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Abstract

The determination of residual dipolar couplings (RDCs) by quantitative J spectroscopy methods such as Heteronu-
clear Single Quantum Correlation with Phase Encoded Coupling (HSQC-PEC) is prone to systematic errors that
may be caused by differential attenuation during the conversion of orthogonal density operator components into
observable terms. The attenuation may be caused by miscalibration of radio-frequency pulses and by relaxation
effects. A simple method is presented that allows one to remove most of these systematic errors without losses in
sensitivity or resolution.

The measurement of one-bond (amide) NH couplings
is an essential step for any biomolecular study carried
out in anisotropic phase. The relatively large dipolar
interaction between the directly bonded nuclei, as well
as comparative ease of measurement, makes them a
convenient source of orientational constraints. There
are now quite a number of different schemes that
can be employed to measure these couplings (Tolman
and Prestegard, 1996a, b; Tjandra et al., 1996; Ot-
tiger et al., 1998; Yang et al., 1999). These methods
may be classified according to whether the coupling
is observed as a difference in line frequencies or in
the manner of a quantitative J experiment (Vuister
and Bax, 1993), where the coupling is encoded in
the signal intensity. In general, quantitative J exper-
iments have the advantage of offering high precision
of measurement, but may suffer from considerable
loss in accuracy if systematic errors are not carefully
controlled. For this reason, these methods are most
commonly used in situations where precision is crit-
ical, for example when protein concentration is low
or when the couplings to be measured are small. We
discuss here a simple method for the suppression of
an important source of systematic error in one partic-
ular quantitative J experiment, the HSQC-PEC experi-
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ment (Heteronuclear Single Quantum Correlation with
Phase-Encoded Couplings) (Tolman and Prestegard,
1996b). The underlying principles are however quite
general and should be applicable to a wide range of
experiments.

The new method is conceptually based on a
constant-time HSQC experiment in which effective
N-HN couplings (herein the effective couplings are de-
fined as JNH + 〈DNH〉) are allowed to evolve for the
entire constant-time period T. Following this interval,
two orthogonal density operator components, 2NYHZ
and NX, that result from evolution under the N-HN

coupling are converted into observable proton mag-
netization. In effect, the couplings are encoded in the
phases of the corresponding observed proton signals.
As one might expect, systematic errors will arise if
the conversion of these two ‘quadrature’ components
of the density operator (cosine and sine-modulated
according to the evolution under the effective cou-
pling during the time T) into proton magnetization
is attenuated in different ways by pulse imperfec-
tions and relaxation. Such errors indeed commonly
occur, but can be largely suppressed by using two
complementary experiments as will be shown in this
communication.

The pulse sequence for the HSQC-PEC experiment
is shown in Figure 1. At the end of the constant-time
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Figure 1. Pulse sequence used for the measurement of effective couplings JNH + 〈DNH〉. Thin and thick rectangles correspond to π/2 or
π pulses, whereas the shaped pulses at the proton frequency represent 1.2 ms selective 90◦ Gaussian pulses applied to the water resonance.
Gradients, labeled g1–g4, were all sine-shaped z-gradient pulses of 1 ms duration with strengths of 7.5, 10, 11, and 23.6 G/cm, respectively.
Each interval � represents a delay of 2.6 ms (≈ 1/4JNH). The constant time delay was either T = 64.516 ms (T = nA/Jnominal with nA = 6
and Jnominal = 93 Hz) or T = 69.892 ms (T = nB/Jnominal with nB = 6.5). A 4-step phase cycling scheme was employed for each acquired
signal: φ1 = {x, x, x, x}, φ2 = {x, y, −x, −y}, φ3 = {x, x, x, x} and φRec = {x, −x, x, −x}. Furthermore, for each t1 increment, 4 signals
were acquired and stored separately employing the phases φ1 = {x, y, x, y} and φ3 = {x, x, −x, −x} as shown in Table 1. Axial peaks were
moved to the edge of the spectrum by simultaneous inversion of the receiver phase φRec and the phase φ1 on alternate t1 increments (Marion
et al., 1989).

period T, i.e., at time point ta, the density operator
comprises nitrogen coherences 2NYHZ and NX that
are anti-phase and in-phase with respect to the at-
tached proton, and that are both cosine-modulated by
the nitrogen chemical shift as a function of t1. Corre-
sponding sine-modulated quadrature components also
exist, but are omitted here because their theoretical
treatment is identical. Conversion of the components
of interest, 2NYHZ and NX, into observable magneti-
zation is summarized in Equation 1 below for the case
in which the phases are φ1 = φ3 = x.

σ (ta) = 2NYHZcos(ωNt1)cos(πJNH(T)

−NXcos(ωNt1)sin(πJNHT),

σ (tb) = HYcos(ωNt1)cos(πJNHT)

−2NYHZcos(ωNt1)sin(πJNH(T)

σ (tc) = HZcos(ωNt1)cos(πJNHT)

+HXcos(ωNt1)sin(πJNH(T),

σ (td) = HYcos(ωNt1)cos(πJNHT)

+HXcos(ωNt1)sin(πJNHT).

(1)

As can be seen in Equation 1, the scheme em-
ployed to preserve both terms is reminiscent of com-
monly employed sensitivity enhancement schemes
(Palmer et al., 1991; Kay et al., 1992). From Equa-
tion 1 it is clear that the observed proton signals
will exhibit a phase that is proportional to the JNH

coupling. In order to separate these signals into com-
plementary amplitude-modulated components, as well
as to achieve quadrature in t1, four signals are recorded
for each increment of the evolution time t1. Signals are

then pairwise added and subtracted in order to produce
two different spectra with signal intensities that are
modulated in amplitude by the coupling of interest, as
described in Tables 1 and 2.

In this communication, we are concerned with
errors introduced by an imperfect conversion of the
terms 2NYHZ and NX (present at time ta) into observ-
able terms HY and HX (at time td) respectively. The
attenuation of these two pathways due to relaxation
will not in general be the same. As previously reported
(Tolman and Prestegard, 1996b), the differential atten-
uation of the coherences that occur during the interval
4� between times ta and td due to relaxation effects
is related to the difference between the rates of longi-
tudinal proton and transverse nitrogen relaxation, the
latter being defined as the average between the relax-
ation rates of the anti-phase and in-phase coherences
2NYHZ and NX:

ζrelax (NX → HX)

ζrelax (2NYHZ → HY)
= exp

{
2�

(
RH

1 − RN
2

)}
. (2)

The functions ζrelax represent the fractions of the
coherences remaining after consideration of relax-
ation effects, so that ζrelax = 1 if relaxation can be
neglected.

Imperfections in either the 1H or 15N pulse widths
will also affect the two components unequally. Denot-
ing the effects of pulse imperfections using factors f,
where f = 1 corresponds to perfectly calibrated pulses,
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Table 1. Acquisition of four complementary signals, each modulated differently by the
heteronuclear coupling constant and by the 15N chemical shift, is achieved by stepping
the phases φ1 and φ3

FID number φ1 φ3 HY HX

1 x x cos(ωNt1)cos(πJNHT) cos(ωNt1)sin(πJNHT)

2 y x − sin(ωNt1)cos(πJNHT) − sin(ωNt1)sin(πJNHT)

3 x −x cos(ωNt1)cos(πJNHT) − cos(ωNt1)sin(πJNHT)

4 y −x − sin(ωNt1)cos(πJNHT) sin(ωNt1)sin(πJNHT)

Table 2. Post-processing scheme used to recombine the four signals acquired for each
t1 increment in order to form two separate datasets, each modulated as a sine or cosine
function of the effective coupling JNH + 〈DNH〉

FID combinations Resulting signal 2D spectrum modulated by

1+3 HY cos(ωNt1)cos(πJNHT)
}

cos(πJNHT)
2+4 −HY sin(ωNt1)cos(πJNHT)

1−3 HX cos(ωNt1)sin(πJNHT)
}

sin(πJNHT)
2−4 −HX sin(ωNt1)sin(πJNHT)

the resulting effect on the ratio of the two pathways
can be expressed approximately in the form

ζRF (NX → HX)

ζRF (2NYHZ → HY)
= cos (π (1 − fH ))

cos (π (1 − fN))
. (3)

How this differential attenuation propagates into a
systematic error depends strongly on the magnitude
of the effective N-H couplings and the choice of the
duration T of the constant-time period. The interval
T is typically chosen to be T = n/Jnominal

NH , where n
is an integer chosen such that a ‘nominal’ coupling
constant will lead to a signal with a maximum 2NYHZ
(cosine-modulated) component and a vanishing NX
(sine-modulated) component at time ta. Couplings that
are larger or smaller than this ‘nominal’ coupling will
lead to conversion of a portion of the coherence into
the sine modulated component with either a positive or
negative coefficient. The choice of n (and hence T) is
governed by a compromise between relaxation and the
desired resolution. Greater resolution, and thus greater
accuracy of determination of the effective N-H cou-
plings, may be achieved by allowing more revolutions
of coupling evolution to proceed, i.e., by choosing a
larger value of n. This has the effect of amplifying
small differences in couplings as the phase increases
linearly with T. Note that for a wide frequency dis-
tribution of couplings, large values of n may lead to
aliasing of the couplings.

The effect of these systematic errors on measured
couplings is described in Figure 2. If the coupling
is larger than the nominal coupling, �J = Jtrue −
Jnominal > 0, the precessing coherence will acquire
an additional phase angle �φA = π�JT relative to
that expected for the nominal coupling, represented by
the departure of the solid vector A from the 〈2NYHZ〉
axis towards the −〈NX〉 axis. However, due to re-
laxation or radio-frequency pulse miscalibration, the
components may be attenuated to a different extent
during their conversion into observable proton mag-
netization. This is indicated by the dashed vector A in
Figure 2a, based on the assumption of an attenuation
factor ζ(NX→HX) = 0.8 for the vertical component
and an attenuation factor ζ(2NYHZ→HY) = 0.95 for
the horizontal component. In this case the apparent
phase �φA gives an underestimate of the true cou-
pling. The specific case shown in Figure 2a can be
generalised to a distribution of couplings in Figure 2b
using Equation 4.

Japp = Jnominal
(4)

+ 1

πT
tan−1

(
ζ (NX → HX)

ζ (2NYHZ → HY)
tan �φA

)
.

The systematic error is described approximately
by a sine function of the difference �J between the
true coupling and the nominal coupling. For typ-
ical attenuation factors of ζ(NX→HX) = 0.8 and
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Figure 2. (a) Evolution under the N-H coupling Hamiltonian leads
to a precession (assumed counterclockwise although in actual fact
JNH is negative) in a two-dimensional space spanned by {2NYHZ,
NX} with cosine and sine coefficients. This precession proceeds for
a constant time T, which is the time required for precession under a
nominal coupling to complete nA = 6 half-cycles. The solid vector
labelled A thus represents precession under an effective coupling
that is larger than the nominal coupling, and has precessed through
more than 6 half-cycles. The resulting phase angle �φA is propor-
tional to the deviation �J of the true coupling from the nominal
value. The angle �φA can be determined from observation of both
of the 〈2NYHZ〉 and 〈NX〉 components. In practice, however, the
conversion of these components into observable transverse proton
magnetization is subject to potentially different attenuating factors,
leading to an error in the apparent coupling. The dashed vector is
obtained for an attenuation factor ζ(NX→HX) = 0.8 of the vertical
sine component and an attenuation factor ζ(2NYHZ→HY) = 0.95
of the horizontal cosine component. Under these conditions, the ap-
parent phase angle will lead to an underestimate of �φA, and hence
to an underestimate of the magnitude of the coupling. However, if
a second measurement is performed, in which precession (at the
nominal coupling frequency) is allowed for an additional quarter
cycle (nB = 6.5) and subject to the same attenuation factors, it is
seen that the apparent phase angle of the vector B will now lead to an
overestimate of the true value �φB. The error propagated into the
measurement depends on the difference �J between the true cou-
pling and the nominal coupling. This is shown in (b) using the same
attenuation factors ζ(NX→HX) = 0.8 and ζ(2NYHZ→HY) = 0.95.
It is seen that the error may be considerably reduced by averaging
the results obtained in case A with those obtained in case B (i.e.,
from experiments performed with nA = 6 and nB = 6.5).

ζ(2NYHZ→HY) = 0.95 as shown in Figure 2, the
predicted systematic errors in the apparent couplings
range between +0.4 and −0.4 Hz if |Jtrue − Jnominal| <

15 Hz. This magnitude will of course vary according
to the system studied and the accuracy of the pulse
widths.

It is possible to cancel these systematic errors
almost completely by performing a complementary
experiment. This is done by repeating the experiment
identically except that the angle of precession is in-
creased by π/2 (nB = nA + 0.5). Note that for even
n, the coefficient cos(πJnominal

NH T) = +1, while for odd
n this factor is −1, since the precession illustrated in
Figure 2a undergoes n half-cycles. Now for an exper-
iment performed with a half-integral value of n, we
expect that a coupling at the nominal frequency will
lead to a maximum NX component and a vanishing
2NYHZ component. This is illustrated in Figure 2a,
for an experiment with nB = 6.5, with the solid vector
B. The same attenuation factors now result in an over-
estimate in the phase �φB, as shown by the dashed
vector. The result is that couplings that have been un-
derestimated in experiment A are now overestimated
in the complementary experiment B to nearly the same
extent. Averaging of the two measurements leads to
a significant reduction in the error, as shown by the
solid curve in Figure 2b. Although the compensation
of the systematic error is not perfect, it is seen that
in this case, the error may be reduced to less than
0.03 Hz for |�J| < 15 Hz. We refer to this approach
as HSQC-PEC2, for Heteronuclear Single Quantum
Correlation with Phase Encoded Couplings and Partial
Error Compensation.

One bond N-HN couplings were measured us-
ing the HSQC-PEC2 experiment at a field of 14.1 T
for Ubiquitin dissolved in an approximately 4.5% bi-
celle solution (30:10:1 DMPC:DHPC:TTAB). Four
datasets were acquired in two complementary pairs,
with the constant time delay T chosen to be 64.516 or
69.892 ms. The two properly calibrated experiments
correspond to the experiments A and B of Figure 2, in
which a nominal coupling of 93 Hz leads to nA = 6
and nB = 6.5 half-cycles of precession, respectively.
For each of these two-dimensional datasets, 64 × 1024
complex points were acquired, with spectral widths
of 1800 and 8000 Hz respectively, in the 15N and 1H
dimensions. An additional pair of datasets (labelled A′
and B′) was acquired under identical conditions with
the exception that all 15N pulse widths were deliber-
ately misset to 85% of their optimum value. Figure 3
illustrates dramatically the errors that can arise when
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Figure 3. Experimental illustration of the systematic error in-
troduced by differential attenuation of cosine (2NYHZ) and
sine-modulated (NX) contributions to the signals. The horizontal
axis represents the deviation in the apparent coupling from the nom-
inal coupling (Jnom = 93 Hz), determined from the average of
two measurements made with all experimental parameters properly
optimized (datasets A and B). The vertical axis represents the er-
rors introduced primarily by miscalibration of the 15N pulse widths.
Each filled circle represents the difference between a coupling mea-
sured in the ‘bad’ dataset A′ (nA = 6) and the coupling obtained
from the average between the two ‘good’ datasets, A and B. Anal-
ogously, errors in the ‘bad’ dataset B′ (nB = 6.5) are represented
by open squares. For reference, the dashed lines have been added
to show the theoretical dependence of the systematic error on the
deviation �J of the coupling from its nominal value.

cosine (2NYHZ) and sine (NX) components are at-
tenuated differentially by miscalibrated pulses. The
horizontal axis in Figure 3 corresponds to the best
estimates of the couplings determined by averaging
of sets A and B, acquired using properly calibrated
pulse widths. The vertical axis represents the poor es-
timates taken from the miscalibrated experiments A′
and B′. As expected from Figure 2, the errors approx-
imately follow a sine function of the deviation of J
from Jnominal. This is demonstrated by superimposing
the theoretical sinusoidal error curves of Figure 2 on
the datapoints of Figure 3. The location of the nulls
in the error curve depend solely on the choice of the
duration of the constant-time evolution period T, how-
ever the amplitude of the errors depend on several
factors. Parameters such as the rates of chemical ex-
change and relaxation, and the tilt of the effective RF
field will vary from residue to residue. If these para-
meters are assumed to be constant, one would expect
simple sinusoidal error curves as indicated by dashed
lines in Figure 3. Deviations from the dashed error
curves can be ascribed to residue to residue variations
in attenuation factors.

Figure 4. Correlation of the measurements obtained from an aver-
age of the apparent couplings of the two ‘good’ datasets (A and B)
and those obtained from an average of the two ‘bad’ (miscalibrated)
datasets (A′ and B′).

An analysis similar to that shown in Figure 3, using
the best datasets A and B, indicated that errors were
limited to less than 0.1 Hz for almost all residues.
That relaxation effects are small in this example is not
surprising given the relatively low molecular mass of
the protein ubiquitin. Taking the average of the best
datasets to represent the ‘true’ values of the couplings
allows us gauge the extent to which the error can be re-
moved. This is shown in Figure 4, where the couplings
extracted from the two pairs of experiments are com-
pared. In spite of the large miscalibrations deliberately
introduced during the acquisition of sets A′ and B′, it
is apparent that the couplings obtained from these poor
data are in very good agreement with the ‘true’ values
(RMSD = 0.09 Hz). Residual discrepancies between
the two are on the order of the random error.

We have shown that systematic errors arising from
differential attenuation of the two orthogonal sig-
nal pathways can be largely suppressed by using the
HSQC-PEC2 approach. This simply requires the ac-
quisition of complementary pairs of spectra, differing
only in the choice of the duration of the constant-
time period. In most cases, this will not require an
increase in experimental acquisition time because two
complementary experiments, each of half the total
experimental duration, can be acquired while main-
taining the same resolution in the indirect dimension.
This can be accomplished without loss of sensitivity
because the final results are averaged. Frequency do-
main methods for the measurement of couplings may
be less prone to systematic errors. However, the high
precision obtained per unit time that is characteristic of
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quantitative J type experiments makes it worthwhile to
minimize their susceptibility to systematic errors. The
optimal choice of experiment depends on the specific
circumstances.

It should be noted that other relaxation-induced
systematic errors, which enter during the constant-
time period T (Tolman and Prestegard, 1996b), are not
removed by our procedure. It is conceivable that such
errors, in addition to those considered in this work,
might be compensated by performing additional pairs
of experiments using constant time periods differing
from those utilized here. For the present work, it is
assumed that the uncompensated errors will remain
constant between aligned and unaligned systems and
will therefore cancel when dipolar couplings are ex-
tracted from the difference. Relaxation-induced errors
will become more significant as the molecular mass
increases, so that the cancellation of these errors will
become increasingly important.
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