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ABSTRACT 

We s tudy the  non-simple closed geodesics of the  Riemann surfaces of 

s ignature  (0, 3). In the  aim of classifying them, we define one parame- 

ter: the  number  of strings. We show tha t  for a given number  of strings, 

a minimal  geodesic exists; we then  give its representat ion and its length 

which depends  on the  boundary  geodesics. 

1. I n t r o d u c t i o n  

A Riemann surface of signature (g, n) is an oriented, connected surface of genus 

g with n boundary components, called boundary geodesics, which is equipped 

with a metric of constant curvature -1 .  The length spectrum is the set, listed 

in ascending order, of lengths of closed geodesics of a Riemann surface [Hub59]. 

Almost every compact Riemann surface (i.e. a surface without boundary com- 

ponents) is determined by its length spectrum, up to isometry [Bus92]. Such 
surfaces can be decomposed into a succession of Riemann surfaces of signature 

(0, 3) more commonly called a pair of pants, so it is important to study the length 

spectrum of a pair of pants. Moreover, the first elements of the length spectrum 

of a surface yield a lot of information about the surface itself, thus we are inter- 

ested in the study of geodesics having a short length. One of the main difficulties 

is to "catch" every geodesic below a given length. An easy topological criterion, 

which would permit us to group on one hand short geodesics and on the other 

hand long geodesics, is still missing. In this article, we define a parameter - -  the 

number of strings - -  and we classify geodesics using this parameter. 
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2. D e f i n i t i o n s  a n d  p r e l i m i n a r i e s  

Let  Y be  a R i emann  surface of s ignature  (0, 3) and V1, 72, V3 its b o u n d a r y  

geodesics. Let  us denote  by Pl,  p2, P3 the perpendicular  segments  which respec- 

t ively link 0'2 to 3'3, 71 to V3 and 71 to 72. The  boundary  geodesics are numbered  

such t ha t  0 < ~(71) • ~(72) ~-~ ~(3"3) , where ~(3'~) is the  hyperbol ic  length of 

the  geodesic Vi, i -- 1, 2, 3. To simplify notat ion,  we will wri te  3' ins tead of ~(3') 

for any  geodesic V (and by "geodesic" we refer to the shortest  curve in the con- 

sidered h o m o t o p y  class). The  R iemann  surface Y can be split into two geodesic 

hexagons ]I1 and ]/2. Let  a be  the  s y m m e t r y  which maps  !/1 onto Y2 (a(pi)  = p~, 

i = 1 ,2 ,3) .  

De~ni t ion 2.1: A s t r i n g  is a segment  of curve which links two perpendiculars  

Pi, Pj,  i , j  = 1,2 ,3 ,  i ¢ j and has no other  intersection with Pl,  P2, P3. 

A closed geodesic is made  of a succession of 2n strings t l , . . .  ,tun, n E N*,  

such t h a t  two consecutive strings do not belong to the  same Y~, i = 1, 2. We 

remark  also t ha t  a closed geodesic always has an even number  of strings. 

Definit ion 2.2: Let g be  a closed geodesic with 2n strings, g is said to be  

z y g o m o r p h i c  if it is made  of a succession of strings t l , .  • • , t2n such t ha t  ¢r(tk) = 

t2n+l_k, where 1 ~< k ~< n. We call such a succession a g o o d  s u c c e s s i o n .  

Notice t h a t  a good succession can be decomposed into two hal f -paths  dl = 

t l , . . .  , tn ,  d2 = t n + l , . - .  ,t2n such tha t  a(dl )  = d2. 

Finally, we adop t  the  following notat ion:  

c~ = cosh(½7i), 

s~ = sinh(½vi),  

ci,~ = cosh(n13'i),  

si,n = s inh(n17i) ,  i = 1,2,3.  

3. R e s u l t s  

We call ginJ, m the  zygomorphic  closed geodesic having one of its good half- 

successions dq, q = 1, 2 made  of n strings on the  3'i-leg, and m str ings on the  

~//-leg, i , j  = 1,2,3,  i C j  and n , m  e N* (cf. Figure  1). 
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Figure 1. Geodesic g~2. 

The lift of dq in the hyperbolic plane H is an edge of a crossed right-angled 

hexagon. So we obtain the explicit length of g~Jm given by the following relation, 

( 1 ~ ) _ _  cosh ~g~,,~ 8i'nSj'm (e k + cicj) -~ Ci,nCj,m, 1 <. i <~ j ~ 3. 
8i8j 

ij From now on we will write G~, m := cosh(½g/Jm). 

We now state our main result in the following theorem. 

THEOREM 3 .1 :  12 g,~, 1 is the shortest dosed geodesic having at least 2 (n + 1) strings. 

4. P r o o f  o f  T h e o r e m  3.1 

We begin by classifying the giJ-geodesics described above according to their 
number of strings. To prove the two propositions below, we need to use just 

basic properties of the hyperbolic functions. 

PROPOSITION 4.1: I f  n >~ m, then ~j ~J gnm ~ gmn, 1 <. i < j <. 3. 

Proo~ We are going to prove that 

ij ij Gnm - G , ~  <. O. 

By expanding the above expression, we have 

ck + c~ej (s~,nsj,m - s~,msj,~) + ( c ~ , ~ e ~ , m  - c~,mc~,~) <~ O. 
8i8j 
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As n >/m, the functions 

sinh(nx) 
x ~ > and x J 

sinh(mx) cosh(mx) 

are increasing. Moreover, (ck + c i c j ) / s i s j  > O. m 

PROPOSITION 4.2: For all n , m  E N*, we have  

12 13 23 
gn,m ~< g~,m ~< gn,m" 

P r o o ~  By definition 0 < 3'1 ~< 3'2 ~< 3'3. This implies that 

0 < C 3 ~- cle2 ~ c2 -~- ClC 3 ~ c1 -~- CLC3. 

cosh(nx) 

Isr. J. Math. 

ij iS 2(ci ij iS Gn, m -- G n _ l , m +  1 = - c s )Gn_l ,  m + G ~ _ l , m _ l  - Gn_2,  m. 

~j ij The proposition is equivalent to showing that  G,~,m - G,~_l,m+ 1 <. 0. This 
• e f~i j  ['~iS relation is true only 1i un_l ,m_ 1 - u n _ 2 ,  m ~< 0. Because n > m, using induction, 

we reduce the problem to the study of the sign of the following expression, 

- G~_1,2, where l ) 2. 

Moreover, s i n h ( k x ) / s i n h ( x )  is an increasing function of x C R+(k  e N*). II 

In order to prove the next proposition, we use the Chebyshev polynomials of 

the second kind: 
sin(n arecos(x)) 

U,~(x) = sin(arceos(x)) " 

These polynomials verify the relation U~+I (x) = 2xU~(x )  - U , ~ - I  (x)  and so does 

(,) - a ,m 2 Gn,m = 2ciG,~_l, m - G n _ 2 ,  m = 2csGn,m_ 1 

from which we deduce the useful relations: 

i s i s i j  
a n ,  m : U n _ l ( C i ) G 2 ,  m - g n _ 2 ( c i ) G l , m ,  Vn ~ 2 and Vm ~< 1, 

i j  i j  i j  
G,~,,~ = Um_l (Cj )Gn ,  2 - Um-2(cs )G~,  1, Vn ~< 1 and Vm ~< 2, 

which are easy to prove by induction. 

PROPOSITION 4.3: For all n,  m C N* such tha t  n > m and 1 ~< i < j ~< 3, we 

have  
i j  iS 

g n , m  <~ g n - l , m + l "  

Proof:  Using (*), we can write 
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I f / - -  2, then G~2Jl -G/ lJ2  ---(4cicj q- 2ca + 1 ) ( c i - c j )  ~ O. 

I f / =  3, then G~! 1 - G2{ 2 = (8cic 2 - 2 c i -  2cj + 4cic5)(c i - c j )  - 1 - ck <~ O. 
• " i j  i j  . . . .  

If l ~> 3, then  G~ 1 - G~_I, 2 = Uz_2(ci)(G3,1 - G~3,2) + Uz_3(c/) (G~2 - G~3,1). 

We conclude by remarking tha t  8c/c 2 - 2 c / -  2c 5 -b 4cicj >~ 4cic 5 + 2Ck and 

Ck -~- i ~ aj -- C/. | 

Proposi t ions  4.1-4.3 together  imply tha t  12 g~-1,1 is the shortest  geodesic among 

the geodesics g~J~ where r + s = n (i < j )  (thus proving a part icular  case of 

Theorem 3.1). 
/5 We call h~,~ the zygomorphic geodesic having one of its good half-successions 

dq, q = 1, 2 made  o f n  strings on the -//-leg, one string on the ")'k-leg and m strings 

on the ~,j-leg, i , j , k  = 1,2,3,  i C j  and n , m  E N* (cf. Figure 2). 

"rj 

Pk 

"rk 

/J 
Figure 2. Geodesic h4, 2. 

The  lift of dq in the hyperbolic plane H is an edge of a right-angled hexagon. 
/5 So we obtain the explicit length of hn, m given by the following relation, 

[ 1  ij \ 
c o s h ( ~ h ~ , m )  _ s~,~+lSj,m+, (Ck + t ic  5) -- c~,~+lcj,~+l, 1 ~ i ~< j ~ 3. 

S i S j  

/j 1 ij From now on we will write H~, m := cosh(~h~,m). 

Now we compare  these two different types of zygomorphic geodesics. 

PROPOSITION 4.4: For all n,  m E N*, we have  

ij ij 
g,/+l,m<~h,~,m, l <~ i < j <. 3. 
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~J ij 
Proof: In fact, we are going to prove Gn+I, m ~ H~, m. Let ek = ck + cicj. We 

split ~J ij H~, m such tha t  it is easy to compare it with Gn+l, m. Let us write 

i j  i j  
H~m = hl + h2 + ha + h4 a n d  G n + l , m  = gl -~ 92 

where 
hi - -  Si'n+18j'm'Cjek, 

sisj 

h2 - -  8 i ' n + l C j ' m  ek~ 

h3  = C i , n + l C j , m C j ,  

h4  = C i , n + l S j , m s j ,  

g2 ~-- C i , n + l C j , m .  

Si  

gl - -  S i ' n + 1 8 j ' m  e k ,  

S i S j  

As hi  -- gl ~ - g l ( C j  - 1), we denote h~ = gl(cj - 1). Now it is easy to show tha t  

g2 -t- h3 ~ h2 and h4 ~ h~. | 

PROPOSITION 4.5: Let g be a zygomorphic closed geodesic with 2n strings. Then 
ij 

g can be split into a succession of curves, each one homotopic to a g~s or hp, q- 

geodesic, 1 <~ i < j <~ 3 and r, s, p, q E N*. 

Proof: Denote  by dl -- t l , . . .  ,t~ the g-half-path such tha t  dl D a ( d l )  is a good 

g-succession. 
_ ij If n = 2, it is easy to see tha t  g - g1,1, i , j  = 1,2,3  distinct. 

I f  n ~ 3, t h e n  g ~ g~!x o r  g ~ hi1!1, i , j  ~ 1 , 2 , 3  distinct. 

Let n > 3 and suppose tha t  the good succession above can be split into a good 

succession of curves c1, • .. ,cr,  each one homotopic  to a geodesic gr,siJ or  hp,q,ij 

r, s, p, q E N*, called respectively g l , . - .  , gr. Let d2 = dl Utn+ 1 . Then  d2 U a(d2) 

is homotopic  to a geodesic g~ having 2(n + 1) strings. Let us show tha t  g~ can be 

also split into a succession as described above. Let us suppose tha t  gr = gi(v and 

denote by dr = tn+ l - (~+v) , . . .  ,t~ the path included in dl such tha t  dr U a(dr) 

is homotopic  to gr and t~ is on the "~j-leg. Let d~ = dr U tn+l .  

1. If t~+l is also located on the ~,j-leg, then d~ U a(£2) is homotopic  to  gr = 
ij 

gu,v+l. 
2. If  tn+l is located on the ")'q-leg, q ¢ j ,  

ik  . a. if v = 1, then d~ U a(d~2) is homotopic  to gr = h~,l, 

b. if v > 1, denote f = t ~ + l - ( ~ + . ) , . . .  , tn -1 ;  then f U a ( f )  is homotopic  
ij 

to  gr -- gu,v-1 and (t~ U tn+l)  U a(tn U tn+l)  is homotopic  to the new 

element gr+i  = g{',q. 
ij 

If  gr = h~,t, the proof  is similar to the above one. | 



Vol. 109, 1999 CLOSED G E O D E S I C S  ON PAIRS OF PANTS 345 

PROPOSITION 4.6: For all 1 ~< m ~< n - 2 and 1 ~ i < j ~ 3, 

ij ij + g~ 1. gn,1 ~< g~-m- l ,1  

Proof: We reduce the problem to the following inequality, 

- 1 ij 2 g2iJ g'2iJ ~ ( G n _ m _ l , 1 )  ) ; ( a m , l )  - 1 ,  G~, I  ~ " ~ n - - m - l , l ~ m , 1  + ij  2 

and we split the problem into two parts. 

Firstly, we show that 

• ~ i j  ~,ij 2 2 v / (Gn_~_I ,1)  - 1 )v / (G~, I )  2 -  1. 

Let again ek = ck + cicj. Let us write 

hi  Si,n (Ck + CiCj) and h2 . ~ _ m _ l , p ~ . ~ , l .  
Si 

Now we split hi and h2 such that  hi = hl l  + --- + h15 and h2 --- h21 + " ' "  + h25 

where 
h l l  S i ' n - m - 1  -- - -  Ci,rnCiek, h12 ~ S i , n - m - l S i , m C k ,  

Si 

h13 Ci'n--m--1 -- _ _  Si ,mCiek,  h14 ~- Ci,n_m_lCi,mCiC j ,  
si  

and 

h15 = Ci,n-ra--lCi,rnCk~ 

h21 - Si 'n-m-~lCi ,mCjek~ 
Si 

h23 -= C i , n - m - l C j  8 i 'mek ,  
8i 

h25 -~ 2 8 i ' n - m - 1  2 Si ,meiCj ok" 
8 i 

2 2 8 i , n - m - 1  Si,rn(C 2 Q- c i c j )  ~ h22 - -  2 
8 i 

h24 ~ Ci,n--m--lCi,m¢ 2, 

It is easy to see that hli  <~ h2i, i = 1 , . . .  , 5. 

Secondly, we have to prove 

2 2 ij  2 
c , cj ( ( a  . . . .  1,1) - 1)((a ,112 - 11  

In order to simplify the notation, let us set j2 = 2cicjck + c2c 2 >~ 3. We have the 

following inequality, 
2 2 

Si,r 2 Si,r f 2  
-2] e k - -  l >" -2g- k" 
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Let us write 

2 2 
kl  =Ci,nC j , 

8i,n--rn--1 2 28i,n - m - 1  2 2 
k2 = f~ + - - c i  . . . . .  lcjek + ci ,~_~_lcj  

8i 

Si,m 2 S" 2 2 

We are going to prove that kl ~ k2. We split kl and k2 such that 

kl = kl l  A- . . .  + k19 and k2 = k21 A- . . .  A- k29 

where 

and 

2 2 2 2  2 2 2 2  
k l l  = Ci,n_m_lCi,mCiC j ,  k12 = Ci,n_m_18i,mSiC 3 , 

2 2 2 2  2 2 2 2  
k13  = 8i ,n_m_lSi ,mCiCj:  k14 = 8i,n_m_lCi,mSiCj~ 

2 2 
k15 : 2Ci,n_m_lCi,mSi,mCi8iC j: 

2 2 
k16 = 28i ,n-m_lCi ,mSi ,meiSic  ~ 

k17 = 2ei,n-m-lSi,.-,~-ici,,~si,,~(s2i + c2)c~, 
2 2 

k18 : 2Ci ,n_m_lSi ,n_m_lCi8iSi ,mC~ 

2 c  2 2 k19  : i ,n_m_lSi,n_m_lCiSiCi,mC~: 

2 
k21 2 2 2 2 2 2 8 i , m  ~e2 = Ci,n_m_lCi,mC~C ~, k22 = Ci,n_m_lCj---:'~Jk, 

8 i 
2 2 2 

8i,n--m--l ¢28i,m ¢2 8i,n--m--1 ,'2 2 2 
k23 : ~ Jk ~ Jk,  k24 - -  ~ ]k Ci,mCj, 

i i 8i 
2 28i,m k25 = 2c~,n_m_ l C~ --~-ekci,mcj, 

i 
2 

2 8 i ' n - m - 1  f 2 ~ i  ]g26 = 2 ekei,mej~ 
8 i 

8i,m k27 = 4si'~-m-lsi ekci,n-m-lC~--~-iekci,.~c~, 

k2s 2Ci,n_m_lC j 8i,n--m--1 2 2 = ekCi,mC ~ 
8i 

2 
8i,n--rn--1 8i,m ~2 

k29  : 2Ci,n_m_lCj - -  ek- . . .Z- jk .  
8i S i 

We see that kli ~< k2i, i --- 1 , . . .  ,9, hence the result. 1 
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PROPOSITION 4.7: Let g be a non-zygomorphic closed geodesic with 2n strings. 

Then there is at least one zygomorphic closed geodesic with 2n strings which is 

shorter than g. 

Proof: The geodesic g has an even number of strings, so we can split it into 

two paths Cl and c2 which are not homotopic to a boundary geodesic and have 

n strings each. Denote by g~ the (non-closed) geodesic which is homotopic to ci, 

i = 1, 2. Assume that gl is the shortest path. Then gl U a(gl ) is a zygomorphic 

geodesic with 2n strings which is shorter than g. | 

So we can assert that 12 g~,l is the shortest closed geodesic having 2(n+ 1) strings. 
Moreover, 12 12 gn,1 <~ n E N*; this also that 12 g~+1,1, means gn,1 is the shortest closed 

geodesic having at least 2 (n+ 1) strings as claimed, and ends the proof of Theorem 

3.1. 

Remark 4.8: The minimum of G~2,1 is equal to 2n + 1. 

G~2,1 is minimal when the boundary geodesics are cusps. This special case of a 

pair of pants was studied by Paul Schmutz Schaller [Sch96b] who gave its length 

spectrum without counting multiplicity, using a very different approach than the 

one taken here. The length spectrum is {2n + l ln E N}. He gave also the length 

spectrum of a special pairs of pants with two cusps in [Sch96a]. 
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