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ABSTRACT
We study the non-simple closed geodesics of the Riemann surfaces of
signature (0,3). In the aim of classifying them, we define one parame-
ter: the number of strings. We show that for a given number of strings,
a minimal geodesic exists; we then give its representation and its length
which depends on the boundary geodesics.

1. Introduction

A Riemann surface of signature (g, n) is an oriented, connected surface of genus
g with n boundary components, called boundary geodesics, which is equipped
with a metric of constant curvature —1. The length spectrum is the set, listed
in ascending order, of lengths of closed geodesics of a Riemann surface [Hub59].
Almost every compact Riemann surface (i.e. a surface without boundary com-
ponents) is determined by its length spectrum, up to isometry [Bus92]. Such
surfaces can be decomposed into a succession of Riemann surfaces of signature
(0, 3) more commonly called a pair of pants, so it is important to study the length
spectrum of a pair of pants. Moreover, the first elements of the length spectrum
of a surface yield a lot of information about the surface itself, thus we are inter-
ested in the study of geodesics having a short length. One of the main difficulties
is to “catch” every geodesic below a given length. An easy topological criterion,
which would permit us to group on one hand short geodesics and on the other
hand long geodesics, is still missing. In this article, we define a parameter — the
number of strings — and we classify geodesics using this parameter.
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2. Definitions and preliminaries

Let Y be a Riemann surface of signature (0,3) and 71, 72, vs its boundary
geodesics. Let us denote by pi, p2, ps the perpendicular segments which respec-
tively link ~y2 to -3, 71 to y3 and 1 to 2. The boundary geodesics are numbered
such that 0 < £(71) < £(y2) < #(ys) , where £(v;) is the hyperbolic length of
the geodesic v;, ¢ = 1,2,3. To simplify notation, we will write y instead of £(v)
for any geodesic v (and by “geodesic” we refer to the shortest curve in the con-
sidered homotopy class). The Riemann surface Y can be split into two geodesic
hexagons Y; and Y. Let o be the symmetry which maps Y} onto Yz (o(p;) = p;,
1=1,2,3).

Definition 2.1: A string is a segment of curve which links two perpendiculars
Di, Pj» 4, J = 1,2,3, i # 7 and has no other intersection with py, p2, ps.

A closed geodesic is made of a succession of 2n strings ti,... ,fan, 7 € N¥,
such that two consecutive strings do not belong to the same Y;, i = 1,2. We
remark also that a closed geodesic always has an even number of strings.

Definition 2.2: Let g be a closed geodesic with 2n strings. ¢ is said to be
zygomorphic if it is made of a succession of strings t1, ... , %2, such that o(tx) =
tan+1-k, where 1 < k < n. We call such a succession a good succession.

Notice that a good succession can be decomposed into two half-paths dy =
tl, v ,tn, dz = tn+1, N ,tgn such that U(d]) = d2.

Finally, we adopt the following notation:

¢ =cosh(3v:), cin= cosh(n37),

8; = sinh(%'yi), Sin = sinh(n%"ﬁ), i=1,2,3.

3. Results

We call gflj,m the zygomorphic closed geodesic having one of its good half-
successions dg, ¢ = 1,2 made of n strings on the +;-leg, and m strings on the
y;-leg, i,5 =1,2,3, i # j and n,m € N* (cf. Figure 1).
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Yk

Figure 1. Geodesic gé{z.

The lift of dgy in the hyperbolic plane H is an edge of a crossed right-angled
hexagon. So we obtain the explicit length of g:f m 8iven by the following relation,

1 .. 8; nS; . .
COSh(593m> = —'Z:Sn_s—me(Ck +¢ic5) + CimCim, 1<i<j <3
<]

From now on we will write G, := cosh( 99 )
We now state our main result in the following theorem.

THEOREM 3.1: g1? is the shortest closed geodesic having at least 2(n+1) strings.

4. Proof of Theorem 3.1

We begin by classifying the g*/-geodesics described above according to their
number of strings. To prove the two propositions below, we need to use just
basic properties of the hyperbolic functions.

PROPOSITION 4.1: Ifn > m, theng¥, < g% ,1<i<j<3.

Proof: We are going to prove that
G:im - G#m <0.
By expanding the above expression, we have

¢, + ¢y
s (SinSim = SimSjn) + (CinCim — CimCin) < 0.
i5j
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As n 2 m, the functions

sinh(nz) cosh(nz)

——F— and z+— -—5F—=

sinh(mz) cosh(mz)
are increasing. Moreover, (cx + cic;)/s;s; > 0. ]

PROPOSITION 4.2: For all n,m € N*, we have

12 13 23
Inm S 9nm S Inm-

Proof: By definition 0 < 71 € 72 < 3. This implies that
0<cz+ciee € c2+cics € g +cgcs.

Moreover, sinh(kz)/ sinh(z) is an increasing function of z € R4 (k € N*). ]

In order to prove the next proposition, we use the Chebyshev polynomials of

the second kind:
__ sin(n arccos(z))

Un(z) = sin(arccos(z))

These polynomials verify the relation Uy, 1(z) = 22Uy (x) — Up—1(z) and so does

(%) G, =2G . —GH , =2GY -G

n—2,m n,m—1 n,m—2
from which we deduce the useful relations:
Gi{,m = ﬂ—l(ci) ;],m —Un—z (ci)Gzl{m! Vn <
GH o = Un1(¢)Gy = Um—2(¢;)Grly, Yn <
which are easy to prove by induction.

PROPOSITION 4.3: For all n,m € N* such that n > m and 1 < i < j < 3, we
have
i« ij
gn,m =X gn—l,m+1'
Proof: Using (%), we can write
Gl = Gy 1 = 2ei = &)Gr 1 + G, -G

- n—1,m n—1,m—1 n—2,m"

The proposition is equivalent to showing that G¥,, — Gif'_l,m +1 € 0. This
relation is true only if G)}_; ,_4 —G/_5 , < 0. Because n > m, using induction,
we reduce the problem to the study of the sign of the following expression,

Gijl - Gliil’z, where [ > 2.
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If I = 2, then G¥, — GY, = (4cic; + 2¢x + 1)(ci — ¢;) < 0.

If [ = 3, then G, — G5y = (8cic} — 2¢; — 2¢; +4deics)(ci — ¢j) — 1 — ¢, < 0.

If 1 > 3, then G} — GiL, 5 = Ui2(a:)(G3y — G33) + Ui—3(ci)(GY, — GFy).

We conclude by remarking that 8cic? — 2¢; — 2¢; + 4cic; = 4cic; + 2¢, and
cx+12c¢—c. n

Propositions 4.1-4.3 together imply that g,lf_l’l is the shortest geodesic among
the geodesics g/, where r + s = n (i < j) (thus proving a particular case of
Theorem 3.1).

We call h¥, the zygomorphic geodesic having one of its good half-successions
dg, ¢ = 1,2 made of n strings on the ~;-leg, one string on the 7y-leg and m strings
on the v,-leg, i,j,k = 1,2,3, i # j and n,m € N* (cf. Figure 2).

Yi

Yk

Figure 2. Geodesic hf{; 2

The lift of dy in the hyperbolic plane H is an edge of a right-angled hexagon.
So we obtain the explicit length of hﬁ{;m given by the following relation,

1 . 5 n+18j

, j,m+1 . .

COSh(ghﬁf,m = T(Ck +¢iCj) — Cint1Cim+1, 1<1<F <3
Y7

From now on we will write HiJ, := cosh(3h% ).
Now we compare these two different types of zygomorphic geodesics.

PROPOSITION 4.4: For all n,m € N*, we have

G m <RI, 1<i<j<3.
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Proof: In fact, we are going to prove Gi,; . < H¥,,. Let ex = ¢ + cicj. We

split H,,, such that it is easy to compare it with fo;l’m. Let us write

HY =h;+hy+hs+hy and G:{H,m =g1+92

where s s
_ 2i,n+lojm _
hy = —————cjeyg, h3 = ¢; nt+1Cj,mC;j,

5;85
Si n+1cj,m
hy = —=— P ha = Cin4185,m5;5,
i3
_ Sin+155,m —
= ————€, 92 = Cin+1Cjm-
SiSj

As hy = g1 + g1{c; — 1), we denote h] = gi(c; — 1). Now it is easy to show that

g2+hs3<hy and hy<hj. 1

PROPOSITION 4.5: Let g be a zygomorphic closed geodesic with 2n strings. Then
g can be split into a succession of curves, each one homotopic to a g¥, or h¥J -
geodesic, 1 < i< j<3andr s,pq€ N

Proof: Denote by d) = t3,... ,1, the g-half-path such that d; Uo(d1) is a good
g-succession.

If n =2, it is easy to see that g = gi’;l, 1,4 = 1,2, 3 distinct.

If n =3, then g = gé{l or g = hi{l, 1,7 = 1,2, 3 distinct.

Let n > 3 and suppose that the good succession above can be split into a good
succession of curves ¢y, ..., ¢, each one homotopic to a geodesic gi{s or hf,’;q,
r,s,p,q € N*, called respectively g1, .. ,gr. Let d2 = dy Ut,+1. Then dy Uo(da)
is homotopic to a geodesic ¢’ having 2(n + 1) strings. Let us show that ¢’ can be
also split into a succession as described above. Let us suppose that g. = ¢/, and
denote by dr = tn41—(utv),:-- »In the path included in d; such that d. U a(d,)
is homotopic to g, and t, is on the v;-leg. Let dy = d, Utn4.

1. If t, 41 is also located on the 7;-leg, then dy U o(d3) is homotopic to g, =

g:f,v-i-l'

2. If t,41 is located on the v,-leg, g # J,

a. if v =1, then dj U o(dj) is homotopic to g, = hif,;
b. if v > 1, denote f = tn41—(utw)s-- - »tn—1; then fUo(f) is homotopic
to gr = 93,1}—1 and (t, Utny1) Uo(tn, Utnt1) is homotopic to the new
element g,11 = g{’,‘{.
If g- = hi{t, the proof is similar to the above one. |
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PROPOSITION 4.6: Foralll<m<n—-2and1<1<j<3,

i ij ij
901 S 9n—m—11 T Im,1-

Proof: We reduce the problem to the following inequality,

Gilj,l < Gg—m—l,lGZL,l + \/(Gibj—m—l,l)2 - 1)\/(Gz,1)2 - 17

and we split the problem into two parts.

Firstly, we show that

Sin

i

Let again e; = cp + ¢;c;. Let us write

8

hy =
8

Y g
(ck +cicj) < G?{—m—l,lGTfL,l'c

345

cz-s\/(G

”l (ck +cic;) and  hg =
3

J
n—m-—1,1

ij ij
n—m—l,le,l .

2 —1)y/(GH )2 - 1.

Now we split hy and hy such that Ay = hyy +--- + his and kg = ho1 + -+ + hos

where
hiy = Sin—m—1
11 = ——C;,mCi€k,
84
Bya = Ci,n—m—1
13 = ———8¢{,mCi€k,
8
his = Cin—m—1Ci;mCk,
and
By = Si,n—m—1
21 = — " Ci,mCjCk,
z
Si,m

has = ¢ipn—m-1¢—

k3

Sin—m-—1
h25 = 2—5—2——~—Si7mCiCjCk.

i

hia

hia

It is easy to see that hy; < hg;, i =1,...,5.

Secondly, we have to prove

,

05 < ((exi

Sin 2, 2.2
h22 = —-—8—2———8.,:’m(ck + [ Cj s

8in—m—15m€k,

Ci,n—m—1Ci,mCiCj,

—m—1

1

_ 2
h24 = Ci n—m—1Ci,mCj,

)? = DGR = 1)

In order to simplify the notation, let us set f2 = 2c;cjck + cfcf > 3. We have the

following inequality,

\Y
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Let us write

_2 2
kl =cC; nC],
57 1 8; 1
_ i,n—m— 2 tyn—m— 2 2
ky=| ——fi +2———Cin-m-1Cj€k + € nem—1Cj
Si 8;
2

82
Z
X 32 fk +2 czmc]ek+c
Z

2

We are going to prove that k; < k2. We split &) and ks such that

ki=kn+ --+kio and ke=ko+---+ky

where
_ 2 2 22 2 22
kll - c'i,n—m—lci,mcicj? k12 - cz n—m—15; ,mszC]7
_ 2 2 22 2 2 2
kis = Simn-m—15i,mGCj» kiy = si,'nvm—lci,m’si Cj»
5.2 2
k15 = 2¢; 1 1n—1Ci,mSi,mCiSiCj,
2 2
k16 = 28] _m—1Ci,mSi,mCiSiC;,
_ 2, 2.2
k17 = 2¢i n—m—18i,n—m—1Ci,mSi,m(S; + ¢ )<y
_ 2 2
kig = 2¢i,n—m—18i,n—m—1Ci8i8; )
2 2
k19 = 2¢i n—m—18i,n—-m—1CiSiC 1, C5 s
and
_ 2 2 22 _ 2
ko1 = Cin—m—1%i,mC;Cj, ko2 = Cin—m— lc fkv
2 2
s: s
_ “Zi{n—m—1 2 _ “in=-m—1 2
kos = fk fka kaa = f zmcj7
sl
02 23z,m
k25 = 2ci,n—m—1cj s, €kCi,mCj,
1
s? 8;
z n—m—1 p2°i,m
kog = 2—‘_'—' k €kCi,mCj,
i 83
Si,n—m—1 Si,m
kyr = 4—"———e4Ci n—m-1C; ——€kCimCj,
i i
Sin—m—1 9 92
k2g = 2¢;,n_m-1¢; . CkCim Gy
1

Sin—m—1_ Sim 2
kag = Qcm—m—lcj—'—s_—-—ek?fkv
: .

We see that ky; < ko;, i =1,...,9, hence the result. 1
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PROPOSITION 4.7: Let g be a non-zygomorphic closed geodesic with 2n strings.
Then there is at least one zygomorphic closed geodesic with 2n strings which is
shorter than g.

Proof: The geodesic g has an even number of strings, so we can split it into
two paths ¢; and ¢; which are not homotopic to a boundary geodesic and have
n strings each. Denote by g; the (non-closed) geodesic which is homotopic to ¢;,
i = 1,2. Assume that g; is the shortest path. Then g; Uc(g;) is a zygomorphic
geodesic with 2n strings which is shorter than g. |

So we can assert that 1% is the shortest closed geodesic having 2(n+1) strings.
Moreover, g1% < g3%1,1, n € N*; this means also that g}? is the shortest closed

geodesic having at least 2(n+1) strings as claimed, and ends the proof of Theorem
3.1.

Remark 4.8: The minimum of G}2 is equal to 2n + 1.

G}fl is minimal when the boundary geodesics are cusps. This special case of a
pair of pants was studied by Paul Schmutz Schaller [Sch96b] who gave its length
spectrum without counting multiplicity, using a very different approach than the
one taken here. The length spectrum is {2n+ 1jn € N}. He gave also the length
spectrum of a special pairs of pants with two cusps in [Sch96a].
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