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Abstract A protein from Arabidopsis thaliana (L.) Hey-
nh. showing homology to animal proteins of the NaPi-1
family, involved in the transport of inorganic phosphate,
chloride, glutamate and sialic acid, has been character-
ized. This protein, named ANTR2 (for anion trans-
porters) was shown by chloroplast subfractionation to
be localized to the plastid inner envelope in both A.
thaliana and Spinacia oleracea (L.). Immunolocalization
revealed that ANTR2 was expressed in the leaf meso-
phyll cells as well as in the developing embryo at the
upturned-U stage. Five additional homologues of
ANTR2 are found in the Arabidopsis genome, of which
one was shown by green fluorescent protein (GFP) fu-
sion to be also located in the chloroplast. All ANTR
proteins share homology to the animal NaPi-1 family, as
well as to other organic-anion transporters that are
members of the Anion:Cation Symporter (ACS) family,
and share the main features of transporters from this
family, including the presence of 12 putative trans-
membrane domains and of a 7-amino acid motif in the
fourth putative transmembrane domain. ANTR2 thus
represent a novel protein of the plastid inner envelope
that is likely to be involved in anion transport.

Keywords Anion Æ Arabidopsis Æ Chloroplast Æ Inner
envelope Æ Transporter

Abbreviations ACS: Anion:Cation Symporter Æ GFP:
green fluorescent protein Æ Pi: inorganic phosphate

Introduction

The plastid is the site for a number of biosynthetic
functions essential to plants, including photosynthesis,
nitrogen assimilation and the synthesis of amino acids,
as well as the synthesis of starch, fatty acids and
numerous secondary products. These diverse biochemi-
cal functions rely on the controlled exchange of metab-
olites between the plastid and the surrounding cytosol.
Plastids are double-membrane organelles. Although the
outer envelope membrane contains a number of proteins
that have been shown to have channel-like activities
(Pohlmeyer et al. 1997), and therefore may act as a
selectivity filter, the major site of the controlled ex-
change of metabolites across the plastid is the inner
envelope (Fischer and Weber 2002). Numerous proteins
located in the inner envelope membrane are needed for
the transport of a variety of metabolites, including
inorganic anions such as phosphate, sulfate, nitrite and
chloride, organic anions such as amino acids and pyru-
vic acid, as well as adenylates and phosphorylated
intermediates (Fischer and Weber 2002; Neuhaus and
Wagner 2000).

To date, only a small subset of transporters of the
plastid inner envelope has been biochemically charac-
terized and the corresponding gene identified. These in-
clude the triose phosphate/phosphate exchanger,
phosphoenolpyruvate/phosphate exchanger, 2-oxoglut-
arate/malate and glutamate/malate translocators, ADP/
ATP translocator, glucose-6-phosphate/phosphate
translocator, pentose phosphate/phosphate translocator
and the glucose translocator (Flügge et al. 1989; Weber
at al. 1995, 2000; Fischer et al. 1997; Neuhaus et al.
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1997; Kammerer et al. 1998; Eicks et al. 2002; Taniguchi
et al. 2002; Renné et al. 2003). It is thus clear that
numerous additional transporters of the plastid inner
envelope remain to be identified and characterized.

Several approaches can be used to identify and
characterize transporters present in the plastid inner
envelope. These range from the classical approach of
biochemical purification of proteins followed by recon-
stitution into artificial membranes, to approaches using
genomics, including the in silico analysis of the genome
of Arabidopsis thaliana for the presence of genes
encoding putative plastid membrane proteins as well as
the analysis of the proteome of the plastid inner enve-
lope using organic solvent extraction and MALDI–TOF
analysis (Ferro et al. 2002, 2003; Koo and Ohlrogge
2002).

In this work, we demonstrate the identification of a
novel protein present in the plastid inner envelope of
A. thaliana and Spinacia oleracea that shows homology
to animal transporters involved in inorganic phosphate
(Pi), chloride and glutamate transport.

Materials and methods

Plant material

Wild-type Arabidopsis thaliana (L.) Heynh., accession Columbia
(Arabidopsis Biological Resources Center, Ohio), was grown under
continuous light on a mixture of 2/3 soil and 1/3 perlite at 19 �C
and 60% relative humidity. Spinach (Spinacia oleracea L.) leaves
were purchased at the local supermarket.

DNA constructs and expression in Escherichia coli

The full-length ANTR1 cDNA was isolated by screening the PRL-2
cDNA library (Newman et al. 1994) with a probe derived from a
partial expressed sequence tag (EST). A similar screen for ANTR2
gave rise only to an incomplete cDNA. The full-length ANTR2
cDNA was isolated by a 5¢-RACE–PCR approach (Frohman et al.
1988) on the Arabidopsis PRL-2 cDNA library. The PCR product
corresponding to the missing 5¢ end was inserted at the BglII site
located near the 5¢ end of the incomplete cDNA using standard
molecular biology procedures.

The plasmid psmRS–GFP was used for the construction of the
ANTR1–GFP fusion (Davis and Vierstra 1998). A PCR fragment
including the whole coding region of ANTR1 was inserted in the
XbaI–BamHI sites of psmRS–GFP in order to create an in-frame
fusion protein with the ANTR1 protein sequence at the N-terminus
and green fluorescent protein (GFP) at the C-terminus. The cas-
sette containing the CaMV 35S promoter-ANTR1–GFP fusion-
Nos terminator was excised by HindIII–EcoRI and inserted in the
binary vector pBI121 (Clontech, Palo Alto, CA, USA). As a con-
trol the GFP from the plasmid psmRS–GFP was also subcloned in
the binary vector pBI121.

Polypeptides representing the N-terminal hydrophilic portion
of the mature ANTR1 and ANTR2 proteins were expressed in E.
coli using the pET expression system (Novagen, Madison, WI,
USA). Briefly, DNA fragments encoding portions of ANTR1 and
ANTR2 were amplified by PCR using oligonucleotides creating
NdeI and BamHI restriction sites at the 5¢ and 3¢ ends, respectively,
and cloned in the same sites in the pET14b vector. The proteins
were expressed in the E. coli strain BL21(DE3)LysE growing in
media containing isopropyl b-D-thiogalactopyranoside (IPTG).
Total protein extracts were analyzed by Western blotting using
ANTR2 antibodies.

Plant transformation

Arabidopsis was transformed with the GFP and ANTR1–GFP
constructs by the floral-dip method using Agrobacterium tumefac-
iens pGV3101 (Clough and Bent 1998). Transgenic plants were
selected on Murashige and Skoog media containing 1% sucrose
and 50 lg/ml kanamycin. Epidermal peels of the abaxial surface of
leaves of transgenic plants were analyzed by epifluorescence
microscopy.

Chloroplast isolation

Chloroplasts were isolated according to Douce and Joyard (1982)
on a Percoll gradient. Leaves were cut from young plants (less than
4 weeks old) and stored in air at 4 �C overnight to reduce the starch
content of the chloroplasts. For spinach leaves, the mid-rib of each
leaf was removed before storing overnight at 4 �C. All further steps
were performed at 4 �C. Leaves were homogenised with two short
bursts (3–5 s each) in a Waring Blender in 3 vol. of Buffer H
[0.33 M sucrose, 30 mM Na-pyrophosphate (pH 7.8), 0.1% BSA].
The homogenate was filtered through one layer of Miracloth and
centrifuged for 10 min at 1,200 g. The pellet was gently resus-
pended in Buffer J [0.33 M sucrose, 10 mM MOPS–KOH
(pH 7.8)] with a paintbrush. The suspension was filtered through
one layer of Miracloth, layered on a 40/80% (v/v) Percoll step
gradient in Buffer J and centrifuged at 3,000 g for 20 min. The
intact chloroplasts were collected from the 40/80% interphase, di-
luted at least 5 times with Buffer J and centrifuged at 3,000 g for
5 min. Finally the chloroplasts were resuspended with a paintbrush
in an appropriate volume of Buffer J. The amount of chlorophyll in
the chloroplast preparation was determined by mixing 10 ll of
purified chloroplasts with 10 ml of 80% (v/v) acetone. Aliquots of
1 ml were centrifuged for 30 s. The absorbance at 652 nm was
determined and the amount of chlorophyll calculated with the
formula: chlorophyll (mg/ml) = OD652·28.99.

Isolation of chloroplast envelopes

Envelopes were separated by methods adapted from Joyard et al.
(1982). Intact chloroplasts were resuspended in a hypertonic med-
ium [0.66 M sucrose, 10 mM MOPS–KOH (pH 7.8), 4 mM
MgCl2], frozen at )20 �C for at least 1 h and thawed at room
temperature for 1 h. The chloroplast envelopes were then stripped-
off by homogenisation in a Dounce (Sigma, St. Louis, MO, USA)
homogeniser (20–40 strokes). The freezing and homogenising were
repeated once more. The homogenate was supplemented with su-
crose to a final concentration of 1.1 M, overlaid with hypertonic
medium (0.66 M sucrose) and Buffer J [0.33 M sucrose, 10 mM
MOPS–KOH (pH 7.8)]. This gradient was centrifuged at 113,000 g
at 4 �C for at least 3 h. Highly purified outer envelopes were iso-
lated from the 0.33/0.66 M interphase, diluted at least 3 times with
Buffer J and centrifuged at 208,000 g. Enriched inner envelopes
were collected from the 0.66/1.1 M interphase, diluted at least 3
times with Buffer J and centrifuged for 60 min at 208,000 g. The
envelope pellets were resuspended in an appropriate volume of
Buffer J.

Total protein extraction and quantification

For small-scale extractions, 100 mg of plant material was ground
with 100 ll of extraction buffer [80 mM Tris–HCl (pH 8.0), 5 mM
DTT, 0.1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride
(PMSF), 1% Triton X-100] in an Eppendorf tube. For larger
amounts the plant material was ground in liquid nitrogen, and the
powder extracted with the same amount (w/v) of extraction buffer.
Cell debris was separated by centrifugation at 10,000 g in a table-
top centrifuge. The supernatant was stored at )80 �C. The amount
of protein in the different organelle fractions and from the total
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protein extractions was determined with the Bradford assay from
BioRad (Richmond, CA, USA). In the Western analysis of crude
extracts from various tissues, care was taken to load equal amounts
of proteins on the gel, and the quality of the extracts and of the
transfer was controlled by Ponceau Red staining.

Analysis of organelle and membrane fractions

The purity of organelles and membrane fractions was tested by
Western blot analysis. Proteins were fractionated by SDS–PAGE.
The sample denaturation was done in Laemmli buffer on ice for
1 h. The proteins were transferred onto nitrocellulose in a Trans-
Blot electrophoretic cell (BioRad). Free binding sites were blocked
with blocking buffer (8 g/l NaCl, 0.2 g/l KCl, 1.44 g/l Na2HPO4,
0.24 g/l KH2PO4, 0.1% Tween-20, 5% milk powder). The nitro-
cellulose membranes were incubated with the following organelle-
specific antibodies: aquaporin RD28 for plasma membranes
(Daniels et al. 1994), pyrophosphatase VPPase326 for tonoplast
(Kim et al. 1994), porin for mitochondria (Heins et al. 1994),
SEC12 for the ER (Bar-Peled and Raikhel 1997), TOC75 for outer-
envelope proteins (Tranel et al. 1995), TIC110 for inner-envelope
proteins (Lübeck et al. 1996) and LHCII for thylakoids. The
antibody dilutions used were 1:500 for RD28, TIC110 and At-
SEC12, 1:800 for porin, 1:1,000 for VPPase326 and TOC75, and
1:2,000 for LHCII. AtSEC12 antibody was purchased from Rose
Biotechnology (Palo Alto, CA, USA). The ANTR2 rabbit anti-
body was made against the peptide NSIKINRSRAYYKSEESDIA
that was coupled to keyhole-limpet protein (Eurogentec, Belgium).
Antibodies were visualized with horseradish peroxidase conjugated
to protein A and the Enhanced Chemiluminescence Kit (ECL;
Amersham, UK) as recommended by the manufacturer.

Immunolocalization

Tissues were fixed in a solution containing 3.7% (w/v) formalde-
hyde, 5% (v/v) acetic acid, 50% (v/v) ethanol, for 4 h at room
temperature, followed by 3 days at 4 �C. Tissues were then dehy-
drated in an ethanol gradient, cleared in xylol and embedded in
paraffin wax. Section of 10 lm were dewaxed, hydrated and
washed in water, and incubated in blocking buffer containing 10%
(w/v) BioRad blotting-grade blocker in 30 mM Tris–HCl (pH 7.5),
37 mM NaCl and 0.5% (v/v) Tween-80. Sections were incubated
with immune or pre-immune sera in blocking buffer for 2 h at room
temperature followed by washes in TBS-T buffer containing
30 mM Tris–HCl (pH 7.5), 37 mM NaCl and 0.5% (v/v) Tween-
80. The secondary antibody was a goat anti-rabbit immunoglobulin
linked to alkaline phosphatase (Dako, Switzerland). The secondary
antibody was diluted in blocking buffer and incubated with the
sections for 1 h at room temperature. After washing (first washing
with TBS-T buffer with Tween-80 followed by buffer without
Tween), colour was developed using the Dako NBT/BCIP system.
Sections were counterstained with 0.1% (w/v) alcian green for 20 s,
dehydrated in an ethanol series, cleared in xylene and mounted
with Eukitt (Kindler, Germany).

Results

Identification of two genes homologous
to animal anion transporters

NaPi-1 was initially characterized as a gene expressed in
rabbit kidney cells that confers sodium-dependant
phosphate transport when expressed in Xenopus oocytes
(Werner et al. 1991). Further studies have shown that in
Xenopus oocytes, NaPi-1 acts as anion channel perme-
able to chloride and organic anions (Busch et al. 1996).

More recently, the Caenorhabditis elegans EAT4
homologue was shown to be involved in glutamatergic
neurotransmission (Lee et al. 1999), while the human
homologue VGLUT1 has been shown to be a neuronal
glutamate transporter that also exhibits a conductance
for chloride (Bellocchio et al. 2000; Takamori et al.
2000). Another human homologue of NaPi-1, named
AST, has been implicated in the transport of sialic acid
(Verheijen et al. 1999).

We initially selected two expressed sequence tags
from Arabidopsis that showed homology to the rabbit
NaPi-1 gene. Two full-length cDNAs were subse-
quently isolated and named ANTR1 and ANTR2 for
anion transporters. ANTR1 corresponds to the gene
At2g29650, while ANTR2 corresponds to the gene
At4g00370. ANTR1 and ANTR2 share 70% amino
acid identity and 80% amino acid similarity (Fig. 1).
The homology is high throughout the proteins except
at the N-termini where the sequences are highly
divergent.

Analysis of ANTR1 and ANTR2 with the BlastP
program for homology with proteins having a charac-
terized function reveals highest homology with the
human VGLUT1 and AST, the C. elegans EAT4 and
the rabbit NaPi-1. Alignment of ANTR2 protein with
these animal proteins, as well as with a rice homologue,
is shown in Fig. 2. The level of similarity between
ANTR2 and the animal homologues ranges from 47%
for NaPi-1 to 53% for VGLUT1 or AST, with the
N-terminal hydrophilic domain being poorly conserved
for all proteins. All these proteins belong to the
Anion:Cation Symporter (ACS) family which itself is
included in the major facilitator superfamily (MFS; Pao
et al. 1998). Analysis of the hydropathy profiles of
ANTR1 and ANTR2 revealed the presence of 12
putative transmembrane-spanning domains separated in
two clusters of six domains by a larger hydrophilic
stretch (Fig. 3), a feature common to members of the
MFS superfamily. Both ANTR1 and ANTR2 also
contain the seven residues that form a characteristic
motif present in the members of the ACS family (Fig. 2;
Pao et al. 1998).

Analysis of the Arabidopsis proteins with the
ChloroP (Emanuelsson et al. 1999) and TargetP
(Emanuelsson et al. 2000) programs revealed a putative
chloroplast transit peptide for ANTR1 (ChloroP score
0.58, TargetP score 0.99), with a cleavage site between
amino acid 59 (Arg) and 60 (Ser; Fig. 1). Use of the
same programs for the analysis of ANTR2 gave
ambiguous and non-conclusive results (ChloroP score
0.49, TargetP score 0.68).

Fig. 1 Alignment of the Arabidopsis thaliana ANTR protein
family. The consensus sequence for ACS family members is
indicated by asterisks. The putative transit-peptide cleavage sites
for the proteins ANTR1, ANTR2 and ANTR3 are indicated by the
digits 1, 2 and 3, respectively, placed over the sequences. Alignment
was made with the ClustalW1.74 program

c
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ANTR2 is a chloroplast inner-envelope protein

The intracellular localization of the ANTR2 protein was
examined by organelle and membrane fractionation.
Analysis of the purity of the fractions was tested using
antibodies recognizing proteins specific to various
membranes. Antibodies against ANTR2 were raised
against a unique 19-amino-acid peptide present in the N-
terminal hydrophilic domain (see Materials and meth-
ods).

Preliminary analysis, by Western blotting, of frac-
tions derived from Arabidopsis leaves and enriched in
either plasma membrane, tonoplast, chloroplast or
mitochondria, indicated that ANTR2 was mainly a
chloroplast protein (data not shown). Subsequent anal-
ysis was thus focused on purification and fractionation
of the chloroplast. Figure 4a shows that ANTR2 protein
is enriched in the chloroplast fraction relative to a crude
extract from whole shoots. ANTR2 antibodies recognize
a single protein of 45 kDa. Analysis of the chloroplast

fractions by Western blotting with antibodies raised
against the endoplasmic reticulum protein Sec12, the
tonoplast pyrophosphatase, the plasma membrane
aquaporin RD28 and the mitochondrial porin, revealed
that the chloroplast fraction was depleted of proteins
derived from the membranes of other organelles (data
not shown).

Chloroplasts were then fractionated to separate the
inner and outer envelopes. The extent of enrichment and
contamination of the two fractions were analyzed by
Western blotting with antibodies against the inner-
envelope protein TIC110, the outer-envelope protein
TOC75 and the thylakoid protein LHCII. Figure 4b
(lanes 1–3) shows that ANTR2 is found enriched in the
inner-envelope fraction and depleted in the outer-enve-
lope fraction of Arabidopsis chloroplasts. Both envelope
fractions had undetectable contamination from thylak-
oids, excluding the localization of the ANTR2 protein in
these membranes. Similar results were obtained in
experiments with envelopes isolated from spinach chlo-
roplasts (Fig. 4b, lanes 4–6).

The localization of the ANTR2 protein to the
plastid inner envelope indicated that the N-terminal

Fig. 3 Hydropathy profiles of ANTR1, ANTR2 and the human
VGLUT1 homologue. Evaluation of the potential transmembrane-
spanning domains was performed using the programs HMMTOP
(http://www.enzim.hu/hmmtop), TMHMM (http://www.cbs.dtu.
dk/services/TMHMM) and Tmpred (http://www.ch.embnet.org/
software/TMPRED_form.html). The results were transposed on a
Kyte–Doolittle plot using a window of 11 amino acids. Trans-
membrane segments predicted by at least two programs are
indicated by black boxes while segments predicted by only one
program are indicated by open boxes

Fig. 2 Alignment of the Arabidopsis thaliana ANTR2 with a rice
(Oryza sativa) homologue (OsANTR), and with the human (Homo
sapiens) VGLUT1 and AST, the Caenorhabditis elegans EAT-4 and
the rabbit (Oryctolagus cuniculus) NaPi-1 proteins. The consensus
sequence for ACS family members is indicated by asterisks.
Alignment was made with the ClustalW 1.74 program

b

Fig. 4a, b ANTR2 is localized in the chloroplast inner envelope. a
Proteins (25 lg) from whole-leaf extracts (wl) and purified
chloroplasts (pc) were separated on an SDS–PAGE gel and
analyzed by Western blotting using polyclonal rabbit antibodies
against ANTR2. The asterisk denotes 45 kDa. b Proteins were
isolated from purified chloroplasts as well as inner and outer
chloroplast envelopes and analyzed by Western blotting with
antibodies against ANTR2, the outer envelope protein TOC75, the
inner envelope protein TIC110 and the thylakoid protein LHCII.
Lane 1, Arabidopsis purified chloroplasts (10 lg); lane 2, Arabid-
opsis outer envelopes (3 lg); lane 3, Arabidopsis inner envelopes
(3 lg); lane 4, spinach (Spinacia oleracea) purified chloroplasts
(30 lg); lane 5, spinach outer envelopes (16 lg); lane 6, spinach
inner envelopes (16 lg)
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hydrophilic domain may contain a cleavable transit
peptide. Analysis of the protein with ChloroP and
TargetP, combined with manual inspection of the N-
terminal hydrophilic domain, revealed the presence of
two potential cleavage sites, one between amino acids
28 (Ser) and 29 (Gly) and a second site between 87
(Arg) and 88 (Ala; Fig. 1). Since the second potential
cleavage site is within the peptide that was used for
production of antibodies, the ability of the antibodies
to detect the hydrophilic peptide included between
amino acids 88 and 139 of ANTR2 was checked. Fig-
ure 5 shows that the ANTR2 antibodies can detect the
ANTR2 peptide expressed in E.coli while they failed to
recognize a peptide representing the mature hydrophilic
portion of ANTR1 comprising the region between
amino acids 60 and 110.

Expression pattern of ANTR2

Western analysis of crude extracts from different tis-
sues of Arabidopsis was performed with antibodies
against ANTR2. Figure 6 shows that ANTR2 is pre-
dominantly expressed in leaves, stems and developing
siliques, while expression in roots and flowers was
below detection.

Expression of ANTR2 was further examined in leaves
and developing seeds by immunolocalization. Cross-
sections through leaves reveal expression of ANTR2 in
both palisade and spongy mesophyll cells (Fig. 7a, b).
No expression of ANTR2 protein is evident in cells of
the leaf epidermis. In 7- to 9-day-old siliques containing
embryos at the upturned-U stages, expression of
ANTR2 is strongest in the embryo and weak but
detectable in the cells of the outer integument,
endosperm and cells of the silique walls (Fig. 7c, d).

ANTR1 is a chloroplast protein

Rabbit antibodies raised against the entire N-terminal
hydrophilic domain (110 amino acids) of ANTR1were
found to significantly cross-react with the ANTR2 N-
terminal hydrophilic domain of the mature peptide
(amino acids 88–139), making its use inappropriate for
localization of ANTR1 (data not shown). A hybrid
protein was thus created whereby GFP was transla-
tionally fused to the C-terminal end of the full-length
ANTR1. GFP and the ANTR1–GFP constructs were
expressed under the control of the CaMV 35S promoter
and stably transformed into Arabidopsis. Epidermal
peels for the abaxial surface of leaves were examined by
epifluorescence microscopy (Fig. 8). While GFP was
found in the cytoplasm and nucleus but not in plastids of
epidermal cells of transgenic plants expressing the un-
fused GFP, the green fluorescence was clearly localized
in plastids in epidermal cells of transgenic plants
expressing the ANTR1–GFP fusion. These data indi-
cated that ANTR1 was localized to the plastids.

The ANTR gene family in Arabidopsis

Analysis of the genome of Arabidopsis for homologues
of ANTR1 and ANTR2 revealed the presence of four
additional genes homologous to ANTR1 and ANTR2,
namely At2g38060 (ANTR3), At3g46980 (ANTR4),
At5g44370 (ANTR5) and At5g20380 (ANTR6). No
complete cDNAs were available for ANTR3 and
ANTR6. The protein sequences of ANTR3 and ANTR6
were thus deduced using a combination of approaches,
including the annotation provided in TAIR (http://
www.arabidopsis.org) or TIGR (http://www.tigr.org),
alignment with ESTs from Arabidopsis and other plants,
as well as alignments with the ANTR members for
which the annotation has been confirmed with full-
length cDNAs (ANTR1, ANTR2, ANTR4 and
ANTR5). Analysis of the gene structure of ANTR6 and
comparison with the exon/intron structure of ANTR1,
ANTR2 and ANTR4 led to a predicted protein sequence
slightly different from the TAIR annotation. The dif-
ference is mainly due to a selection of splice acceptor
sites. Although a full-length cDNA was reported for
ANTR6 (accession AY095993), its structure appeared
aberrant since only a short open reading frame is gen-
erated. Analysis of this sequence indicates an insertion

Fig. 5a, b Specificity of the ANTR2 antibodies. Proteins (5 lg)
from whole Escherichia coli transformed with the pET14b vector
(lanes 1) or with constructs leading to the expression of peptides
representing the N-terminal hydrophilic portion of the mature
ANTR1 (amino acids 60–110; lanes 2) or ANTR2 (amino acids 88–
139; lanes 3) were separated on an SDS–PAGE gel. a Western blot
analysis using polyclonal rabbit antibodies against ANTR2. b
Coomassie blue staining of the SDS–PAGE gel showing the
overexpressed ANTR1 and ANTR2 peptides. The asterisk denotes
6 kDa

Fig. 6 Expression pattern of ANTR2 in Arabidopsis. Western
blotting was performed with equal loading (50 lg) of protein
isolated from roots (lane 1), leaves (lane 2), inflorescence stems
(lane 3), green siliques (lane 4), and flowers (lane 5). The arrow
indicates 45 kDa
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of 16 bases, which leads to a change in reading frame
and a premature stop codon. The prediction of the
ANTR6 protein is thus based on the exon/intron
structure of the cDNA with the removal of the 16 bases.

The alignment of all ANTR proteins sequences is
shown in Fig. 1.The level of homology between the
various members of the family ranges from 29% amino
acid identity and 49% similarity between ANTR4 and
ANTR5 to 70% identity and 80% similarity between
ANTR1 and ANTR2. The homology between ANTR
members is lowest at the N-terminal hydrophilic region.
The programs ChloroP and TargetP both predict a
chloroplast targeting sequence for ANTR3 (ChloroP
score 0.543, TargetP score 0.905; Fig. 1). The predic-
tions with the same programs for ANTR4 and ANTR6
are more ambiguous. The structure of the ANTR5
protein appears unusual in that it lacks an extensive N-
terminal hydrophilic domain common to all other
ANTR proteins. This indicates that the protein may be
located in a different sub-cellular compartment com-
pared to other members of the family. The SignalP
program (Nielsen et al. 1997) predicts an anchoring
signal peptide at the N-terminal end of ANTR5. The
gene structure of ANTR5 is also unusual in that it is
composed of a single exon while all other ANTR genes
are composed of at least eight exons. The various
members of the ANTR family contain at least five of the
seven residues that form the characteristic motif present
in the members of the ACS family (Fig. 1).

Discussion

Chloroplast purification and membrane subfractiona-
tion have shown that ANTR2 is a protein located in the
inner envelope of chloroplasts in both Arabidopsis and
spinach. ANTR2 has not been previously identified as a

plastid protein either through proteomic approaches
combining membrane protein extraction with organic
solvents and analysis of peptides with MALDI–TOF
(Ferro et al. 2002, 2003), or in silico searches of the
Arabidopsis genome using programs such as ChloroP or
TargetP (Ferro et al. 2002; Koo and Ohlrogge 2002).
This may be due, in part, to the failure of the ChloroP
and TagetP programs to recognize the chloroplast tar-
geting sequence.

Western analysis of crude protein extracts revealed
that ANTR2 is mainly expressed in leaves, stems and
developing siliques, while expression in roots and

Fig. 8a–d Localization of an ANTR1–GFP fusion in chloroplasts.
Epidermal pavement cells from the abaxial surface of transgenic
Arabiodopsis leaves expressing GFP (a, b) and the fusion protein
ANTR1–GFP (c, d) were examined by epifluorescence microscopy.
Autofluorescence from the plastids (a, c) was visualized with a Leitz
I2 filter (excitation filter 450–490 nm and long-pass emission filter
515 nm) while GFP (b, d) was visualized with a Leitz L3 filter
(excitation filter 450–490 nm, band-pass emission filter 520–
525 nm)

Fig. 7a–d Immunolocalization
of ANTR2 in leaves and seeds
of Arabidopsis. Paraffin sections
of leaves (a, b) and 7- to 9-day-
old siliques (c, d) were analyzed
with antibodies against ANTR2
(b, d), as well as the
corresponding pre-immune
serum (a, c)
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flowers is below detection. Immunolocalization revealed
that ANTR2 is expressed in the leaf spongy and palisade
mesophyll cells while expression in the leaf epidermal
cells is undetectable. In developing seeds, ANTR2
expression is mainly located in the embryo with some
weak expression in the integument, endosperm and cells
of the silique wall. Although the developing embryo of
Arabidopsis at the upturned-U stage is green and could
be competent at photosynthesis, the integument and
endosperm are non-photosynthetic. ANTR2 is thus ex-
pressed in both autotrophic and heterotrophic tissues.
Although the expression pattern of the ANTR1 protein
could not be determined, the localization of an ANTR1–
GFP fusion protein to the chloroplast shows that
ANTR1 is also a chloroplast protein.

Four additional homologues of ANTR1 and ANTR2
are found in the Arabidopsis genome. Although the
localization of these additional proteins within the cell is
unknown, the apparent lack of a chloroplast-targeting
signal for ANTR5 suggests that not all ANTR proteins
may be chloroplastic. All ANTR proteins are homolo-
gous to the animal NaPi-1 protein family as well as to
other organic-anion transporters found in the ACS
family of transporters, albeit at a lower level, including
bacterial hexunorate and galactonate transporters.
ANTR proteins share the main features of members of
the ACS family, including the presence of 12 putative
membrane-spanning domains clustered in 2 groups of 6,
as well as the presence of a 7-amino-acid motif in the
fourth putative transmembrane domain. To our
knowledge, the ANTR genes from Arabidopsis are the
first characterized plant genes that are members of the
ACS family of permeases (Pao et al. 1998).

The ANTR1 and ANTR2 genes of Arabidopsis were
isolated based on the high homology of the encoded
proteins to the rabbit and human NaPi-1. Although
NaPi-1 was initially identified as a protein expressed in
rabbit kidney that induced a sodium-dependant Pi
transport when expressed in Xenopus oocytes (Werner
et al. 1991), the role of this protein in vivo still remains
unclear. In contrast to NaPi-2, a protein unrelated to
NaPi-1 but also expressed in rabbit kidney and medi-
ating a strong sodium-dependant Pi transport in Xeno-
pus ooyctes, the rabbit NaPi-1 shows only low affinity to
Pi and the gene is poorly regulated by Pi supply (Werner
et al. 1998). Expression of NaPi-1 in Xenopus has been
shown to induce a chloride conductance that was
inhibited by chloride-channel blockers, as well as a
conductance for organic anions, such as benzylpenicillin
(Busch et al. 1996). Detailed studies of the Pi transport
induced by NaPi-1 expression in Xenopus oocytes indi-
cated that NaPi-1 might be up-regulating a Pi trans-
porter that is endogenous to Xenopus oocytes (Bröer
et al. 1998). Mutation in a homologue of NaPi-1 in
humans results in a deficiency in the transport of the
organic anion sialic acid, reinforcing the concept of
NaPi-1 as an organic-anion transporter (Verheijen et al.
1999). More recently, the human brain-specific NaPi-1
homologue (BNPI) has been shown to be responsible for

the transport of glutamate into synaptic vesicles
(Bellocchio et al. 2000; Takamori et al. 2000). In addi-
tion, this protein, which has been renamed VGLUT1,
was shown to exhibit a conductance for chloride that is
blocked by glutamate. VGLUT1 is expressed specifically
in glutamatergic neurons (Bellocchio et al. 1998), and
mutation in the NaPi-1 homologue EAT4 in C. elegans
results in a defect in neurotransmission from these
neurons (Lee et al. 1999). Together, these results indicate
that NaPi-1 homologues in mammalian cells are pri-
marily involved in the transport of glutamate (in neu-
rons) and of other organic acids, as well as acting as a
chloride channel. Although the evidence for a role of
mammalian NaPi-1 homologues in Pi transport is un-
clear, it remains possible that these proteins may have Pi
transport activity under some conditions. It is also
possible that NaPi-1 may have multiple activities, simi-
lar to the animal EAAT5/ASCT1 protein, which exhibits
both glutamate/amino acid transport activity and a
chloride conductance (Zerangue and Kavanaugh 1996),
and the chloroplast triose phosphate translocator, which
also exhibits channel activity towards anions (Schwarz
et al. 1994).

In view of the homology between the Arabidopsis
ANTR proteins and the mammalian NaPi-1, VGLUT
and AST proteins, three putative functions may be as-
signed to the plant chloroplast proteins, namely Pi
transport, glutamate/organic-anion transport or chlo-
ride channel.

Several proteins have been identified in the plastid
inner envelope that mediate the 1:1 counter-exchange of
Pi with phosphorylated compounds. These include the
triose phosphate/phosphate translocator (Flügge et al.
1989), the phosphoenolpyruvate/phosphate translocator
(Fischer et al. 1997), the glucose-6-phosphate/phosphate
translocator (Kammerer et al. 1998) and the pentose
phosphate/phosphate translocator (Eicks et al. 2002). A
proton-dependant phosphate transporter has also been
recently identified in chloroplasts (Versaw and Harrison
2002). There is evidence for the presence of additional Pi
transporters in the plastid envelope. For example, a
transporter exchanging malate for Pi has been identified
at the biochemical level in leukoplast envelopes from
castor seed endosperm (Eastmond et al. 1997) while
sulfate transport across the envelope of spinach chlo-
roplast was linked to counter-transport of Pi (Mourioux
and Douce 1979). In non-green plastids, synthesis of
starch from glucose-6-phosphate and ATP leads to a 2:1
imbalance between phosphate import and phosphate
export. A Pi transporter would be required for the exit
of Pi out of the plastid since a high level of Pi would
inhibit starch biosynthesis. Unidirectional transport of
Pi across the envelope membrane of cauliflower-bud
amyloplasts has been measured, although the corre-
sponding protein has not been identified (Neuhaus and
Maass 1996).

The inner envelope of the plastid contains transport
systems for the entry and exit of numerous non-
phosphorylated organic anions. These include the
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translocators for the exchange of glutamine and gluta-
mate (Yu and Woo 1988) or glycerate and glycolate
(Howitz and McCarty 1985), for which no proteins have
been identified. Furthermore, unidentified transporters
are also thought to be involved in the translocation of
numerous amino acids synthesized in the plastids.

Chloride channels have been characterized in the
envelopes of the chloroplast, either after reconstitution
into artificial membranes (Heiber et al. 1995) or in native
membranes (van den Wijngaard and Vredenberg 1997).
One of these channels was implicated in chloroplast
protein import (van den Wijngaard and Vredenberg
1997). Chloride and anion channels may be involved in
the maintenance of charge balance and pH across the
inner envelope. Besides the inner envelope triose phos-
phate/phosphate translocator, which has been shown to
have anion channel activity in reconstituted membranes
(Schwarz et al. 1994), the proteins involved in the vari-
ous chloride channel activities of the plastid inner
envelope have not been identified.

It is difficult at this point to define which of the
multiple potential candidate solutes is most likely
transported by the ANTR1 and ANTR2 proteins.
Functional characterization of transport activity of a
chloroplast protein through heterologous expression is
made difficult by the inappropriate targeting of the
proteins to endomembranes. Expression of chloroplast
membrane transporters in yeast followed by protein
purification and/or reconstitution into artificial lipo-
somes has been a method of choice used to characterize
a number of plastid transporters. Use of this reconsti-
tution system, as well as analysis of transport activity in
whole yeast expressing the ANTR 1 and ANTR2 pro-
teins without the transit peptide, has however failed to
detect any significant transport activity of ANTR1 and
ANTR2 towards either Pi, chloride, glutamate or glu-
tamine (data not shown). Reverse genetics and the
inactivation of the ANTR genes may give some clues as
to the role of the proteins in the plastids. The potential
expression of several ANTR homologues in the plastids
may complicate the analysis by reverse genetics and re-
quire the simultaneous inactivation or down-regulation
of several members of the ANTR gene family. Although
challenging, the study of the ANTR genes promises to
bring novel information on the biochemistry of metab-
olites across the envelope of the plastids, and perhaps
also of other membranes.
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