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1. Introduction

Let 12 be a bounded polyhedral domain of R 7 , n > 2, of boundary F. Let

wi E R', i = 1,... , p, p > 2, and consider a function cp : R' —* R such that

	^p(w^) = 0 Vi = 1,...,p,	 (1.1)

	cp(w) > 0 dw	 w^, i = 1, ... , p,	 (1.2)

w2 — wP , i = 1, ... , p — 1 are linearly independent.	 (1.3)

For instance, in a physical setting, cp could be some stored energy density that
vanishes at wells wz's. These wells stand for natural states with low or no energy.
Let us denote by P a nonnegative continuous function such that for some q > 0,
c>0,

	

0 < P(^) < c	 d E (-1,1).	 (1.4)

If A(x) is a Lipschitz continuous function i.e. if

A E W 1 ' 00 (Q)	 (1.5)

we denote by WA' °° (Q) the set

WA'(Q) _ {v E W 1 '(fa) /v(x) = A(x) on F}.	 (1.6)

Then, we would like to consider the problems

inf fo
	co(Vv(x))dx,	 (1.7)

vEWA°°(.fl)
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inf 	IQ
W(v(x) — A(x)) + ^p(Vv(x))dx,

VGWA °°(0)

inf	 J W(v(x) — A(x)) +,p(Vv(x))dx, 	 (1.9)
vEW 1 '(Q) 

More precisely we would like to investigate the case when

	

VA(x) E Co(w 1 ) a.e. x E [1	 (1.10)

(Co(wz) denotes the convex hull of the wi's).
As we mentioned before, such minimization problems arise in various physical

settings (see for instance the connection with continuum mechanics in [1], [2], [21],
[23], [24], [25], [27], [28], [29], [30], [31]) and it is of importance to know with
what accuracy a finite element method will provide an estimate of the energy level.
Moreover, our theoretical analysis provides minimizing sequences for the problems
at hand that describe of course the limit behavior of the system. However, we will
not insist here on the fact that these problems have no minimizers and are described
by the mean of these minimizing sequences. The interested reader is refered for
instance to [8] or [11] for details. The relationship between (1.7), (1.9) is exposed
in [3], we refer for instance to [26] for notation on Sobolev spaces.

For our purpose, let (T )h>o be a family of triangulations of S? (see [33]), that
is to say satisfying

VK E Th, K is a n-simplex,

dh>0 max(hK)=h, 	(1.11)

3v >0 such that VK E Th hK < v.
PK

where hK is the diameter of the n-simplex and PK its roundness (i.e. the largest
diameter of the balls that could fit in K). If Pi (K) is the space of polynomials of
degree 1 on K, set

Vh = {v : [l —* R continuous, v/K E PI(K), VK E Th}.	 (1.12)

Moreover, let us denote by A the interpolate of A on Th-i.e. A is the unique function
of Vh that agrees with A on the vertices of Th.

REMARK 1.1. If VA(x) E Co(wi), note that one does not have necessarily

VA E Co(w).

Then set

V ={v:,(2 R continuous, v/KEP1(K),VKETh,v=A on F}. (1.13)
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Our goal is to obtain estimates for the infima

inf 	(Vv(x))dx	 (1.14)
vEV, Jç

inf J W (v(x) - A(x)) + ^p(Vv(x))dx	 (1.15)
vE Vh f2

inf f P(v(x) - A(x)) +^p(Vv(x))dx	 (1.16)
vEVh

in terms of the mesh size h. Moreover, in doing so, we will exhibit sequences pro-
viding approximations for (1.7)-(1.9).

REMARK 1.2. In the case where A is affine on each face of F then A = A
on F. Note that no assumption is needed on co for (1.14)-(1.16) to be defined. For
(1.7)-(1.9) one might require (p to be a Borel function.

Problems of this type have been first considered by C. Collins, D. Kinderlehrer
and M. Luskin in one dimension (see [16], [17]-[18], [15]). In higher dimension
estimates were also obtained in [7], [8], [10] in the case where VA is a constant and
in [11] in the vectorial case. Sharp estimates were obtained in [14]. In the case when
A is nonlinear, estimates were obtained in [9] and [13]. However, in these papers
the estimates are not optimal and using new test functions we are able to improve
them and get in term of h the same power than in the linear case i.e. when VA is

constant (see [8], [10]).
First, remark that there is no loss of generality in assuming that

0 E ri(Co(wz))	 (1.17)

where ri(Co(wi)) denotes the relative interior of Co(w;)-i.e. its interior in the space

spanned by the wz - wr 's. Indeed, let w E ri(Co(w;)). Then, we can look for a v of

the form

v=n+w.x	 (1.18)

where w.x denotes the scalar product of w and x. Then we are led to minimize

fo Tf(u(x) - (A(x) - w.x)) + (w+Vn(x))dx 	 (1.19)

over some space. If we set

^p(^) = p(^ + w), A(x) = A(x) - w.x	 (1.20)

we end up to deal with the same problem with the wells w i - w that satisfy

0 E ri(Co(w2 - w)), VA E Co(w2 - w) a.e. x E [1.	 (1.21)
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So, in what follows we will always assume that (1.17) holds. In particular, by (1.3)

there exist az's, i = 1, ... ,p, such that

P
0 =	 a^w^, a^ E (0,1).	 (1.22)

i=1

Moreover the space W spanned by the wi — wr 's coincides with the space spanned
by the w i 's.

2. Energy Estimates

Our main theorem is the following:

THEOREM 2.1. Let us assume that Q is convex and that cp is a function
bounded on bounded subsets of R" satisfying (1.1), (1.2). Moreover, assume that
TV is a continuous function satisfying (1.4). Then, if A E W l 00 (Q) satisfies (1.10),
and (1.3) holds, there exists a constant C, independent of h E (0, 1), such that

Eh = inf f ^o(Vv(x))dx < Ch' 1 '	 (2.1)
v E Vh l

E = inf fo	TI(v(x) — A(x)) + cp(Vv(x))dx < ChT/I''+ I l	 (2.2)
vEVh

	E = inf fo W(v(x) — A(x)) +,p(Vv(x))dx _< Chgl (9+ i1 	(2.3)
vEVh

where r = q A 1, A denotes the infimum of two numbers.

REMARK 2.1. Assuming for instance that limH + 	O = +oo or
limJ £ I,+ . W(^) = +oo one can show via an easy compactness argument that the
infima (2.1)—(2.3) are in fact achieved (see [8] or [10] for a proof).

In order to prove Theorem 2.1 we will need some preparatory lemmas.
First:

LEMMA 2.1. Assume A E W 1 "°°(Q) satisfies (1.10). Then if the segment
[x, x'] is included in S? one has:

P	 P
A wi.(x — x') < A(x) — A(x') < v w^.(x — x')	 (2.4)
=I	 z=1

(we denote by A the infimum of numbers, by V the supremum).

Proof. It is enough to apply the mean value theorem after regularization
(see [13]).	 •
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REMARK 2.2. An immediate consequence of this lemma is that

A(x) — A(x') = 0

on each segment [x, x'] such that x — x' E W', where W' denotes the orthogonal
of W that could be, of course, reduced to 0 when the wi's are spanning the whole
space.

Let us denote by v1 i ... , vp_ 1 the dual basis of wi — wp i.e. the basis such that

(w — wp ).v3 	Vi, = 1, ... , p — 1.	 (2.5)

Denote also by x., the points of the lattice of size h°, a E (0, 1) will be chosen later
on, spanned by the vi's-i.e. for any z = (zl , ... , zp_ 1 ) set

p-1

x z =	 zi h«v i .	 (2.6)
i-1

Then, let us define the function A by

p
A(x) _ V (A w i .(x — x z ) + A(x))	 (2.7)

zEZP i i-1

where A is the extension of A (see the Appendix) that satisfies

VA(x) E Co(w) a.e. x E Ri'.

Note that A is constant in the W -- direction, (see Remark 2.2), and we will consider

it as a function of x E W or x E Rn as well. By a unit cell of the lattice spanned

by the h'vi we mean a set of the type

p-1

Cz = xz + ^ Oih a vi / Oi E [0, 1]
i=1

where x z is defined by (2.6). Then one has:

LEMMA 2.2. Let us assume that ,(1 is convex. Under the above assumptions,
denote by Czo a unit cell spanned by havi's and by E the set

E={zEZp -1 /zi=0 or 1, Vi=1,...,p-1},

then one has

_
A(x) _ V (A w^.(x — x e ') + A(x)) `dx E Czo .	 (2.8)

z'Gro+E i=1
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i.e. in (2.7) instead of taking the supremum on a number of z that could be un-
bounded when h -+ 0 it is enough to take it on a fixed finite number.

Proof. Assume that x E Cz0 , and fix z E 7Gr -1 . Then, for some l = 1,... , p
one has

P

	A w2.(x — x z ) = wi.(x — x z ).	 (2.9)
z=1

We claim that there exists z' E z o + E such that

	P 	 P	 P

	n wi.(x — x z ) = n wz.(x — x x, , ) + A w,.(x z , — x z ).	 (2.10)

To prove that let us show that there exists a z' E zo + E such that

{w^.(x—x e , )>wj.(x—x z , ) Vi=1,...,p ' i5 1 ,
(2.11)

wi.(x z , - x z ) > w(.(x, , - x z) Vi = 1,... ,p, i ^ 1.

Indeed, if (2.11) holds, by (2.9) one would have

P

A w z .(x — x z ) = w l .(x — xz)
=1

= w t .(x — x) + w,.(x z ' — x z )
P	 r

	= A w^.(x — x z ,) + A w^•(xz ' — x z )	 (2.12)

and (2.10) will follow. Assume that

	P - 1	 P-1	 P-1

x = .I(8k + ZOk)h«vk, xz =	 zkhavk, x z , _	 z' h vk.	 (2.13)

	

k=1	 k=1	 k=1

Then, clearly (2.9) reads

(w z — wi).x > (w^ — wi).x z Vi = 1,... , p, i ^ l

or

P-1	 P-1

E f0k +zok}(w —wt).vk > >zk(Wi —WI).vk Vi = 1,...,p, i 541. (2.14)
k-1	 k=1

Similarly (2.11) reads

P-1	P-1

E{Nk + zok}(wi - wt) .vk > E z'k(wi - WI).vk Vi = 1,... ,p, i l
k=1	 k=1

	

P- 1	 P-1

E zk{w — Wt).vk > i: zk(Wj — Wj).vk Vi = 1,...,p, i 54 1. (2.15)
	k=1	 k=1
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One has (see (2.5)), when l ^ p
*if i=p,

(wi — wl).vk = —51k.	 (2.16)

*if i54p,

(wi — wl)•vk = [(wi — wp) + (wp — wl)]•Vk

_ (wi — wp ).vk + (wP — wl).'vk

= Sik — Sik•

Hence, in this second case:

	

0	 when k 54 i,1,

(w i — wl).vk =	 1	 when k = i,	 (2.17)

	—1	 when k=1.

When I = p

(wi — wi).vk = 6ik.	 (2.18)

Let us assume first that 1 $ p, then (2.14), and (2.15) can be written respectively

(,Qi + zol) > —zl

(0i + zoi) — ( 0t + zol) > zi — zl Vi = 1, ... , p — 1, i 5 l	
(2.19)

(Nl + zol) >

1 (2.20)
A+zoi) — (0l+zol)?z] — z' `di=1,...,p-1, i54l

—zl > —zl

zi—z'>z i —zl Vi=1,...,p-1, ill.	
(2.21)

Thus, knowing (2.19), we have to find z' E zo + E such that

(Nl + ZOl) > — zl' > — zl

1 di=1,...,p-1,
(2.22)

A+zoi) — (,fit+zol)>z] — zi>zi — zl	 ill.

If 13l E]0, 1], we choose

z^ = zoi + 1 if /^i ? 13i,
z^ = zol + 1,	 (2.23)

z] = zoi	 if ,^^ < ,3t,	 i = 1, ... , p — 1, ill.
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In the case when i3 > 01 i we have 0	 — /31 < 1, since zj, z, — z1 are integers
satisfying (2.19) one has

— (Qi + zot) > — (zol + 1) > —z1

(^j+ zo ) —(Qt+z01) ? (zo o+1)—(zoi+1) >z	 z1	 (2.24)

di = 1,...,p — 1, i 54 1.

which is (2.22) in this case. When /3 z < X1, since —1	 — ,Q1 < 0 we have

— (/3a+zoi)> — (zo1+1)> — z1

(Qj + zoi) — (t + zoi) > zoo — (zoi + 1) > zi — zI	 (2.25)

Vi = 1,...,p — 1, i ^ 1.

which is (2.22). If 0 = 0, we choose

z = zoz	 if /32 E [0, 1 [,
t = zot,	

zi=zoi+1 if ,^3Z=1, i=1,...,p-1, i5l.

Then clearly (2.22) holds. So, it remains only to treat the case where I = p. In this
case, the system to be solved is (see (2.14), (2.15), (2.18)):
find z' such that

A+zoi>z'>zZ `di=1,...,p-1,	 (2.26)

knowing that

13^+zoo>z Vi=1,...,p-1.

We choose

J z=zoz	 if 13E [0,1[,

z^ = zoo + 1 if ,^3j = 1, 	 i = 1, ... , p — 1.

Then clearly we have (2.22). This proves (2.10).
To complete the proof of Lemma 2.2, consider a point x E Czp . If x z is arbitrary

by (2.10), there exists a point z' E zo + E such that

P	 P	 Pn wi.(x — x Z ) _ A w 2 .(x — x z , ) + n w i .(x z , — x z ).

Using Lemma 2.1 we deduce that

P	 P

wi.(x — x^) <A wi.(x — xz , ) + A(x) — A(x z )
=I	 i=I
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i.e.

P	 _	 P	 _

A wi. (x — x z ) + A(x) < A wi. (x — x z , ) + A(x z , )
i=1	 i=1

and this completes the proof. 	 •

We have also:

LEMMA 2.3. Let us assume that I? is convex. Under the preceding assump-
tions one has for some positive constant C independent of h

A(x) - Ch' < A(x) < A(x) Vx E [1. 	 (2.27)

Proof. Using Lemma 2.1 we get for x E Si:

P	 _
A w i .(x — x^) + A(x,) < A(x) dx z .
i=1

Hence

A(x) < A(x).

Denote by Pw (Q) the orthogonal projection of Q onto W. Let x' E Pw (.Q) be the
component of x in Pw(f?). There exists a zo such that x' E Czp , so that

r	 _
A(x) > A wi.(x — xzo) + Alxzo)

i=1

P

= A wi.(x ' — xzo) + A(xzo)
i=1

> —Ch° + A(x zo ) — A(x') + A(x)

> —Ch' + A(x)

we used the fact that A(x) = A(x'), see Remark 2.2. This completes the proof.
n

Proof of Theorem 2.1.

-Proof of (2.3). Define uh as the interpolate of the function A(x) that has
been introduced in (2.7). Clearly, Uh E Vh. Then, first notice that

VA(x) = wi a.e. x E Si,

so that A is a Lipschitz continuous function with a Lipschitz constant uniformly
bounded. It then results that the same holds for i , (see for instance [4], [5], [6]).
Then, by the mean value theorem

1A(x) — u h (x)l << Ch
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for some constant C. Since a E (0, 1) we deduce from (2.27)

A(x) — u h (x)I < IA(x) — A(x)e + 1A(x) — i1 h (x)I

< Ch° + Ch < Ch°	 (2.28)

if one assumes h < 1. In particular this leads to

f W(uh — A(x))dx < CIPJh9°	 (2.29)

(note that (1.4) holds on any bounded subset of R, [1 denotes the measure of Q.)
Next we need to estimate

f (Vuh(x))dx.	 (2.30)
n

First, notice that

Viih = w j

except maybe on the set I composed of the simplices where interpolation occured.
Since on this set Viih remains bounded one has

ff2 
cp(Vuh(x))dx = J V(Vuh(x))dx < CI

1

where Il denotes the measure of I. Now, interpolation occurs on a h-neighborhood
of the ridge of A(x)-i.e. a h-neighborhood of the set where A(x) has a discontinuity
in its gradient. Clearly A(x) has a jump in its gradient on a unit cell of the lattice
spanned by h°v z when one of the function

w^.(x - x^) + A(x)

is equal to an other. These two functions are then equal on a set of p-2-dimensional
measure bounded by C(ha)P2 (this is the intersection of a hyperplane and a cell
of diameter bounded by Cho). Since in (2.7) the supremum is taken on a finite
number of functions it is clear that

I < C(ha)p -2 .h.N(h°)	 (2.31)

where N(h) is the number of cells of size h° included in Pw(,fl) (Recall that Pw
denotes the projection of [ onto W). Clearly,

N(ha) . (ha)n-' < C.

Hence (2.31) reads

II < Chi-°.	 (2.32)
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Collecting (2.29)—(2.32) we get

f `P(iih — A(x)) + 1P(Viih(x)) < C[haq + h i—a ]

n	 —

The power is the best in this inequality when 1 — a = aq, i.e. when a = 11 . This
completes the proof of (2.3).

REMARK 2.3. The above estimate is sharp (see for instance [14]).

-Proof of (2.1), (2.2). Define A as before. Now, this function is not necessarily
equal to A(x) on the boundary of Q. So, its interpolate will not be in . To correct
that, set

uh(x) = A(x) V (A(x) — dist(x, r))

where dist(x, F) denotes the distance from x to the boundary F. Due to (2.27) one
has

IA(x) — A(x)I < Ch°.

dist(x, F) > Cha,

Uh(X) = A(x).

Now, if

uh(x) = A(x) — dist(x, F),

one has necessarily

u h (x) — A(x) I = dist(x, F) < Ch°.

It results that in all cases one has

Uh(X) — A(x)I < Ch'.

Since - when ii h denotes the interpolate of uh

Uh(X) — uh(x)I <_ Ch

one deduces -say for h < 1

So, if

then,

v,h(x) — A(x)I < Cha.	 (2.33)
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So, we get (see (1.4), (2.33))

f W(uh(x) — A(x))dx < Cha9 .	 ( 2.34)

Next, as in part 1

fo cp(Vu (x))dx < CII1	 (2.35)

where I denotes the set where we are interpolating. Recall that when

dist(x, I') > Ch ,

one has

Uh(X) = A(x).

So, when dist(x, F) > Ch °' + h one has

?ih = the interpolate of A(x)

and, by the estimate we developed in part 1, if Ii = {x/dist(x, F) > Ch° + h}, we
obtain

fil 
cP(Vuh(x))dx < Ch'.	 (2.36)

Next we have to estimate

Q(Vuh(x))dx.	 (2.37)
I\I i

But since I \ Il is a h°-neighborhood of F. (note that h < h"), and since the
gradient of uh is uniformly bounded we get

fI
cp(Vuh(x))dx < Ch.	 (2.38)

\I,

Combining (2.34)-(2.38) we obtain

f(uh(x) - A(x)) + (Vuh(x))dx < C[ha 9 + hi-o' + h"]

< [har + h 1 ]	 ( 2.39)

and

n 
(Viih(x))dx < C[h l-' + h]	 (2.40)
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In (2.39) the estimate is the best when 1 — a = ar, i.e. when a = +̂ i . This gives
(2.2). In (2.40) the estimate is optimal for a = 2 which gives (2.1). This completes
the proof of Theorem (2.1). •

REMARK 2.4. In the case where 17 is not convex, when q > 1, and under the
assumptions of Theorem 2.1 one has for some constant C

Eh < Ch i / 2 Vi = 1, 2, 3.	 (2.41)

Indeed, thanks to (1.4) one has

Eh < Eh

and since Vh C Vh,

3	 2Eh <Eh .

So, it is enough to prove (2.41) when i = 2. But clearly a polyhedral domain can
be decomposed into polyhedral domains (22 , i = 1, ... , N that are convex. Then, if
on each of these domains we construct uh as in part 2 of the proof of Theorem 2.1,
the different Uh are matching on the boundary of the different Q. Then, we call uh

the interpolate of these functions on Th. The estimate of

f ^(uh(x) — A(x)) + (Vuh(x))dx =	 f(x) — A(x)) +

goes the same way than in part 2 above and the result follows.
In the case q < 1, one would get similarly

E2 , Eh < Ch4/(q+i)

Appendix

We would like to prove here an extension Theorem that we have used in Sec-
tion 2. Let 0 be a domain of Ri'. Let w i , ... w1, E Rn, and consider a function A
defined in Q. We have:

THEOREM A.1. Assume that 1 is convex. If A E W l,"O(Q) satisfies

VA(x) E Co(w) a.e. x E 1	 (A.1)

then there exists a Lipschitz continuous function A defined in R' such that:

A=A in 1,

VA(x) E Co(w) a.e. x E R.
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Before proving this theorem, remark that when A satisfies (A.1) then

A(x) — A(x') > A w,.(x — x') dx, x' E Q.
z=1

In the following lemma we would like to establish that conversely:

LEMMA Al. If [1 is a domain of R" and A satisfies

r
A(x) — A(x') > A w;.(x — x') dx, x' E (2

1

then

VA(x) E Co(w) for a.e. x E 11.

Proof. We know that there exists uh E W"°°(Q) (cf. [9]) such that

Uh --3 A uniformly,

Vuh =W , i = 1,...,p.

By extracting eventually a subsequence we have:

VUh —> VA in L°°(Q) weak *.	 (A.2)

Let us now denote by B an arbitrary ball included in Ii. We have

1
BI B Vue(x)dx E Co(w).

On the other hand we have by (A.2)

l o ^ I 4
Vu,(x)dx=

    ^ 1 fVA(x)dx.

Since Co(w) is closed

1 L VA(x)dx E Co(w).
B

Using the Lebesgue differentiation theorem we get

VA(x) E Co(w) a.e. x E Q.

This completes the proof in the lemma.	 •
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We are now able to prove Theorem Al. Define the function A on R 11 by setting

_	 p
A(x) = inf {A(e) — A wi.(e — x)}	 (A.3)

eEQ
i=1

First, let us show that A = A in 0. Let x E Q. It is clear that A(x) < A(x).

Moreover, see Lemma 2.1,

p

Ve E [, A(e) — A(x) > n w i .(e — x)

or

p

Ve E [, A(e) — A w i .(e — x) > A(x)
i=1

i.e.

A(x) > A(x).

Hence

A(x) = A(x) Vx E 0.

Finally we have:

_	 p
Vx, y E Rom, A(x) — A(y) > A wi.(x — y).

Indeed:

_
A(x) = inf {A(e) — A w i .(e — x)}

CEO
i=1

p	 p	 p

= inf {A(e) — 	 wi.(e — y) + n w i .(e — y) — 	 wi.(e — x)}
eE^

Z—i  	 i_i

p

> inf {A(e) — A wi•(e — y)} + A wi.(x — y)
i=i	 i=1

p	 p	 p

(since A w i .(e — y) — A w i .(e — x) > A w i .(x — y))
i=1	 i-1	 =1

_
= A(y) + A wi • (x — y)

i=1

Taking y E .7 this shows in particular that the infimum in (A.3) is finite. Moreover,
by Lemma A.1 it follows that:

VA(x) E Co(w) for a.e. x E R"
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This completes the proof of the Theorem Al.
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