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Abstract An analytical model to predict the penetration of adhesives into hard-

wood is proposed. Penetration into hardwood is dominated by the vessel network

which prohibits porous medium approximations. The model considers two scales:

(1) a one dimensional capillary fluid transport of a hardening adhesive through a

single, straight vessel with diffusion of solvent through the walls of the vessel; and

(2) a mesoscopic scale based on topological characteristics of the vessel network.

Given an initial amount of adhesive and applied bonding pressure, the portion of the

filled structure could be calculated. The model was applied to beech samples joined

with three different types of adhesive (PUR, UF, PVAc) under various growth ring

angles as described by Hass et al. (2011). The model contains one free parameter

that can be adjusted in order to fit the experimental data.

List of symbols

Adhesive parameters
gg Viscosity of the fluid without any hardening process (mPa s)

c Viscosity parameter fit with experiments (no units)

a Viscosity parameter fit with experiments (s-1)

b Viscosity parameter fit with experiments ([C]-1)

g Viscosity of the adhesive (mPa s)

a1 Viscosity parameter fit with experiments (s-1)

b2 Viscosity parameter fit with experiments (no units)

c1 Viscosity parameter fit with experiments (s)

d1 Viscosity parameter fit with experiments (mPa s2)

r Surface tension (N/m)
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hc Contact angle between adhesive and cell walls (�)

Wood structure parameters
R Radius of the vessels (m)

K Wave number for the single wavy vessels (m-1)

N = a/4 Amplitude of the wavy vessel (m)

k Wavelength for the single wavy vessels (m)

A Vessel cross section (m2)

Vu Volume of a single unit cell (m3)

xT,R,L Tangential, radial, and longitudinal coordinates (m)

sb Path along one radial wave (m)

stotal Total path along the network radial wave (m)

LT,R,L Tangential, radial, and longitudinal lengths of the sample (m)

NuL,uR,uT Number of unit cells along the longitudinal, radial, and tangential

directions (no units)

NuLf,uRf,uTf Number of unit cells on the RT, LT, and RL planes (no units)

Nv Number of vessels in the plane R–T (no units)

a Maximum distance between two consecutive vessels (m)

b Wavelength of the vessels (m)

c Maximum distance between two consecutive radial waviness (m)

d Wavelength of the radial waviness (m)

gT,R 1 ? (a2 p2/16 b2), 1 ? (c2 p2/8d2) (no units)

h Deviation angle of the vessels respect to the long. axis (�)

w Growth ring angle (�)

Process parameters
t Time (s)

x, y, z Local coordinate system for a single vessel description (m)

R, h, z Cylindrical coordinate system for a single vessel description (m, �, m)

X, Y, Z Global coordinate system (m)

L, R, T Body fixed coordinate system (m)

l Penetrated distance inside a single cylindrical vessel (m)

lv Height of the single wavy vessels (m)

dL,R,T Maximum penetration depths in the longitudinal, radial, and tangential

directions (m)

dLh,Rh,Th Maximum penetration depths in the longitudinal, radial, and tangential

directions with hardening process (m)

dV Maximum penetration depth for volume limiting factor (m)

dh Maximum penetration depth for hardening process limiting factor (m)

d Penetration vector in the system (R–T–L) (m)

DL,R,T Tangential, longitudinal, and radial components of the penetration vector

(m)

V = Vp Volume of adhesive inside a single vessel (m3)

VT Total volume of adhesive inside the network (m3)

C, C0 Concentration, initial concentration of the solvent [C]

N0 Initial amount of solvent (m3)
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D Diffusivity of the solvent through cell walls (m2/s)

PA Applied pressure to the adhesive (Pa)

M Rotation matrix (no units)

Introduction

The most important principle in timber engineering when producing structural wood

components of constant quality consists of cutting wood into smaller pieces,

selecting the best ones, and joining them again by adhesive bonds. What is known as

a rather simple processing step becomes quite complicated, once it is studied in

detail as the penetration of the hardening adhesive into the porous wood skeleton.

The details of the adhesive penetration can influence bond performance in multiple

ways what determines the overall performance of structural parts (Marra 1992;

Custodio et al. 2009). Among other parameters, the interplay between pore space

geometry and fluid transport, cell wall material and adhesive rheology and, of

course, process parameters like amount of adhesive, growth ring orientation, and

surface roughness, strongly influence studies on adhesive penetration (Kamke and

Lee 2007). While for softwood predictions are rather simple, the microstructure of

hardwoods complicates the problem significantly, since adhesives can penetrate

through the big vessel network deeply into the wood structure (Siau 1984). While

the topological characteristics of the vessel network in beech has been quantified by

Hass et al. (2010), the authors showed in Hass et al. (2011) how the problem is

dominated by the flow through the vessel network.

In the past, adhesive penetration into wood was studied experimentally or in

descriptive form, e.g., by Wang and Yan (2005), Kamke and Lee (2007), Sernek

et al. (1999), Niemz et al. (2004) and Collett (1972). For softwood, the penetration

depth can be expressed by a simple trigonometric function describing the filling of

cut tracheids (Suchsland 1958).

In this manuscript, an analytical model, based on typical network properties is

derived to predict adhesive penetration and saturation of the vessel pore space. The

model has two scales: the first scale describes the transport of a hardening adhesive

through a single vessel in time due to an applied pressure and capillary effects. It

also includes the possibility of a constant diffusion of solvent (water) through the

vessel wall, which is an important process for some adhesives like PVAc or UF

resins. When the viscosity increases by hardening and/or loss of solvent (water), the

adhesive front slows down and finally stops. On the second (network) scale, the

results for single vessels are embedded into a network model with characteristic

topological properties like pore size distribution and connectivity taken from Hass

et al. (2011). First, the rheological models of the adhesives are described, followed

by the calculation of the penetration into a single vessel with solvent diffusion into

the cellular structure through vessel walls. Subsequently, the network construction

and the considered process parameters are discussed. With all these model

components available, the model is compared to experiments where specimens are
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bonded with parallel longitudinal axes under variation of the growth ring angles

using three different adhesive systems (PUR, UF, and PVAc).

Description of the model

Adhesive penetration is the result of the interplay of adhesive hardening, capillary

penetration, and technological processing. In order to set up a model for adhesive

penetration into hardwood, several models have to be combined in a hierarchical

way. First, the evolution of the bulk viscosity of adhesives due to generic hardening

mechanisms is addressed. On the fundamental level, the penetration of a fluid into

one single, straight or wavy pipe is modeled. The model is enriched by diffusive

transport of the solvent through the wall of the vessels. On the next hierarchic level,

the fundamental model is applied to a network structure of perfectly aligned

hardwood that represents the vessel network. Finally, the result of the vessel

network penetration is rotated in order to consider the general situation, where the

adhesive surface is not necessarily aligned to the material orientation. In a

parametric study, it is also shown that material parameters like porosity, hardening

time or applied amount of adhesive limit penetration.

Modeling the hardening process

The solidification process of various adhesives can be described by the increase of

the viscosity g with time t. Depending on the type of reaction during solidification,

different viscosity models need to be applied. For example, reactive adhesives do

not depend on the solvent concentration, while the viscosity increase of solvent-

based adhesives strongly depends on solvent concentration C. Hass et al. (2011)

reported on experimental viscosity measurements for UF, PVAc, and PUR. If the

solvent concentration is important, like in the case of PVAc, the viscosity evolution

can be expressed by

gðC; tÞ ¼ ggðCÞ½1þ cðCÞ expðaðCÞtÞ� expðb½1� C�Þ; ð1Þ

where c, a, and b are parameters that depend on the adhesive type and the initial

solvent concentration, and gg denotes the viscosity of the fluid without hardening.

For PVAc c = a = 0, since the solidification process is caused by the loss of

moisture, and since the initial viscosity only depends on the initial concentration.

For PUR adhesives, the same expression can be used, however, the concentration is

kept constant during the process, expressed by b = 0. In this case, gg, c, and a only

depend on the initial concentration.

Unfortunately, hardening adhesives cannot be described by Eq. 1, since their

hardening process is more complex. For example, the UF adhesive changes from

liquid phase to gel phase during penetration, resulting in penetration arrest. The only

active processes after this phase transition are the chemical curing reactions.

Therefore, the viscosity model should take into account the critical time when the

phase transition occurs. Additionally, the concentration of the solvent (water)
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changes with time due to the diffusion of the solvent into the cell wood structure. In

order to describe these effects, the following viscosity relation is proposed:

gUFðC; tÞ ¼ d1

exp b2 1� exp � a1

t

� �� �� �

c1 � t
; ð2Þ

where a1, b2, c1, and d1 are experimental parameters. Using the data from Hass et al.

(2011) d1 = 7.0 9 104 mPa s2 and a1 = 1.05 9 104 s were found, while the two

variable parameters b2 and c1 depend on the initial solvent concentration. c1

describes the time when the penetration process finishes due to the liquid-gel

transition. Using these two generic hardening models, the viscosity evolution of

numerous adhesives can be described.

Penetration into single vessels

The fundamental scale is given by the capillary transport of a fluid characterized by

its viscosity g, inside a straight single vessel of radius R (Washburn 1921) with a

penetration rate dl/dt that follows

dl

dt
¼ l

8gl
R2; ð3Þ

where l = PA ? 2r cos(hc)/R with the applied pressure PA, the surface tension r
and the contact angle between fluid and pipe wall hc. The penetration distance l(t) is

obtained by integration

lðtÞ ¼ R

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
Z t

0

1

gðtÞ dt

s

; ð4Þ

leading to a total fluid volume of Vp = pR2l(t) inside the pipe. For reactive adhe-

sives, whose hardening behavior only depends on time, the integral can be found by

combining Eqs. 1 and 4 to

lðtÞ ¼ R

2

ffiffiffi
l
p at � logð1þ c expðatÞÞ

agg expðbð1� CÞÞ

 !1
2

: ð5Þ

In this way, the time-dependent penetration distance in one single straight vessel

is obtained taking into account the applied pressure, the capillarity effects, and the

reactive hardening process. In fact, due to surface roughness, mechanical and hygric

responses of the cellular structure, the applied pressure does not necessarily have to

be equal to the pressure on the adhesive. However, for simplicity this is not taken

into account in this model. Additionally, for adhesives, whose viscosity changes

during contact with wood, Eq. 4 cannot be integrated so easily, since the viscosity

also depends on the concentration that changes with time. Changes of the contact

angle and the surface tension of the adhesives with different solvent concentration

are not considered in this work.

Since hardwood vessels are not straight, but weave tangentially around the rays,

the penetration distance in L-direction needs to be modified. One possibility is to
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calculate the volume of a wavy vessel and compare it to the volume occupied by the

adhesive in the straight one. To calculate the volume of the vessels by the radius R,

wavelength k, and amplitude n (see Fig. 1) of the oscillation in the z–y-plane, the

following parameterized form is proposed to describe the cross section of the vessel

in the x–y-plane:

x2 þ ½y� n cosðkzÞ�2

sec2½arctanðnk sinðkzÞÞ� ¼ R2; ð6Þ

where the wave number is k = 2p/k. By integrating the vessel area along the z
direction, the volume is obtained as

VðlvÞ ¼
Zlv

0

pR2 sec½arctanðnk sinðkzÞÞ�dz

’pR2lv 1þ n2k2

4
1þ sinð2klvÞ

2klv

� �� �
;

ð7Þ

with the vessel height lv. Therefore, by comparing the volumes of the straight and

the wavy vessels the correction for the penetrated distance is given by

lðtÞ ¼ lvðtÞ 1þ n2k2

4
1þ sinð2klvÞ

2klv

� �� �
: ð8Þ

Fig. 1 left Single vessel geometry with radius R, amplitude n = a/4 and vessel wavelength k = b. right
Vessel network of size LT, R, L, and the unit cell that can reproduce the whole network. The network
geometry is described by the parameter a for the distance between two consecutive vessels, the vessel
wavelength b = k and radial wavelength d, as well as the distance between consecutive layers c. Vessels
are described in x, y, z coordinates, the network in T, R, L coordinates, while the global coordinate system
is X, Y, Z
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Viscosity increase by diffusion

Various adhesives contain solvents like water, whose concentration C in the mixture

changes with time due to their diffusion into the cellular structure through vessel

walls. To take this effect into account, the solution of the diffusion equation in

cylindrical z–r–h coordinates can be written as

Cðr; h; tÞ ¼ N0

4pDt
exp � r2

4Dt

� �
; ð9Þ

with the initial amount of solvent N0 and the diffusivity D. To apply this equation to

the case of the study, one needs to distinguish between two phenomena: the evo-

lution of the concentration inside the mixture, and the diffusion into the cellular

structure through vessel walls. For simplicity, the first one is neglected. Therefore,

the concentration of the solvent inside the mixture is considered to be always

homogeneous, and the mixture to loose only solvent through the vessel walls. The

mean value for the solvent concentration inside the vessel is taken as

C ¼ 1

pR2

Z2p

0

ZR

0

Cðr; h; tÞrdrdh ¼ C0 1� exp � R2

4Dt

� �� �
: ð10Þ

Now D is just the diffusivity of the solvent into the cell structure and C0 = N0/pR2

is the mean value of the initial concentration inside the vessel.

To obtain the overall equation for the evolution of the viscosity, the

concentration evolution C is inserted into the respective concentration dependent

parameters in Eq. 1. The diffusion of low molar mass portions of the adhesive is not

taken into consideration here. Also, the effect of swelling of the wood skeleton due

to moisture changes is neglected, since the size of vessels is rather big compared to

the size of the tracheids.

Penetration into the network

The adhesive penetration is dominated by the flow inside the vessel network, hence

its topology determines the adhesive distribution. The network is formed by bundles

of vessels that weave around rays of various sizes. Inside the bundle, vessels

interconnect by contact zones when touching each other (Hass et al. 2010; Bosshard

and Kucera 1973). Disorder in the network can only be considered through a

numerical approach. Consequently for an analytical model, average topological

network parameters have to be used neglecting possible disorder. For this study, a

regular network with the average topological parameters a and b for the

connectivity in tangential directions and c, d for the connectivity in radial direction

is established. Figure 1 shows the vessel network in three dimensions with the

geometrical parameters a, b, c, and d. The two parameters a and b can be obtained

from the size distribution of big and middle-sized rays that are mainly responsible

for the splitting and joining of the bundles of vessels. The parameters c and d,
however are more difficult to obtain. Basically, the probability for radial network
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interconnections depends on the vessel density, which is defined by the number of

vessels per unit of area in the R–T plane. It is therefore possible to find a relation

between the vessel density and the parameters c and d. Unfortunately, only c can be

obtained experimentally via the porosity. However, it can be assumed that c � d,

which can be interpreted as a significantly lower probability of interconnection in

radial than in tangential direction. To obtain the structure parameter d, one has to fit

one experimental penetration depth. Note that the parameter d is then constant for

all other penetration process into wood of the same species. However, the sensitivity

of d on the results proved to be rather small in the case of this study. By separating

the two geometric parameter sets a, b and c, d, a measure for the anisotropic

transport in the three principal directions, L, R, T can be obtained (see Fig. 1).

Inclined samples with respect to the principal axis can be considered after rotation.

The model is also based on the assumption that the adhesive can move from one

vessel to the other one at the connecting points without restriction, which means that

there is no cell wall in between at the connection points. A cell wall would decrease

or even hinder a free flow of the adhesive; or only part of the adhesive, mainly with

smaller molar mass, like water or solvents or low molar mass species in the

adhesive, might migrate from one vessel to the other one. Therefore, for simplicity

and to obtain an analytical model, the cell wall is not considered in the present

approach.

To describe the penetration process of adhesives into wood, the bond line has to

be defined following Kamke and Lee (2007) as the whole region, where the

adhesive can be found. This includes (1) the pure adhesive layer between the two

adherents, and (2) the area, where the adhesive has penetrated into the wood

structure (interphase). The adherents are the two pieces of wood, which have been

connected by the adhesive. In the case reported here, the focus will be put on the

zone where the adhesive layer and the adherent structure coexist. The procedure to

obtain the maximum penetration depth includes the calculation of the penetration

separately in each principal direction (L, R, T) followed by the application of a

rotation matrix to find the total penetration depth of the adhesive when the growth

ring angle and the angle between the vertical axis and the longitudinal axis of

specimen differs from zero.

Due to the choice of a regular network, a unit cell consisting of two single vessels

with interconnections in the vertices and the center of the cell can be used (see

Fig. 1). Consequently, Eq. 7 for single vessels with wave number k = 2p/b,

amplitude n = a/4, and length lv = b can be used to obtain the volume of the unit

cell

Vu ¼ 2AbgT ; and gT ¼ 1þ a2p2

16b2
ð11Þ

with the area A = pR2. Because the unit cell can reproduce the whole network, it

can be used to simplify the calculation of the penetration depth in each direction

and, using geometric properties, the adhesive volume within the network, the

network parameters and the penetration depth can be calculated.
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Penetration in tangential direction

In order to consider the penetration in tangential direction (see Fig. 2), additionally

to the tangential waviness with the wavelength b and the amplitude a/4, the radial

waviness with the amplitude c/4 and the wavelength d have to be considered.

Figure 2 illustrates, how the vessel network is filled by the adhesive. The path along

one radial wave (one layer) sb (xT) as a function of the tangential coordinate xT can

be calculated by integrating

sb ¼
ZxT

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2c2

4d2
cos2

2px

d

� �s

dx: ð12Þ

Due to the approximation c � d, Eq. 12 can be written as

Fig. 2 Adhesive penetration into the vessel network with respective depths in tangential (dT), radial (dR),
and longitudinal (dL) directions. Thick lines represent filled vessels
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sb ’
ZxT

0

1þ p2c2

8d2
cos2 2px

d

� �� �
dx; ð13Þ

which gives

sb ¼ xT 1þ 1

2
gR � 1ð Þ 1þ d

4pxT
sin

4pxT

d

� �� �� �
with gR ¼ 1þ c2p2

8d2
: ð14Þ

The number of layers accessible from the bond line is defined by 2LR/c with LR as

sample width. Summing sb over all accessible layers gives the total penetrated

length stotal as a function of xT

stotal ¼
2LR

c
sbðxTÞ: ð15Þ

In order to obtain the total penetrated volume VT, the number of unit cells NuT

along stotal and in longitudinal sample direction L have to be calculated, leading to

NuT = stotal LL/ab, and have to be multiplied by the unit cell volume described by

Eq. 11, namely

VTðxTÞ ¼ NuTVu: ð16Þ
If the penetration of the adhesive is smaller than the total radial wavelength d,

d sin(4p x/d)/4px & 1, and by using Eqs. 11 and 15, VT can be expressed as

VTðxTÞ ¼ xT
4A

ac
LRLLgT gR: ð17Þ

When the adhesive stops to penetrate, this volume becomes the maximum

volume V inside the structure and the tangential coordinate xT transforms into the

maximum penetration depth dT,

dT ¼
Vac

4ALRLLgT gR
: ð18Þ

Penetration in radial direction

Following the idea of calculating the adhesive penetration in each principal

direction, the next step is to obtain the penetration depth dR when the adhesive

penetrates only in radial direction (see Fig. 2). Analogously, the volume occupied

by vessels can be counted as a function of the radial coordinate xR. Again the total

length stotal of the radial wave is calculated, but now as a function of xR by stotal = 2

xR/c sb(LT). The number of unit cells can be obtained as

NuRðxRÞ ¼
2xR

c

sbðLTÞ
a

LL

b
: ð19Þ

The total volume occupied is given by multiplying the number of unit cells NuR

(Eq. 19) by the volume Vu from Eq. 11, leading to
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VTðxRÞ ¼ VuNuR ¼ xR
4A

ac
LLsbðLTÞgT : ð20Þ

As before, VT (xR) with the volume occupied by the adhesive V must now be

compared with the maximum penetration depth in the radial direction xR = dR in

order to obtain

V ¼ dR
4A

ac
LLsbðLTÞgT ; and dR ¼

Vac

4ALLsbðLTÞgT
: ð21Þ

Finally, the penetration path sb from Eq. 14 can be inserted to obtain

dR ¼
Vac

4ALLLT 1þ 1
2

gR � 1ð Þ 1þ d sin
4pLT

dð Þ
4pLT

� �� �
gT

: ð22Þ

Penetration in longitudinal direction

Figure 2 shows that the adhesive basically penetrates along the vessels when subject

to longitudinal penetration. This value again can be calculated using the number of

total unit cells in the plane TR

NuL ¼
2LR

c

sbðLxÞ
a

: ð23Þ

Multiplying NuL with the occupied volume V(xL) of the adhesive for each vessel

as a function of xL (Eq. 7), and taking into account that the penetration xL � b, b
sin(4pxL/b)/4pxL & 1, one obtains

VTðxLÞ ¼ xL
4A

ac
LRsbðLTÞ 2gT � 1ð Þ: ð24Þ

By comparing this volume with the adhesive volume (Eq. 14), the maximum

penetration depth dL can again be expressed as

dL ¼
Vac

4ALRLT 1þ 1
2

gR � 1ð Þ 1þ d sin
4pLT

dð Þ
4pLT

� �� �
2gT � 1ð Þ

: ð25Þ

To summarize, the maximum penetration depths in the three principal directions

could be obtained (Eqs. 18, 22, and 25). For practical reasons, expressing dR,L,T in

terms of the porosity is advantageous as it simplifies the model verification. The

porosity e of the wood can be extracted easily from experimental data (Hass et al.

2010). The number of vessels Nv in the RT plane equals Nv = 2NuL (each cell unit

has two vessels). The porosity is therefore

e ¼ NvA

LRLT
¼ 4A

ac
1þ 1

2
gR � 1ð Þ 1þ

d sin 4pLT

d

� �

4pLT

 !" #

: ð26Þ

Considering the length of the sample in the tangential direction LT to be larger

than the radial wavelength d, the periodic part on the right side of Eq. 26 can be

neglected, leading to
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e ¼ 2A

ac
gR þ 1ð Þ: ð27Þ

Inserting e into Eqs. 18, 22, and 25, and using the approximation d � LT, the

maximum penetration depths become

dR ¼
V

eLLLT gT
; dL ¼

V

eLRLT 2gT � 1ð Þ ; dT ¼
V gR þ 1ð Þ

2eLRLLgTgR
: ð28Þ

Limitation due to the total amount of applied adhesive

Up to now, the penetration of an infinite amount of non-hardening fluid was

calculated. However, the amount of applied adhesive and the penetration time due

to hardening are both limited. Therefore, the volume V needs to be calculated

considering these limitations. Both will lead to different penetrated volumes,

however the one resulting in a smaller penetration is the decisive one. To calculate

the penetrated volume, the L, R, T—directions must be treated separately.

For tangential penetration, Eq. 28 is used and only the application of the

adhesive on the RL plane is considered. From there, the adhesive can penetrate into

two channels with radius R per unit cell. Considering the number of unit cells on this

face NuTf = 2LL LR/cb, the penetrated volume after the hardening process, using

Eq. 4, is

VRL ¼ 4Vp
LLLR

cb
; ð29Þ

with Vp = p R2 l(t). Inserting Eq. 29 into Eq. 28 and using Eq. 26, the penetration

depth with hardening dTh can be obtained as

dTh ¼
a

b

lðtÞ
gT gR

: ð30Þ

For the radial penetration, the adhesive can penetrate into four channels with

radius R per unit cell; considering the number of unit cells on this face NuRf = 2LT

LL/db, the penetrated volume is given by,

VLT ¼ 4Vp
LTLL

db
: ð31Þ

Inserting VLT into Eq. 28 and using the approximation d � LT yields

dRh ¼
8

p
a

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

gR � 1ð Þ
q

lðtÞ
gR þ 1ð ÞgT

: ð32Þ

Finally, for the longitudinal penetration, dLh, following a similar procedure, with

NuLf = 2LRLT (gR ? 1)/ac as the number of cell units on this face and the penetrated

volume VRT = 2LRLT(gR ? 1)Vp/ac, the penetration depth becomes

dLh ¼
lðtÞ

2gT � 1ð Þ : ð33Þ
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These values determine the maximum penetration depth that the adhesive can

reach before solidifying. However, it is also possible, that not enough adhesive is

available, and penetration stops before. Using the available adhesive volume V in

Eqs. 28, the penetration depths dR, dT, and dL can be calculated and compared to the

hardening ones (dRh, dTh, dLh), e.g., if dR \ dRh, to obtain the limiting case.

Penetration depth for arbitrary orientations

In order to apply the model to real situations, the deviation of the adhesive

application surface from the wood material system must be considered. Therefore,

the global penetration depth dV and dh must be calculated as a function of dR, dT, dL,

and of dRh, dTh, dLh, respectively. This can be made via a rotation matrix with the

growth ring angle w and the angle h between the vertical axis and the longitudinal

axis of the specimen. Assuming that the adhesive is always applied on the YZ plane,

two rotations in the principal coordinate system are used: one in the radial direction

and the other in the longitudinal direction via the rotation matrix

M ¼
sinðwÞ � cosðhÞ cosðwÞ � cosðwÞ sinðhÞ
cosðwÞ cosðhÞ sinðwÞ sinðhÞ sinðwÞ
0 � sinðhÞ cosðhÞ

0

@

1

A: ð34Þ

It has to be noted that Eq. 28 gives a dependence of the penetration depths on the

application surfaces RT, LT, LR. To consider arbitrary application surfaces, a

penetration vector

d ¼ ðDR;DT ;DLÞ �
V

e
1

gT
;

1
2

gR þ 1ð Þ
gT gR

;
1

2gT � 1

� �
; ð35Þ

is defined in the body fixed coordinate system (LRT) and rotated using the rotation

matrix M to the vector d in global (XYZ) coordinates. The X component gives the

maximum penetration depth dV

dV ¼
DT

Aad

cosðhÞ sinðwÞ þ DL

Aad

sinðhÞ sinðwÞ þ DR

Aad

cosðwÞ; ð36Þ

with the area Aad of the surface where the adhesive is applied. The rotation matrix

can be directly applied to the vector dh = (dRh, dTh, dLh) giving

dh ¼ dTh cosðhÞ sinðwÞ þ dLh sinðhÞ sinðwÞ þ dRh cosðwÞ: ð37Þ
With these derivations, the geometric and dynamical description of the model is

completed. The information about the dynamics of the adhesive is included in the

length l(t) according to Eq. 4. Finally, the maximum penetration depth with solvent

diffusion can be calculated using Eq. 37, by replacing the concentration function in

Eq. 1 for the respective adhesives.

To finalize the description of the model, the main underlying geometrical and

physical assumptions and approximations are summarized as follows:

Geometrical approximations mainly address the pore space geometry. The

complicated geometry of hardwoods is idealized as a network composed of wavy
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vessels of identical size and shape. Therefore, porosity is considered to be

homogeneous over the sample. To simplify the trigonometric expressions arising

from the waviness of vessels, a � b and c � d, expressing that the vessel length is

significantly larger than the amplitude of oscillation, and that therefore the

probability of a vessel interconnection in radial direction is very small compared to

the tangential one. For the network, the same approximation is made, namely that

the radial wavelength d is much smaller than the tangential sample length LT. The
physical assumptions made are necessary to formulate an analytically solvable

model and mainly address adhesive properties such as the neglect of solvent

diffusion inside the adhesive leading to a homogeneous viscosity of the adhesive

inside the vessel. Also, the elastic and hygric response of the cellular structure on

pressure and diffusive solvents is neglected for simplicity, and it is considered that

the adhesive can move from one vessel to the other one at the connecting points

without restriction, which means that there is no cell wall in between at the

connection points.

In a next step, the model is applied to experiments described by Hass et al.

(2011).

Application of the model

Using synchrotron radiation, X-ray tomographic microscopy (SRXTM) and digital

image analysis, bond lines can be segmented from tomographic images of beech

samples bonded with PUR, UF, and PVAc adhesives of different viscosity under

growth ring angles ranging from 0� to 90� in 15� steps (Hass et al. 2011). Since the

model described above is periodic, the maximum penetration depths will be

calculated for various situations. Calculation procedure is as follows: First, the

penetration distance l(t) of the adhesive inside a single vessel is calculated. Note that

for PUR the calculation is without time dependence of the concentration using

Eq. 5. Contrary, for PVAc and UF time dependence according to Eq. 10 is inserted

in the calculation. The porosity e and the mean radius of the vessel R are taken from

an earlier SRXTM study (Hass et al. 2010) as R = 28.03 lm and porosity e = 0.34.

For all samples, the average pressure applied was PA = 0.7 MPa (Hass et al. 2011).

According to literature, the surface tension r (Bhattacharya and Ray 2004; Hse

1972; Lee et al. 2007), for the three types of adhesives is not large enough to

compete with the applied pressure term in Eq. 3. This leads to negligible capillarity

effects with the consequences l = PA. The parameters for the viscosity gg, a, b, and

c are taken from Hass et al. (2011).

• For PUR adhesive, the following parameters were chosen: concentration

C0 = 0.71 cm3/gr; gg = 4,911 mPa�s; c = 9.74 9 10-5; a = 0.0028 s-1, and

b = 0. The diffusion of solvent is not relevant. With this set of parameters, the

penetration length for PUR l(t)PUR is calculated using Eq. 5 to

l(t)PUR = 0.304 m. This value is huge compared with the size of the wood

samples, however, it relates to the path along the waving vessels that can easily

reach lengths of 0.5 m and above.
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• In the case of PVAc, the parameters are C0 = 0.49; gg = 0.001859 mPa s;

c = 0; a = 0 s-1; and b = 29.64. The diffusivity of the solvent (water) for the

samples is taken as D = 3.0 9 10-9 m2 s-1 diffusivity (Kurjatko and Kudela

1998; Olek et al. 2005). Using Eq. 4, a significantly lower penetration length

l(t)PVAC = 0.7 mm was found.

• For UF, the viscosity parameters b2 and c1 of Eq. 2, which change with the

solvent concentration, were included in the calculation. The experimental

viscosity data from Hass et al. (2011) were fitted with analytical curves (see

Fig. 3) in order to determine the concentration dependence of the viscosity

parameters b2 and c1. After the identification of the correct values for b2 and c1,

Eq. 4 was integrated, and a vessel penetration depth of l(t)UF = 1.1 mm was

obtained.

The vessel geometry parameters a and b were determined experimentally using

image processing (Hass et al. 2011). For this work, the area and the eccentricity of

segmented rays were measured and averaged over several samples yielding

a = 0.156 mm and b = 1.574 mm. The cylindric samples were 10 mm high with a

diameter of 3 mm, leading to an adhesive area of Aad = 30 mm2. As described in

Hass et al. (2011), the quantity of applied adhesive was around 200 g/mm2 for all

adhesives.

As next step, the maximum penetration depths for samples with different growth

ring w and grain angles h (see Figs. 4 and 5) are compared. The parameter d was

fitted to obtain gR ^ 1, what can be interpreted as a very low probability of

interconnection in radial compared to the tangential direction and by using Eq. 27, a

value for the parameter c = 186.2 lm was obtained.

• For PUR, a sample with angles, w = 50� and h = 3.85� was chosen. Calculating

the maximum penetration depth via Eq. 36 leads to a value of dh = 38.5 mm

with hardening as limiting factor. However, using the volume limitation with

Fig. 3 Dependence of the viscosity parameters b2 and c1 on the water portion for the UF adhesive used.
The dots denote the experimental data and the solid line the exponential fit. Experimental values for UF
are m1 = 4.542, m2 = 0.5379, m3 = 358.3, m4 = 3.482
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Eq. 37, dV = 848 lm is obtained. Therefore, it can be concluded that the entire

applied adhesive penetrated before hardening, leading to a starved bond line (see

Fig. 4). Note that the adhesive penetrates both wood pieces, but significantly

deeper on the application side (right side of samples in Fig. 4). This is a

consequence of capillarity effects since adhesion was only applied on one side.

It seems that the assumption that capillary pressure is much smaller than the

applied pressure does not hold for the utilized PUR pre-polymer. During the

adhesive application no pressure was applied, and therefore, the assumption of

this study that applied pressure is much larger than capillarity forces, in Eq. 3, is

not valid in this initial time interval. Nevertheless, for the case of PUR, where all

the adhesive penetrates into the wood structure, the removal of this does not

change the final result, and an average value of d = 424 lm was used showing

good agreement with the experimental data. In order to test the model for other

orientations (w, h), a sample with w = 1.1� and h = 3.6� was chosen, hence

using the previous calculation but applying a new rotation matrix M. The results

were penetration depth dV = 596 lm, d = 298 lm, and dh = 1.32 mm.

Figure 4 shows the quality of the analytical prediction. Repetition of the

Fig. 4 PUR bond lines in beech samples. The maximum penetration depth predicted by the model for all
samples with growth ring angles w and grain angle h is shown by the white lines

Fig. 5 Bond lines of PVAc and UF adhesive in beech with predicted maximum penetration depth for
samples with the orientation angles w and h. All dimensions are given in lm
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calculation for angles w = 27.9� and h = 3.8� gave the penetration depths

dV = 811 lm, d = 405.5 lm, and dh = 23.6 mm (compare with Fig. 4). These

tests show that the developed model is a good approximation for the beech

structure; under this condition the network parameters a, b, c, and d could be

fixed for further calculations.

• The developed model was also checked concerning the penetration of PVAc

using a sample oriented at angles w = 46.1� and h = 3.4� and calculating the

maximum penetration depths based on Eqs. 36 and 37. The result was

dV = 851 lm, leading to d = 425.5 lm and dh = 80 lm. In this case, the

maximum penetration depth is limited by the solidification process. Figure 5

shows that almost all the adhesive remains in the bond line with only a small

quantity of adhesive inside the vessel network.

• For UF, the same procedure as before was repeated on a sample with orientation

angles w = 37.2� and h = 4.3�, yielding penetration depths dV = 856 lm,

d = 428 lm, and dh = 141 lm. Again the penetration of the adhesive is limited

by adhesive hardening. Figure 5 shows the sample with the predicted

penetration depth, exhibiting excellent agreements between the analytical

prediction and the experimental results.

In order to investigate the dependence of the maximum penetration depth from

the growth ring angle w, w was varied whereas all other parameters were held

constant as in the example described above for UF. Figure 6 shows the two limiting

conditions for the penetration depth. In the case that hardening limits penetration,

the penetration depth increases with the growth ring angle; for the case that the

maximum available volume is the limitation in the penetration, a distinct maximum

at approximately 48� is given. This observation is in agreement with results for

PUR, where also the applied amount of adhesive was the limitation, as proven by

Hass et al. (2011). This result shows that even though the wood anatomy was

simplified to a homogeneous and regular network for the adhesive transport, beech

seems to be well described by the model. For a desired penetration depth, the model

can predict the optimal growth ring angle of the samples.

Fig. 6 Dependence of the penetration depth on the growth ring angle for the two cases of limitation of
the penetration (1) by the hardening reaction (solid line) and (2) by the limited amount of adhesive
applied (dotted line)
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The model can also be used in the design of new adhesives with optimized

properties, like reactivity, if an ideal penetration depth is to be reached. Figure 7

shows the maximum penetration depth for a wide range of the adhesive parameters

m1…4 from Fig. 3. The horizontal planes in Fig. 7 represent the case where all

available adhesive has penetrated into the vessel structure, while the curved surfaces

give the penetration limit due to adhesive hardening. The intersection curve of the

two surfaces separates regions with complete penetration from those, where

penetration is limited by adhesive hardening. Therefore, Fig. 7 allows to choose a

pair of reactivity parameters in order to obtain a desired penetration depth. The

model can also be used to minimize solvent concentration and amount of applied

adhesive for a required penetration depth. Figure 8 illustrates the maximum

penetration depth as a function of the solvent concentration and the total amount of

applied adhesive. The solid lines represent the proportions between solvent

concentration and the total applied volume of adhesive which give the same

penetration depth. Additional information can also be obtained from the model,

when investigating the dependence of the maximum penetration depth on the

porosity giving a decreasing curve when the volume is the limiting factor for the

penetration (Fig. 9 left). This is expected since for smaller porosity, the vessels are

more distant or thinner. For the same amount of adhesive, the penetration distance

therefore increases. However, when the hardening process is the limiting factor, the

penetration depth increases until it reaches a maximum and then it goes back to zero

again. With this last result, the model can be used to predict the penetration for

varying porosity, e.g., over the growth ring.

Discussions and conclusion

An analytical model for the prediction of the penetration depth of adhesives, paints,

or hardening fluids in general into the porous structure of beech was presented. The

Fig. 7 Penetration depth d (mm) as a function of adhesive parameters from Fig. 3 for UF and a growth
ring angle of 45�. The experimentally obtained value for UF is marked by the white dot. (color version
online)
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model is focused on hardwood, where the pore space is formed by a network of

interconnected vessels. The network is characterized by parameters that are related

to the amplitude and the wavelength of the oscillating vessels in tangential and

radial directions and to the porosity of wood originating from the vessel network.

The results from the model calculations were compared to experimental results, and

good agreement for various adhesives was found. The simplified adhesive transport

model can therefore describe well the much more disordered, complex pore space of

beech.

The analytical model considers generic types of adhesive with different

hardening mechanisms. It can be adapted to other fluids by alternative expression

for the viscosity dependence on concentration and time. In the work presented here,

the model was applied to three major types of adhesives (PUR, UF, and PVAc), and

Fig. 8 Penetration depth d (mm) as a function of the solvent proportion and total amount of applied
adhesive for UF and a growth ring angle of 45�. The solid lines represent a certain penetration depth d; the
dashed line divides the surface into two regions, right for the case that the penetration is limited by the
hardening process, and left for the case where the total volume of applied adhesive is the limiting factor.
(color version online)

Fig. 9 Penetration depth d (lm) as a function of the porosity e for UF when the total applied volume
(a) and the hardening process (b) are the limiting factors
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the respective penetration depths were compared. For adhesives, whose solidifica-

tion process depends on the change of concentration, a description for solvent

diffusion inside the beech wood was included. This approach enables the application

of the model for different adhesives like UF and PVAc. Penetration can be limited

by two aspects: (1) the hardening process, stopping the penetration and (2) the total

amount of applied adhesive that was available to penetrate into the vessel network.

By comparing the model with the experimental data it was shown that it is possible

to model the maximum penetration depth for the three different adhesives (PUR,

PVAC, and UF).

The model can be used in a broad range of applications. By determining the

morphological and rheological parameters, it can be applied to a wide range of

wood species and to fluids with various hardening kinetics in order to predict the

penetration depth of these fluids into porous structures with capillarity-dominated

transport conditions. However, in the future, the model will be applied to different

kinds of hardwood species, i.e., ring-porous hardwoods, hardwood that contains

some tyloses in the vessels, in order to make it more realistic and suited to make

quantitative predictions. Additionally, the level of complexity of the adhesive can

be increased as well, and the release of gases during the curing process phenomenon

can be included.
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