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Abstract The acrylic elastomer membrane VHB 4910 is a
material widely used for applications as Dielectric Elasto-
mer Actuators DEA. For suitable actuation performance
however, it is necessary to pre-strain the very compliant
membrane. This reduces the lifetime of DEA due to early
failure of the tensioned membrane. Interpenetrating Poly-
mer Network Reinforced Acrylic Elastomers (IPN) are
produced by introducing a curable additive into the pre-
strained acrylic elastomer membrane. While curing at
elevated temperature, the additive forms a second polymer-
ic network that supports part of the pre-strain in the acrylic
membrane. This leads to a free standing material that
combines the actuation performance of pre-strained VHB
4910 with an excellent long-term reliability. This work
presents a detailed mechanical characterization of acrylic
IPN membranes. To reduce the experimental effort required
to characterize the nonlinear elastic behavior, we developed
a unique specimen design that enables the assessment of
uni- and biaxial stress states within one experiment. Slight
changes in the material composition of IPN-membranes
lead to substantial variations in their mechanical properties.
The extraction of material behavior in different kinematic
states within a single sample thus reduces the uncertainty
on the determination of constitutive models. An extensive
experimental campaign was carried out involving uniaxial

and equibiaxial tension and relaxation. Image based local
deformation measurements and iterative finite element
calculations were applied to derive constitutive model
parameters that describe the mechanical response in a wide
range of planar strain and strain rate.
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Characterization

Introduction

Dielectric Elastomer Actuators (DEA) are made of a soft
polymeric membrane coated on opposite sides with a
compliant layer of conductive material. The conductive
material serves as electrodes that, if subjected to a voltage,
lead to an electrical field across the membranes. As a
consequence, the dielectric membrane contracts in thick-
ness direction and expands in-plane. Both the thickness
contraction as well as the in-plane expansion can be used
for actuation. Studies on acrylic elastomers showed that
pre-straining the membrane significantly increases the
performance of such actuators [1–3]. The introduction of
Interpenetrating Polymer Networks (IPN) to acrylic DEA
by Ha et. al. [4] led to a material that offers the
performance of pre-strained acrylic elastomers without the
need of externally supported pre-strain. Using this material,
Kovacs et al. [5] developed a free standing contractile
actuator that directly uses the out-of-plane contraction. This
leads to very high actuation forces while the absence of
external pre-strain significantly enhances the reliability.

In general a electromechanical model suitable for
actuator simulation and design optimization is necessary
for this material system. Such a model has to predict the
nonlinear materials response in different kinematic states
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and for different strain rates. So far, there have been
different approaches to derive electromechanical models of
DEA. Many authors characterized the passive mechanical
material response with simple quasi-static uniaxial tensile
tests [6–9]. The pronounced viscoelasticity of most DEA-
materials was investigated with uniaxial relaxation [10–12]
or creep tests [13]. A reliable prediction of the response to
compression in thickness direction with a phenomenolog-
ical model derived from in plane uniaxial tensile tests
seems rather unlikely for nonlinear materials. Therefore
more recently DEA-models were determined by fitting
mechanical model parameters to the results of experiments
with actuators [14–16]. While this seems more appropriate
for mechanically nonlinear materials the approach relies on
the knowledge of the electromechanical coupling mecha-
nism. The model of an “ideal” dielectric adopted so far for
describing electromechanical coupling [17] was recently
shown to be questionable, due to neglected electrostrictive
effects [18]. To test and verify the different electromechan-
ical coupling models, purely mechanical experiments are
therefore necessary.

Specifically on the mechanical characterization of IPN
not much work was reported so far. Ha et al. [19]
conducted membrane inflation tests with IPN films of
different material compositions and showed a strong
dependence of elastic response from the amount of additive
forming the second network. Only values of the tangent
modulus are reported and no time-dependence was consid-
ered. In a later paper, Ha et al. [12] compared two different
IPN formulations based on VHB 4910 and VHB 4905 with
different amounts of additive and determined time-
dependent hyperelastic parameters from uniaxial relaxation
experiments. These model parameters have not been
verified using experiments with multiaxial stress states or
actuators. Düring [20] derived hyperelastic parameters from
membrane inflation tests with IPN but neglected time-
dependence. This model only reproduces the behavior
observed in so called stacked actuators for very low
activation voltages.

In this work we present a detailed mechanical charac-
terization of IPN membranes. For the presented test
campaign, IPN membranes were produced from pre-
strained VHB 4910 membranes by introducing the trifunc-
tional acrylic Trimethylolpropane trimethacrylate
(TMPTMA) into the membrane. At a temperature of 85°
C, this additive forms an additional polymeric network that
effectively supports part of the pre-strain when the external
boundary condition is removed. While the applied pre-
strain of 400% undergoes only minor variations in the
fabrication process, the amount of functional additive can
change due to process uncertainties. Different amounts of
additive will lead to a different stiffness of the secondary
network, thus to different levels of preserved pre-strain and

membrane thickness (Fig. 1), and correspondingly to a
different tangent modulus of the base elastomer [4, 11].
These mechanisms were recently investigated by Zhu and
Suo [21], who proposed a model for the interaction of the 2
polymer networks.

Differently from the approach proposed in [21], we do
not develop physically or microstructural based models in
this work. Instead we intend to provide phenomenological
equations with corresponding model parameters fitting the
experimental data, which can be used for finite element
(FE) based design and optimization of IPN actuators.
Different strain energy formulations are compared in their
capability of describing the material response in multiple
deformation states.

Since an equibiaxial tensile stress in the membrane plane
leads to the same kinematics of deformation as a uniaxial
compression perpendicular to the membrane for isotropic
materials, and since the uniaxial compression as occurring
in an actuator is very difficult to be realized in a mechanical
experiment with very thin and sticky membranes, equibiax-
ial tensile tests were selected here to derive constitutive
models for DEA.

We performed a large number of equibiaxial and uniaxial
tensile tests and all measurement results are reported here.
A relatively large scatter was observed for the results of the
experiments. This scatter was found not to be due to
measurement uncertainties but to process induced varia-
tions in material composition. In fact the membranes tested
had different undeformed thicknesses and thus a different
material composition. However, only membranes with
identical material composition can be expected to reveal a
similar mechanical response. For membranes with a
different material composition a membrane specific consti-
tutive model is required. In order to obtain sample specific
information on the multiaxial behavior of an IPN mem-
brane we developed a specimen design that allows the
determination of the materials response in both biaxial and
uniaxial tension within one experiment on one sample.
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Fig. 1 Measured preserved pre-strain [19], model fit and calculated
membrane thickness vs. amount of functional additive
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Further we propose an approach to account for the material
composition dependence of the mechanical response and
included a corresponding correction term into the constitutive
model. This approach is shown to effectively reduce deviations
between experimental results and model predictions.

Experiments

Nonlinear and time dependent mechanical behavior of DEA
materials can be modeled using hyperelastic viscoelastic
constitutive laws. A strain energy density function has to be
determined from which the components of the stress tensor
can then be derived by calculating the partial derivative of the
strain energy density function with respect to the
corresponding deformation measure. Typically a large number
of parameters are incorporated in common strain energy
formulations. The determination of these parameters requires
a considerable experimental effort. To ensure an accurate
prediction of the material response the experimental charac-
terization should include experiments over a wide range of
strain states and strain rates. We conducted biaxial and
uniaxial relaxation for different strain values and strain rates.

An overview of all experiments with corresponding sample
number andmembrane thickness is given in Table 1. Since the
undeformed thickness of the base membrane VHB 4910 is
always 1 mm, the existence of different IPN membrane
thicknesses gives evidence that in fact variations in material
composition do occur. For the samples tested in biaxial
relaxation the amount of TMPTMAwas around 12 wt%. The
influence of the amount of additive on the preserved pre-
strain is very strong in this range (Fig. 1). Very small
variations in material composition can therefore cause a
significant scatter in the results of mechanical testing.

Biaxial Experiments

The biaxial relaxation experiments were performed at room
temperature (23°C) on a biaxial tensile testing device at
ETH Zurich. The device offers separately controlled
displacement and force measurement on four actuators.
The deformation is measured locally on the specimens with
an image based grey scale correlation technique. Unlike in
uniaxial tests, the measured force signals of biaxial experi-
ments in general do not allow a direct calculation of the
stress values in the specimen. In fact, depending on the
geometry of the testpiece, the stress state can be highly
inhomogeneous. Various approaches were proposed for
optimization of sample geometry in order to reduce the
complexity of the inverse problem [22–29]. For IPN
membranes the application of tensile loads using wires
and hooks is not feasible due to material sensitivity to
notches. A cruciform specimen design is used here, with

five slots introduced on each arm (Fig. 2). These slots
effectively reduce the influence of the transition from the
uniaxial stress state of the arm to the equibiaxial zone in the
center [30]. Further, a cruciform design offers information
on the uni- and the biaxial response at the same time. By
measuring the deformation in the biaxial domain, as well as
the displacement at the clamping points, the strain state can
be determined for both domains.

To ensure repeatable test conditions we punched our
cruciform specimens out of membranes with the dimen-
sions indicated in Fig. 2. A special mounting frame is used
to clamp the specimens at the four actuators in the
undeformed configuration. In all different experiments a
displacement ramp was applied to each actuator. In total
four different equibiaxial experiments each involving the
test of at least two specimens were performed. The control
profile shown in Fig. 3 represents the applied displacement
U(t) for all four experiments.

Uniaxial Experiments

In addition to the extraction of uniaxial data from the
uniaxial domain of the biaxial experiments, uniaxial
relaxation experiments with samples of different thickness

Table 1 Overview of experiments and samples

Test condition Sample Thickness [μm]

Biaxial control profile 1 1_1 69

Biaxial control profile 1 1_2 71

Biaxial control profile 2 2_1 66

Biaxial control profile 2 2_2 64

Biaxial control profile 2 2_3 65

Biaxial control profile 3 3_1 67

Biaxial control profile 3 3_2 70

Biaxial control profile 4 4_1 67

Biaxial control profile 4 4_2 68

Uniaxial relaxation 5_1 67

Uniaxial relaxation 5_2 67

Uniaxial relaxation 5_3 68

Uniaxial relaxation 5_4 72

Uniaxial relaxation 5_5 72

Uniaxial relaxation 5_6 73

Uniaxial relaxation 5_7 83

Uniaxial relaxation 5_8 86

Uniaxial relaxation 5_9 87

Uniaxial relaxation 5_10 88

Uniaxial relaxation 5_11 89

Uniaxial relaxation 5_12 92

Uniaxial relaxation 5_13 93

Uniaxial relaxation 5_14 95
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were performed. All of these uniaxial experiments were
carried out using one axis of the biaxial tensile testing
device. The specimens were cut to a length of 90 mm and a
width of 9 mm. All different specimens were stretched to a
nominal strain of 100 % within 10 s and held in this
position for 300 s. Strain rate and duration of dwell time
were chosen to be in a range relevant for cyclic applications
in actuators see e.g. [31, 32] and close to the values
observed in the biaxial experiments.

Results

Results of Biaxial Experiments

The stretches in x and y-direction given in Fig. 4 are
derived from the image analysis procedure and relate the
deformed width of the biaxial domain wbiax to the
undeformed width Wbiax (see Fig. 2). Thus the stretch
values indicate an average value of relative deformation of
the domain between points A and B. Since the same
displacement is applied to all 4 actuators all curves in each

diagram of Fig. 4 should be identical. Deviations between
stretches are in the range of 10 %. Despite the application
of a linear time ramp for U(t) (Fig. 2) the results reveal a
somewhat nonlinear stretch ramp in the biaxial domain
visible in particular in the case of exp. 4. This is the
consequence of a different stiffness in uni- and biaxial
domain. As Fig. 4 also shows, there is almost no follow up
and the stretch is constant during the hold time. From
biaxial stretch and applied displacement U(t) the stretch in
the uniaxial domain is calculated (Fig. 5). Note that in all
experiments the uniaxial stretch is much larger than the
biaxial deformation. Figure 6 shows the tensile force
separately for each sensor in each experiment. As expected,
the signals of all sensors almost coincide, revealing no sign
of anisotropy in the specimens as well as high measurement
accuracy. Further Fig. 6 shows the averaged force signal of
four sensors for each specimen. Since the samples had
different thicknesses, the scatter of tensile force between the
specimens of each experiment (Fig. 6 right) will be evaluated
on the basis of calculated stress values in “Analysis”.

Results of Uniaxial Relaxation Experiments

Uniaxial relaxation experiments were performed on sam-
ples with significant differences in their thickness (see
Table 1) and thus different material composition. All
experiments were performed with the same strain ramp of
100 % nominal strain in 10 s and subsequently a stress
relaxation with constant strain for more than 300 s. The
significant dependence of mechanical response on material
thickness becomes evident in these experiments, see Fig. 7.
Cauchy stress values were calculated from measured force
and stretch values assuming incompressible behavior. The
membranes with larger additive content and therefore
smaller thickness are considerably stiffer than the samples
with low additive content. Both peak stresses as well as
long term stresses vary by a factor of about 3. Note the
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deviation of more than 20 % in peak stress between the
membranes of 0.067 and 0.072 mm.

Analysis

Material Model Formulations

Three strain energy formulations were compared in their
capabilities of representing uniaxial as well as biaxial
response. For all models incompressible behavior was
assumed (Poisson’s ratio υ=0.5), which represents a common
hypothesis when modeling the mechanical behavior of

elastomers. The Reduced Polynomial or Yeoh-model [33]
calculates the strain energy dependent on the first invariant I1
of the left Cauchy-Green strain tensor. This objective
measure of relative deformation is calculated from the so
called principal stretches li.

I1 ¼ l21 þ l22 þ l23 ð1Þ

W ¼
X3
i¼1

Ci I1 � 3ð Þi ð2Þ

Three material parameters C1, C2 and C3 have to be
determined from experimental data.
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The Ogden-model [34] expresses the strain energy
directly as a function of the principal stretches. In the
following a three term Ogden-model is used:

W ¼
X3
j¼1

2mj

a2
j

l
aj

i � 3
� � ð3Þ

It should be noted that this form is different from the one
originally proposed by Ogden but it coincides with the
formulation implemented in the general purpose FE software
ABAQUS. The material parameters μi and αi need to be
determined from experiments. The Arruda-Boyce-model [35]
is based on statistical mechanics and requires the determina-
tion of only two different material parameters: μ and lm.

W ¼ m �½12 I1 � 3ð Þ þ 1

20l2m
I21 � 9
� �þ 11

1050l4m
I31 � 27
� �

þ 19

7000l6m
I41 � 81
� �þ 519

673750l8m
I51 � 243
� ��

Assuming quasi-linear viscoelasticity for the description
of time dependent mechanical behavior [11], the coeffi-

cients of the strain energy functions (Ci, μi and μ
respectively) are expressed as a function of time and are
multiplied with the relaxation function g(t)

g tð Þ ¼ 1�
X4
k¼1

1� exp
t

�tk

� �� �
ð5Þ

Simplified Stress determination for the Biaxial Experiments

To achieve reliable predictions of the mechanical response
for strains up to 50 %, in both uniaxial and multiaxial
loading, the models were fitted simultaneously considering
uni- as well as biaxial domains of the four biaxial
experiments. In theory this can be accomplished by
applying the experimental displacement on a detailed FE
model of the cruciform specimen. With the help of
optimization algorithms the deviation of experimental and
calculated tensile force can be minimized by adapting the
material parameter. This process however involves exten-
sive computational costs.

A different approach was used here. The cruciform
specimen design with five slots in each of the uniaxial
domains (Fig. 2) effectively reduces the influence of the
transition between pure uniaxial and equibiaxial stress
state. For an ideal transition the principal true or Cauchy-
stress values are identical to the nominal stress calculated
from measured tensile force F and deformed cross-
sectional area a.

sH ¼ F

a
ð6Þ

Assuming an incompressible material behavior in an
equibiaxial stress state,

l1l2l3 ¼ 1 ð7Þ

l3 ¼ 1

l1l2
¼ 1

l2
ð8Þ
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the deformed cross-sectional area can be calculated from
undeformed cross-sectional area A and principal stretch λ
of the biaxial region.

a ¼ wbiax � d ¼ Wbiax � l � D
l2

¼ Wbiax � D
l

¼ A

l
ð9Þ

FE calculations were performed to compare the Cauchy
stress within the biaxial region with the prediction from
equation (6) (idealized transition). This comparison allowed
determining a correction factor (κ) for the simplified
analysis of the biaxial experiments:

sB ¼ k � sH ð10Þ

with σB as the Cauchy stress to be used for a homogenized
model considering non-ideal transition at the interface
between uniaxial and biaxial domain. Figure 8 shows the
deformed biaxial domain of the FE model of sample 1_2.
The color plot shows the stress-ratio σFE/ σH with σFE as
the maximum principal stress from the FE calculation. The
value of κ is calculated from the average stress-ratio of all
elements in the biaxial region. Thereto different material
model formulations were compared. For the models
reported in Table 2, κ takes values between 0.849 and
0.861.

Values of Cauchy stress σB were calculated according to
equations (6), (9) and (10) with κ=0.85 for the biaxial
region, see Fig. 9.

Similarly, an effective length of the uniaxial domain was
calculated from a detailed FE model, thus allowing the
calculation of an approximated value of Cauchy stress in
the uniaxial region. This approach leads to simplified
models of the experiment (Fig. 10). The fitting process for
the determination of the hyperelastic viscoelastic material
model parameter is realized with a Matlab routine including
the optimization tool fminsearch that uses the simplex
search method of [36]. This routine passes an initial
material parameter set into ABAQUS. The measured

deformation of the uniaxial and biaxial domain is applied
to the simplified FE models for each time increment. The
calculated stress values are then compared with the
measurements and the value of the objective function is
determined. By iteratively varying the parameter of the
material model the value of the objective function is
minimized.

Material Model Parameters

The fitting process was accomplished for all three hypere-
lastic viscoelastic models, leading to the parameters given
in Tables 2 and 3. In Fig. 11 the experimental results,
regarded as average of data from the (2 or 3) samples of
each experiment, are compared with the model predictions
for the biaxial and uniaxial material response. As can be
seen all three material model formulations give fairly
accurate predictions of the biaxial response in experiment
1 and 3 but deviate from the measured values for
experiment 2 and 4. For the uniaxial material response the
constitutive model predictions are in general less reliable.
Further we observe better results using the Ogden-model.

There is an obvious difference in the response for the
different specimens of each experiment as shown by the
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Table 2 Hyperelastic material parameters

Yeoh C1 [MPa] C2 [MPa] C3 [MPa]

0.219 0.058 -0.0007

Ogden μ1 [MPa] μ1 [MPa] μ1 [MPa] a1 a3 a3
0.277 0.330 -0.248 -1.037 7.222 7.222

Arruda-
Boyce

μ [MPa] lm
0.260 1.313
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results of Fig. 9. As anticipated in the introduction, we
suggest that differences in material composition lead to
different mechanical properties. This interpretation would
explain the reason for the discrepancy between models and
experiments in Fig. 1. In fact for each membrane a specific
parameter set should be used. In chapter 4 we will further
discuss this problem and derive an expression accounting
for the material composition. Naturally, repeated experi-
ments with samples of an identical material composition
and thus the same thickness are necessary to characterize
the material. However the difference in material composi-
tion of a membrane of 0.064 and one of 0.07 mm thickness
is so small (compare Fig. 1) that it cannot be avoided in the
production process. Therefore the material might be
considered as identical and a scatter of up to 20% in
mechanical testing is then observed. As we will show in the
following, most of this apparent scatter can essentially be
attributed to variations in material composition and thus
does not represent an experimental uncertainty but a
materials property that can be characterized.

Constitutive Model Formulation Considering Material
Composition

Model Formulation

As explained in the introduction, different material compo-
sitions lead to a different level of preserved pre-strain of the
VHB membrane and thus to a different thickness of the IPN
membrane. Within the range of 0.06-0.1 mm the material
can be used for dielectric actuation. Membranes below this
thickness experience only small active strains due to their

relatively large stiffness while membranes above 0.1 mm
are very compliant but the small amount of preserved pre-
strain limits the possible electrical field due to breakdown.
Figure 7 shows the stress history in uniaxial relaxation
experiments for membranes within this range of thickness.
As can be seen the stiffness of these membranes varies by a
factor of three. In the following we will propose an
approach in order to account for these variations by a
membrane specific constitutive model formulation.

Recently Zhu and Suo proposed a constitutive law that
expresses the strain energy potential of IPN as the sum of
potentials of both networks weighed with their respective
volumetric fraction [21]. While this approach seems the
most natural it relies on the assumption that no chemical
cross-linking between both networks occurs and that the
strain energy potentials of each network is not affected by
IPN processing. In the specific case of IPN made from
VHB 4910 and TMPTMA we are not able to exclude
chemical cross-linking. Further it is not possible to
experimentally assess the strain energy potential of the
TMPTMA-network. In our phenomenological approach the
strain energy potential of IPN is described by a function
fitted to experimental data of membranes with different
material composition. As can be concluded from Figs. 1
and 7, small differences in material composition lead to
large variations in material stiffness within the range of
membrane thickness suitable for actuation. Such small
variations of the material composition cannot be controlled
nor quantified in the production process.

For the system treated, the undeformed IPN membrane
thickness is a measurable quantity that depends on
material composition. Since the base elastomer VHB
4910 always possess an undeformed thickness of 1 mm
and is always pre-strained to 400×400%, the undeformed
thickness of the IPN membranes is directly linked to the
material composition (Fig. 1). Therefore and unlike to
other geometrical variables, the undeformed membrane
thickness can in this case be used as a membrane specific
parameter that relates the constitutive model parameter
with those of a reference membrane. In contrast to the
amount of secondary network, the undeformed membrane
thickness is easily assessable with the necessary accuracy.
We therefore use the undeformed IPN membrane thickness
d as the variable that describes the dependence on the

Uniaxial modelBiaxial model

Wbiax
2

W
ef

f

Luni

Fig. 10 Simplified FE models

Table 3 Parameter of the relaxation function

g1 t1[s] g2 t2[s] g3 t3[s] g4 t4[s]

Yeoh 0.325 0.03 0.141 3.75 0.106 7.60 0.048 141.7

Ogden 0.186 0.01 0.200 2.97 0.112 11.78 0.052 178.3

Arruda-Boyce 0.300 0.03 0.128 4.20 0.110 8.30 0.052 127.2
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material composition. In agreement with the hypothesis of
quasi-linear viscoelasticity, the relaxation functions are
assumed to be strain independent. In fact, uniaxial
relaxation experiments with different strain values up to
500 % confirmed this hypothesis for VHB 4910 [11]. We
therefore propose that the general strain energy density
function for the group of all IPN membranes produced
according to the protocol described in [19] can be written
as follows:

W li; t; dð Þ ¼ W li; dð Þ � g t; dð Þ ð11Þ
With the strain energy density as a function of the

principal stretches, time and material composition in this

case the undeformed membrane thickness. The relaxation
curves from Fig. 7 are represented as normalized functions
with respect to the maximum stress values σmax in Fig. 12.
The relatively low variability of these relaxation functions
indicates that the specific material composition has a small
influence on the time-dependence of the mechanical
response. The low volume fraction of TMPTMA in the
investigated IPN makes this observation plausible. This
might lead to the conclusion that the observed dissipative
behavior depends on the viscoelastic properties of the VHB
network rather than on the TMPTMA component. In the
model formulation, we assume the time-dependent part of
the general strain energy density function to be independent

Table 4 Parameter of the extended Ogden-model

W(λi) μ1 [MPa] a1 μ2 [MPa] a2 μ3 [MPa] a3
0.386 0.206 0.119 7.182 -0.066 6.397

f(d) d0 [mm] B

0.067 -3.76

g(t) g1 t1 [s] g2 t2 [s] g3 t3 [s] g4 t4 [s]

0.186 0.01 0.200 2.97 0.112 11.78 0.052 178.2

1_1

0.4

0.5

Fo
rc

e 
[N

]

0    100   200   300  400   500
Time [s]

0

0.4

0.8

1.2

1.6

Fo
rc

e 
[N

]

4_1 model
4_1 exp

4_13_2

3_12_32_2

2_1

4_2

1_2

0

0.1

0.2

0.3

0    100   200   300  400   500
Time [s]

1_1 model
1_1 exp

0

0.5

1

1.5

2

Time [s]

0

0.3

0.6

0.9

1.2

0

0.4

0.8

1.2

1.6

2_2 model
2_2 exp

0    100   200   300  400   500

1_2 model
1_2 exp

0.4

0.5

Fo
rc

e 
[N

]

0

0.1

0.2

0.3

0    100   200   300  400   500
Time [s]

0    100   200   300  400   500
Time [s]

Fo
rc

e 
[N

]

2_1 model
2_1 exp

0

0.5

1

1.5

2

Fo
rc

e 
[N

]

0

0.5

1

1.5

2

Fo
rc

e 
[N

]

Time [s]
0    100   200   300  400   500

2_3 model
2_3 exp

0    100   200   300  400   500
Time [s]

3_1 model
3_1 exp

Fo
rc

e 
[N

]

0    100   200   300  400   500
Time [s]

0

0.3

0.6

0.9

1.2

Fo
rc

e 
[N

]

3_2 model
3_2 exp

Fo
rc

e 
[N

]

0    100   200   300  400   500
Time [s]

4_1 model
4_1 exp

Fig. 14 Comparison of the predicted force histories of the detailed FE models (symbols) with the measured values for each experiment (lines)
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of thickness (and thus independent of the amount of
TMPTMA):

W li; dð Þ � g t; dð Þ ¼ W li; dð Þ � gðtÞ ð12Þ

In a first approach we further propose a simple
multiplicative split of material composition dependence
and deformation dependence, thus leading to:

W li; dð Þ � gðtÞ ¼ W lið Þ � gðtÞ � f ðdÞ ð13Þ

The function f(d) only depends on the membrane
thickness. Values of f(d) can therefore be determined by
relating the strain energy density of individual membranes
to the strain energy density of a reference membrane with
thickness d0 tested with the same strain history.

f ðdÞ ¼ W li; t; dð Þ
W li; t; d0ð Þ ð14Þ

Figure 13 shows this relative strain energy density
derived for the peak stress values measured in uniaxial
relaxation experiments (Fig. 7) as a function of the amount

of TMPTMA and as a function of the membrane thickness.
The data was fitted using a power law, see equation (15)
with d0=0.067 mm as the selected reference value of
membrane thickness for which f(d)=1.

f ðdÞ ¼ d
d0

� 	B
d0 ¼ 0:067mm B ¼ �3:76 ð15Þ
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Application to the Experimental Data

The fitting process described in chapter 3 was applied to
each sample of the biaxial experiments, using for each
membrane the corresponding value of the function f(d), that
simply scales the strain energy density of each membrane.
We therefore introduce a corresponding specific set of
coefficients μi of the Ogden-model for the FE simulation of
each membrane. The new model formulation (Ogden form)
and the corresponding parameters are reported in equation
(16) and Table 4.

W li; d; tð Þ ¼ f ðdÞ � gðtÞ �W lið Þ

¼ d

d0

� �B

� 1�
X4
k¼1

gk 1� e
�t
tk

� 	" # !

�
X3
j¼1

mj

a2
j

l
aj

i � 3
� � !

ð16Þ

The calculated tensile forces of detailed FE models using
the newmaterial parameters are compared with the respective
experimental data in Fig. 14. These detailed models were
calculated with the software Abaqus 6.7-1. The models use
eight node elements with quadratic interpolation (S8R) with
a discretization level sufficient to ensure convergence of the
results. For the detailed FE models the same displacement
ramp was applied at the extremity of each arm as in the
experiments. Thus the resulting stretch within the biaxial
domain depends on the ratio of material stiffness in uniaxial
and biaxial stress state. A comparison of measured and
calculated stretch in the biaxial domain is given in Fig. 15.
There is now an excellent agreement between model
prediction and measurement for both force as well as
stretch. The largest deviations are of the order of ±5 %.
The film thickness measurement shows a variability in the
order of ±1 μm. Within the correction function f(d) this
translates to an uncertainty of material model parameters of
±5 % thus confirming the quality of the material model fit.

A comparison between measurement and predictions of
the new model (equation 16) for the uniaxial experiments is
shown in Fig. 16.

As expected since the correction function was deter-
mined from these data, there is an excellent agreement
between experiments and simulations.

Conclusions

The proposed 3D hyperelastic viscoelastic model extends
previous work on the mechanical characterization of IPN.
We have reported data measured in a test campaign
including uniaxial and equibiaxial experiments. Our data

can be used to derive model equations for IPN membranes.
Different from all previous attempts we determined param-
eter simultaneously for uni- and biaxial stress states, for
different loading profiles and deformation histories. This is
of fundamental importance to predict the materials response
in a wide range of strain states and strain rate.

In general the determination of stress values from biaxial
tensile tests with cruciform specimens requires a FE
simulation due to the inhomogeneous stress field. The
application of a special cruciform specimen design allows a
simplified approach of stress determination, avoiding a
computationally costly solution of the inverse problem. The
application of simplified models also leads to separate
solutions for the uniaxial and biaxial domain in each
sample, thus providing information on the strain energy of
different kinematic states for the same membrane. We
consider this as a major advantage especially for the
characterization of materials with strongly varying proper-
ties like composites or biological tissue.

We further characterized the influence of the process
induced variations of mechanical response which was found
to be very pronounced. As can be seen in Fig. 9 samples
tested under nominally identical conditions reveal up to 15%
difference in their response. One and the same material
model can therefore not predict the behavior of all samples
despite very similar conditions of imposed strain or strain
rates. The material model was therefore extended with a
membrane specific correction factor and the undeformed
membrane thickness, which is easy to measure, was selected
as the variable used to describe the value of the membrane
specific parameter. The proposed thickness dependent
correction of the strain energy density function represents a
phenomenological approach that was found useful for fitting
the presented experimental data from membranes of different
thickness. After introducing the membrane specific correc-
tion function the model well predicts the material behavior in
all experiments for different values of strain, strain rate and
stress state (different locations in the specimen).

The predictive capabilities of a phenomenological model
with respect to different conditions of (multiaxial) stress
can only be evaluated using corresponding experimental
configurations. The Ogden form used in this work was
shown to predict well the response under uniaxial and
equibiaxial stress states. Furthermore, in [37] we applied
the same model for the analysis of so called “inflation
experiments” with IPN membranes of different material
composition. The model successfully predicts the behavior
of an inflated membrane for samples with a similar
thickness than the ones tested in this work, under
conditions ranging from pure shear to equibiaxial stress.

While the method was shown to provide satisfactory
results for all membranes investigated in this study, the
validity of this approach should be verified in future work
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with a statistical evaluation of the mechanical variability of
IPN membranes with identical thickness. Physically based
formulations accounting for the interaction of two polymer
networks, such as in the model proposed by Zhu and Suo
[21], might be developed using the data reported in this
paper. One should consider, however, that material compo-
sition is not the only factor influencing the mechanical
behavior of IPN. Other variables like the curing tempera-
ture profile, variations in reactivity of TMPTMA due to
aging, or the properties of the VHB membrane might
significantly affect the properties of the IPN membrane.

This work characterizes the response of IPN membranes at
room temperature. It should however be considered that, in
many possible applications of DEA temperature related
effects might become important. Not only the mechanical
properties will change with temperature, but also the
electromechanical behavior (resistivity, permittivity) and the
mechanism leading to actuator deterioration and failure.
Future experimental work is required to address these issues.
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