good agreement can be observed for the non-reactive simulation results.

For the reactive flow simulations the same boundary conditions are applied. The
normalized mean downstream velocity Û1 (Fig. 6) and the normalized turbulent
kinetic energy k̂ (Fig. 7) are predicted very accurately for all three flames. Compared
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Fig. 9 Radial profiles of the normalized rms-temperature T̂rms for all three flames at several
downstream locations (circles: experiment; solid lines: numerical simulation)
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to the cold cases, the shear layer is shifted outwards due to gas expansion; this effect
is captured very well by the presented simulations. In Fig. 8, the normalized mean
temperatures are presented. At the axial location x1/D = 2.5 the gradients of ˜T
in the radial profiles are over-predicted; similar over-predictions are also reported
in [5, 9, 16], where in [16] it is expected to be caused by the complex interaction
of the cold, highly turbulent jet with the hot laminar pilot stream. Note that this
effect is not included within the presented model approach. Further downstream,
at x1/D = 10.5, the mean temperatures of flames F2 and F1 are under-predicted;
otherwise good agreement between simulation and experimental data is observed.
Figure 9 shows the normalized rms-temperature T̂rms. For flame F3, the predictions
are in good agreement with the experiment; for flames F2 and F1, the predictions are
good upstream of x1/D = 6.5; further downstream the model tends to under-predict
T̂rms. Compared to the level-set method results [5], the turbulent kinetic energy is
forecasted more precisely, whereas the mean velocity and temperature fields are
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Fig. 10 Radial profiles of the nantities Û , k̂, ˜T̂ and T̂rms for the flame F3 at several downstream
locations (experiment: circles; numerical simulation: solid lines (Cφ = 2.0), dashed lines (Cφ = 4.0),
dashed-dotted lines (Cφ = 6.0) and dotted lines (Cφ = 8.0))
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comparable. The results are also competitive compared to the detailed chemistry
PDF approaches [9, 16] (except for the rms temperatures of flames F1 and F2)
at a lower numerical effort, and to the simulation presented in [21]. An important
property of the presented model is, however, that very little tuning is required. The
only model constant which was systematically adjusted is Cφ , and the results are very
insensitive to quite large variations as shown in the following.

In Fig. 10, simulation results for flame F3 are presented, where the influence of the
mechanical-to-scalar time scale ratio was investigated, i.e. simulations with Cφ = 2.0,
Cφ = 4.0, Cφ = 6.0 and Cφ = 8.0 were performed. For Cφ = 2.0, the mean temper-
ature at x1/D = 8.5 is under-predicted. On the other hand, the rms-temperature is
over-predicted for positions upstream of x1/D = 8.5. The best general agreement
was found for Cφ = 8. It has to be pointed out that the results are very insensitive
to quite large variations in the mechanical-to-scalar time scale ratio, which is in huge
contrast to previous works.

Before this section is concluded it has to be emphasized that only flame F3 is
operated in the corrugated flamelet regime, for which the modeling assumptions are
rigorous. Flames F2 and F1 are subject to the thin reaction zone regime and to a small
extent even to the broken flamelet regime, where the assumption of unperturbed
embedded laminar flame structures is violated, i.e. the enhanced scalar mixing caused
by eddies entering the preheat zone is not captured by the presented approach.

8 Conclusion

A novel model for turbulent premixed combustion is presented. The modeled
transport equation for the joint PDF of velocity, turbulence frequency, mixture
fraction, a binary progress variable and a flame residence time is solved with a
hybrid particle/finite volume solution algorithm. Besides other advantages, such joint
velocity-scalar PDF methods are not subject to counter gradient diffusion, since
turbulent convection appears in closed form.

During a time step, a computational particle representing reactive unburnt mix-
ture is “reached” by the embedded propagating flame surface with the “ignition”
probability P, which is a function of the flame surface density. In the proposed joint
PDF framework the flame surface density is transported, whereas effects of flame
stretching, curvature, collapse and cusp formation have to be modeled. Whereas in
[21], modeling of these effects is treated consistently with the classical formulation for
FSD transport equations by a flame stretch factor, here, these effects are modeled
via mixing model for the flame residence time. Once “reached” by the embedded
flame surface, mass fractions and temperature of a particle are governed by the
mixture fraction and the flame residence time and can be retrieved by look-up
from precomputed premixed laminar flame tables. To account for molecular mixing
between the hot products and the co-flow (and to account for production and
dissipation of the flame front), the IEM mixing model is employed for mixture
fraction and temperature; the flame residence time is then obtained via mapping.
An important property of the presented model is, however, that very little tuning
is required. The only model constant which was systematically adjusted is Cφ , and
the results are very insensitive to quite large variations. The best results have been
achieved with a mechanical-to-scalar time scale ratio of C� = 8.
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Numerical validation studies of piloted premixed Bunsen flames show good
agreement with the experimental measurements and demonstrate the applicability
of the proposed PDF model for the corrugated flamelet regime. Moreover, the
results are also competitive compared to detailed chemistry PDF approaches at a
lower numerical effort, except for the rms temperatures. However, more research is
required to extend this approach to the thin reaction zone regime and the broken
flamelet regime, since the current modeling assumptions are not valid there.
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