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Abstract This study extends a stochastic downscaling

methodology to generation of an ensemble of hourly time

series of meteorological variables that express possible

future climate conditions at a point-scale. The stochastic

downscaling uses general circulation model (GCM) real-

izations and an hourly weather generator, the Advanced

WEather GENerator (AWE-GEN). Marginal distributions

of factors of change are computed for several climate sta-

tistics using a Bayesian methodology that can weight GCM

realizations based on the model relative performance with

respect to a historical climate and a degree of disagreement

in projecting future conditions. A Monte Carlo technique is

used to sample the factors of change from their respective

marginal distributions. As a comparison with traditional

approaches, factors of change are also estimated by aver-

aging GCM realizations. With either approach, the derived

factors of change are applied to the climate statistics

inferred from historical observations to re-evaluate

parameters of the weather generator. The re-parameterized

generator yields hourly time series of meteorological

variables that can be considered to be representative of

future climate conditions. In this study, the time series are

generated in an ensemble mode to fully reflect the uncer-

tainty of GCM projections, climate stochasticity, as well as

uncertainties of the downscaling procedure. Applications

of the methodology in reproducing future climate condi-

tions for the periods of 2000–2009, 2046–2065 and

2081–2100, using the period of 1962–1992 as the historical

baseline are discussed for the location of Firenze (Italy).

The inferences of the methodology for the period of

2000–2009 are tested against observations to assess reli-

ability of the stochastic downscaling procedure in repro-

ducing statistics of meteorological variables at different

time scales.
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1 Introduction

Research studies of climate change impacts at the local

scales of human management and for specific environ-

mental applications, e.g., water resources, ecosystem

services, agricultural productivity, etc., are growing

exponentially (e.g., Christensen et al. 2004; Ines and

Hansen 2006; Bae et al. 2008; Bavay et al. 2009; Mooney

et al. 2009; Manning et al. 2009; Morin and Thuiller 2009;

Hirschi et al. 2012); see also Fowler et al. 2007a and

Maraun et al. 2010 for recent reviews. A necessary step in

such studies is ‘‘downscaling’’ of climate projections, i.e., a

transfer of information content of climate model realiza-

tions to the spatial and/or temporal scales that are finer than

the original model output. Most of the techniques that

have been presented in downscaling General Circulation

Model (GCM) realizations have targeted regional spatial

scales at the daily or even monthly time resolutions
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(Müller-Wohlfeil et al. 2000; Hay et al. 2002; Wilby et al.

2002; Barnett et al. 2004; Wood et al. 2004; Schmidli et al.

2006; Merritt et al. 2006; Leander and Buishand 2007; Burton

et al. 2010). A progress in improving spatial resolutions

has been achieved with methodologies that combine

dynamic downscaling with statistical downscaling, for

instance, the quantile-based error correction of Regional

Climate Model (RCM) realizations (Quantile Mapping)

(Ines and Hansen 2006; Piani et al. 2009; Hundecha and

Bárdossy 2008; Bárdossy and Pegram 2011), or other

empirical statistical methods (Themßl et al. 2011). How-

ever, fine temporal resolutions still represent a limitation of

recently developed downscaling methodologies (Maraun

et al. 2010). This limitation, for example, has direct con-

sequences on the reproduction and prediction of extreme

events. An improvement of these skills remains one of the

biggest challenges posed to downscaling methodologies

(Fowler et al. 2007b; Déqué 2007; Hundecha and Bárdossy

2008; Lenderink and vanMeijgaard 2008; Fowler and

Wilby 2010) and represents the missing step to predict the

‘‘vital details’’ of climate change needed by public

authorities or engineers (Kerr 2011). Hourly (or shorter)

temporal and local (station level) spatial resolutions can be

of paramount importance for hydrological, ecological,

geomorphological, and agricultural applications. Further-

more, in many environmental applications the two typi-

cally downscaled variables, i.e., precipitation and air

temperature (Déqué 2007; Vrac and Naveau 2007; Piani

et al. 2009; Themßl et al. 2011; Fowler and Wilby 2010;

Johnson and Sharma 2011; Groppelli et al. 2011), may not

be sufficient for detailed studies of climate change effects,

since other meteorological variables also modulate the

system response. Finally, the need to account for the

uncertainty in climate change predictions, as obtained from

a multi-model ensemble, can be also regarded as a funda-

mental task in downscaling studies. This uncertainty is

entirely neglected using a single GCM realization, and

partially neglected using the mean or the median of an

ensemble (Knutti 2010).

Given the need to find alternative solutions to address

the above limitations, this study extends a previously

developed stochastic downscaling technique of Fatichi

et al. 2011. The overall goal is to provide future climate

time series for several hydrometeorological variables that

fully address the issue of uncertainty inherent to GCM

projections. Specifically, the stochastic downscaling uses

a weather generator, the Advanced WEather GENerator

(AWE-GEN) to simulate the time series of projected

future climate at the station-level and at the hourly time

scale. The weather generator has been demonstrated to

satisfactorily reproduce a large set of climate vari-

ables and statistics over a range of temporal scales,

from extremes to low-frequency inter-annual variability

(Fatichi et al. 2011). One of the novelties contributed by

Fatichi et al. 2011 was represented by the capability to

account for the uncertainty of individual projections by

using an ensemble of GCM realizations. However, the

methodology only partially addressed this uncertainty by

using the mean/median of a GCM ensemble. In this study,

the uncertainty of GCM projections is explored further

through the generation of an ensemble of time series of

meteorological variables, such as precipitation, air tempera-

ture, relative humidity, wind speed, and solar radiation.

An ensemble of alternative scenarios of the future is

generated by using factors of change corresponding to

different probabilities of marginal density functions of

factors of change, associated with a given climate change

scenario. Specifically, factors of change are sampled from

their distributions using Monte Carlo method to entirely

account for the probabilistic information obtained with the

Bayesian multi-model approach (Tebaldi et al. 2004, 2005;

Fatichi et al. 2011). Monte Carlo sampling technique

requires certain assumptions about the dependence/inde-

pendence among the factors of change and such assump-

tions are developed in this study. The derived factors of

change are applied to the statistics inferred from historical

observations to re-evaluate the parameters of the weather

generator, which is used to obtain alternative climate

scenarios.

Several studies expressed certain confidence that a GCM

ensemble can provide more reliable projections of climate

change or, at least, that the uncertainty is reasonably well

captured by the variation among different models (Räisä-

nen 2007; Knutti 2008). However, the notion that model

weighting is an improvement in climate change predictions

(Lambert and Boer 2001; Tebaldi and Knutti 2007;

Reichler and Kim 2008; Pierce et al. 2009), when com-

pared to the use of a single climate model (typically,

subjectively selected), or when individual model perfor-

mances are ignored (i.e., a simple average of model outputs

is used) has been recently challenged (Knutti et al. 2010;

Weigel et al. 2010; Christensen et al. 2010). The argument

has been that while model weighting is promising in

principle, the lack of correlation or information on the

relation among error characteristics and climate change

variables hampers the possibility of obtaining robust

weights (Weigel et al. 2010; Giorgi and Coppola 2010);

simple averaging might be preferred to avoid another level

of uncertainty (Knutti et al. 2010; Christensen et al. 2010).

The relative interdependence among models represents a

further issue in using model weighting techniques (Masson

and Knutti 2011). One of the contributions of this study is a

comparison of the methodology that assigns specific

weights to different members of a GCM ensemble with a

simple average of the ensemble (i.e., equal weighting),

representing a more conventional approach to downscaling.

1842 S. Fatichi et al.

123



This allows us to evaluate the differences and an added

value of multi-model weighting in the final product of the

downscaling—an ensemble of alternative climate

scenarios.

The presented application focuses on the location of

Firenze (Italy), where changes of climate may bring about

not only impacts on the natural environment but also on

human activities, such as tourism (Berrittella et al. 2006;

Amelung et al. 2007), or preservation of important his-

toric-monumental heritage (Lefèvre et al. 2010). This

study compares a control scenario characterized by cli-

mate over the period of 1962–1992, with three different

time periods of future climate: 2000–2009, 2046–2065,

and 2081–2100. The first time interval is regarded as a

hypothetical ‘‘future’’, where climate predictions can be

simulated according to the presented methodology but

observations of the actual climate realization are also

available. This time overlap allows one to partially

evaluate the reliability of the presented methodology in

simulating the expected future. Such an approach cannot

be regarded as a full validation in the conventional sense

of this term. However, it is important because it repre-

sents an assessment of reliability of the presented meth-

odology and can be therefore thought of as an indirect test

of numerous assumptions employed by the approach.

Furthermore, to the author’s knowledge, this is the first

time a downscaling technique is effectively tested in

reproducing an observed climate, considering it in a

‘‘future-like’’ mode, as opposed to validation in terms of

downscaling/reproducing past climates or through

‘‘pseudorealities’’ (Denis et al. 2002; Vrac et al. 2007;

Maraun et al. 2010).

2 Methodology

The stochastic downscaling methodology uses the

AWE-GEN (Ivanov et al. 2007; Fatichi et al. 2011) to

generate continuous time series of hydroclimatic variables

for three time intervals considered as ‘‘future’’. The three

periods are 2000–2009, 2046–2065, and 2081–2100. As a

necessary condition of the methodology, all of these time

periods are assumed to be stationary. The weather gen-

erator is also used to simulate the observed climate,

defined as the ‘‘control scenario’’, or as the ‘‘training’’

period, since the generator parameters are derived using

data for this period. The control scenario (CTS) is the

thirty-one year long period of 1962 through 1992. Note

that the historical period of 2000 through 2009 is regarded

as ‘‘future’’ in this study. The motivation is to provide an

assessment of reliability of the stochastic downscaling

methodology. Given the uncertainty of characterizing

climate statistics for a 10 year-period, the comparison is

limited, i.e., it cannot fully evaluate the downscaling

methodology. Nonetheless, it provides useful insights on

the capabilities of the methodology. For example, the

comparison illustrates whether consistent results can be

obtained for different aggregation intervals or variables

that are not directly downscaled from climate models,

e.g., hourly time scales and meteorological variables other

than precipitation and air temperature. Note that the time

interval between the mid-point years of the training

and the first assessment periods (i.e., 1977 and 2005) is

28 years. Such a period is comparable to the time interval

of climate change projection for the near-future and the

comparison is therefore subject to similar uncertainties

and issues.

2.1 Stochastic downscaling

The theoretical basis and procedural steps of the stochastic

downscaling methodology are discussed in detail in Fatichi

et al. 2011 and only briefly summarized here. Overall, the

stochastic downscaling methodology allows one to derive

the distributions of factors of change that are calculated as

ratios or ‘‘delta’’ differences of climate statistics (Anandhi

et al. 2011) for historical and future periods. More spe-

cifically, a set of factors of change is computed at the

station level to reflect changes in the mean monthly air

temperature and several statistics of precipitation (e.g.,

mean, variance, skewness, frequency of no-precipitation) at

different aggregation periods, as a result of comparing

historical and predicted climate.

The factors of change derived from a GCM realization

can be subsequently applied to a set of statistics of

observed climate in order to obtain statistics representative

of future climate (Kilsby et al. 2007; Burton et al. 2010

Fatichi et al. 2011). Using these statistical properties, an

updated set of AWE-GEN parameters is estimated (Fatichi

et al. 2011). As noted previously, each set of AWE-GEN

parameters (i.e., a ‘‘parameterization’’) is calculated

assuming climate stationarity for any considered period.

The re-parameterized weather generator can be succes-

sively used to simulate hourly time series of hydro-climatic

variables that are considered to be representative of the

predicted climate.

Multi-model realizations of GCM can be also used,

which thus can yield an ensemble of sets of factors of

change. In this study, realizations from twelve general

circulation models are used in all of the analyses (Fig. 1).

These models represent a subset of GCMs used in the

fourth assessment report (4AR) of the IPCC (Meehl et al.

2007a, b). The realizations correspond to the A1B emission

scenario (IPCC 2000). Therefore, the uncertainty related to

the plausibility of different emission scenarios is not

accounted for in this study.
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An ensemble of GCM realizations results in an ensem-

ble of sets of factors of change (Fig. 1), which poses the

challenge of including the associated uncertainty in

downscaling studies. This source of uncertainty is regarded

as one of the principal in climate change studies (Déqué

et al. 2005; Räisänen 2007; Knutti 2008; Prein et al. 2011;

Hawking and Sutton 2011). The simplest way to proceed is

to average the factors of change among different sets,

obtaining a single factor for each climate variable/statistic

(IPCC 2007). This implies that multi-model information

would be retained in the methodology only in a limited

fashion: the factors of change are the result of averaging of

a model ensemble but their distribution is neglected.

Advanced techniques proposed recently take into account

the projection information more completely (Giorgi and

Mearns 2003; Tebaldi and Knutti 2007). A specific tech-

nique used in our previous study (Fatichi et al. 2011)

weights the predictions of different members of an

ensemble of climate models using a Bayesian approach

(Tebaldi et al. 2004, 2005; Smith et al. 2009; Manning

et al. 2009). This approach can use either equal weights or

weights computed according to specific criteria, for

instance, convergence among model realizations and model

bias with respect to the historical climate (Tebaldi et al.

2004, 2005). Any of such possible weighting methods

produces probability density function (PDF) for each factor

of change (e.g., mean monthly temperature, mean and

variance of precipitation over 24-hour period, etc.) (Tebaldi

et al. 2005; Fatichi 2010).

2.2 Sampling of factors of change

A significant challenge is posed by the need to keep

probabilistic information on future changes in the final

output of a stochastic downscaling procedure, such as

hourly time series of meteorological variables. In Fatichi

et al. 2011, AWE-GEN was used to generate the time

series of predicted mean/median future climate, using a

single set of weather generator parameters corresponding

to the means/medians of the PDFs of factors of change.

Such an approach produced a single, most probable future

climate (Fatichi et al. 2011), yet neglecting most of

information contained in the PDFs.

Transferring the complete uncertainty contained in the

PDFs of factors of change into generated meteorological

time series can be regarded as the ultimate step in a

downscaling methodology, allowing one to account for a

heterogeneous nature of climate predictions produced by

different models. This step calls for a Monte Carlo simu-

lation approach (e.g., Robert and Casella 2010) that poses
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Fig. 1 The time series of total monthly precipitation calculated from

observations (OBS) and twelve GCMs: CCSM3, CSIRO-Mk3.5,

ECHAM5-MPI-OM, IPSL-CM4, CGCM3.1(T63), GFDL-CM2.1,

INGV-SXG, MIROC3.2(medres), BCCR-BC2, CNRM-CM3, GISS-

ER, and PCM for the location of Firenze: a Control scenario (CTS),

1962–1992; b future scenario (FUT), 2046–2065; c product factors of

change for monthly precipitation
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several challenges. Firstly, a Monte Carlo application

requires assumptions about the dependence/independence

of the factors of change. Secondly, a numerical method-

ology must be used because a joint probability density

function that combines all of the factors of change can not

be defined in an analytical form; also the marginal distri-

butions of factors of change can only be derived empiri-

cally through a Monte Carlo Markov Chain (MCMC)

approach (Tebaldi et al. 2004, 2005; Fatichi 2010, Fatichi

et al. 2011). Recently, joint distributions of the factors of

change for average seasonal temperature and average sea-

sonal precipitation were obtained numerically (Tebaldi and

Sansó 2009) but are still too simplified to be suitable for the

stochastic downscaling with AWE-GEN.

A Monte Carlo simulation implies that random factors

of change must be generated according to their distribu-

tions. In total, the stochastic downscaling technique derives

170 PDFs of factors of change from an ensemble of climate

models (Fatichi et al. 2011). These include 12 PDFs for the

monthly air temperature, Tmon, (i.e., one for each month),

12 9 4 PDFs for each precipitation statistics, which are

four in total (i.e., the factors of change are computed on a

monthly basis for the mean EPr(h), variance VARPr(h),

frequency of no-precipitation, UPrðhÞ, and skewness,

SKEPr(h), at different aggregation periods, specifically,

h = 24, 48, 72, and 96 h), and 2 PDFs for the coefficient

of variation and the skewness of the annual precipitation

process, Pryr (see Fatichi et al. 2011). One may note that

12 ? 4 9 12 9 4 ? 2 = 206, however, the product fac-

tors of change for mean precipitation, EPr(h), are the same

regardless of the aggregation period because of the line-

arity of the mean operator. Consequently, only 12 PDFs of

factors of change for mean precipitation, EPr, are generated

and the random selection is constrained to 170 PDFs.

2.3 Cross-correlation among factors of change

The correlation among the factors of change is intrinsic to

the methodology because the PDFs of the factors of change

are obtained using GCM realizations that produce climate

variables and statistics that are physically correlated.

However, an exact cross-correlation among the factors of

change is unknown and must be assumed. This poses a

further challenge in transferring the uncertainty from the

marginal PDFs of the factors of change to the time series

sought to be generated by the downscaling procedure. The

simplest way to approach the problem is to assume a

complete independence among some of the estimated

factors of change. For instance, although some degree of

correlation is expected between future changes in precipi-

tation and air temperature (Tebaldi and Sansó 2009), the

GCM-derived changes of these two variables can be

assumed to be fairly independent. However, statistical

independence would be difficult to justify for changes of

the same variable but in different months, e.g., delta-

changes of air temperature in consecutive months cannot

be assumed to be entirely independent. The same consid-

eration applies to changes of the same variable at different

aggregation periods, e.g., changes in the variance of pre-

cipitation at 24 and 48-hour intervals are undoubtedly

strongly correlated. Consequently, some of the variables

can be hypothesized to have a strong correlation. Such a

hypothesis is probably acceptable for the factors of change

of the same variable at different months and aggregation

periods.

It is impossible to identify a theoretical solution for the

issue of cross-correlation among the factors of change,

since it is impossible to find the complete structure of a

multivariate PDF only having the marginal PDFs. Data do

not exist and will unlikely come to existence to quantify

the cross-correlations among different factors of change,

which are thus highly uncertain. A pragmatical solution

must be adopted. Specifically, in this study the 170 factors

of change are reduced to 7 independent groups. The factors

of change are assumed to be entirely uncorrelated among

the groups. Within each group, a complete dependence

among the factors of change is assumed. The group com-

positions are described in Table 1. As seen, the factors of

change among different precipitation and air temperature

statistics are considered to be completely independent. The

factors of change for different months and aggregation

Table 1 The partition of factors of change of the downscaling pro-

cedure into groups

Group Variable Number of factors of change

1 Tmon 12 (monthly)

2 VARPr(h) 12 9 4 (monthly and

h = 24, 48, 72, 96 h)

3 UPrðhÞ 12 9 4 (monthly and

h = 24, 48, 72, 96 h)

4 SKEPr(h) 12 9 4 (monthly and

h = 24, 48, 72, 96 h)

5 EPr(h) 12 (monthly)

6 Cv of Pryr 1

7 Skewness of

Pryr

1

Within each group, the factors of change are assumed to be perfectly

correlated, i.e., the coefficient of correlation is equal to one. Among

the groups, the factors of change are assumed to be independent, i.e.,

their cross correlations are equal to zero. The term Tmon represents the

monthly air temperature, VARPr(h) is the precipitation variance,

UPrðhÞ is the frequency of no-precipitation, SKEPr(h) is the precipi-

tation skewness, EPr(h) is the precipitation mean, Pryr is the annual

precipitation, Cv is the coefficient of variation
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periods but the same variable are assumed to be perfectly

correlated, i.e., the changes of a statistic at different months

and aggregation periods have cross-correlations equal to

one. For instance, a change in the precipitation variance for

a 24-hour aggregation period is fully correlated with the

change for a 72 h period.

2.4 Generation of an ensemble of future climate time

series

Given the above assumptions of cross correlations among

the factors of change, each Monte Carlo iteration consists

in generation of only 7 independent random numbers

(specifically, cumulative probabilities of PDFs), one for

each group. The generated cumulative probabilities,

pi, i = 1, …, 7, are used to estimate the factors of change

for each PDF of the corresponding group (see Table 1). For

instance, in a single Monte Carlo iteration, a random

cumulative probability p1 is generated to estimate the

additive factor of change for Tmon for each month. A ran-

dom cumulative probability p2 is generated to estimate the

product factors of change for VARPr(h) for each month and

at the four aggregation intervals: 24, 48, 72, and 96 h.

Similar considerations can be extended to the other

remaining groups (3 through 7) with p3, … , p7.

Note that the same cumulative probability does not

necessarily imply the same factor of change, because the

latter depends on the shape of the marginal PDF. The PDFs

of the factors of change are generally different within the

same group of PDFs and across groups. Given the

numerical representation of these distributions, further

details on calculation of these PDFs are warranted and

provided in the following.

In total, one thousand sample values are used for each

factor of change to define a PDF and its integral, i.e., the

cumulative distribution function (CDF). The samples are

the result of the Monte Carlo Markov Chain (MCMC)

method, as described in Tebaldi et al. 2005 and Fatichi

2010. Specifically, a Gibbs sampler is used to simulate the

joint posterior distribution of the multi-model ensemble by

iteration on a sequence of full conditional distributions.

Empirical probabilities are assigned to each sample with a

plotting position method (Cunnane 1978). Once a random

number, p, distributed uniformly between 0 and 1 has been

generated in the Monte Carlo procedure, a linear interpo-

lation of the CDF is used to find the exact value of the

factor of change corresponding to the cumulative proba-

bility p.

Following the described procedure of a single iteration

for a single probability p; �N Monte Carlo iterations, equal

to the number of desired alternative ensemble series, are

carried out, each time generating seven random

probabilities, pi i = 1, …, 7, and thus yielding 170 factors

of change (correlated as described previously). Each of �N

sets of factors of change is applied to the climate statistics

inferred from observed data in order to obtain modified

statistics representative of a possible climate for a future

period. The procedure is exactly equivalent to the use of a

mean/median set of factors of change described in Fatichi

et al. 2011. However, in Monte Carlo sampling the process

is iterated �N times, fully exploring the probabilistic infor-

mation contained in the PDFs of factors of change. Once

all of the statistical properties are calculated for �N repre-

sentations of a future climate period, �N sets of AWE-GEN

parameters are estimated.

2.5 Ensemble types

Several approaches for computing an ensemble of para-

meterizations are considered in this study with the over-

arching goal to represent different probabilistic expressions

of future climate. The parameterizations are calculated

either as a result of processing PDFs of factors of change

(i.e., an infinite number of possible parameterizations) or

by using a single set of factors of change.

Specifically, Bayesian weighted averaging (BWA)

approach combines factors of change of GCM members

according to the criteria of convergence among model

realizations and model bias with respect to a historical

climate (Tebaldi et al. 2004, 2005; Fatichi et al. 2011). The

methodology leads to different weights for the factors of

change obtained from different GCMs. Conversely, equal

weights are introduced through Bayesian simple averaging

(BSA). Both of the methods result in the PDFs of factors of

change (Fig. 2). A single set of factors of change is

obtained through simple averaging (SA) of factors of

change of a GCM ensemble. The SA case represents the

most typical downscaling application. Note that while the

BSA approach is introduced here as one of the possible

alternatives, it is not discussed in the results sections.

In the case of the Bayesian approach, since the factors of

change are randomly combined for each Monte Carlo

iteration, �N generated parameterizations generally differ

from each other in terms of characteristics such as the mean

precipitation, the mean air temperature, the inter-annual

variability of precipitation, the internal structure of pre-

cipitation, etc. As �N increases, the multiple combinations

of the factors of change allow one to explore a wider set of

possible future scenarios. Therefore, the effects of

assumptions made with regards to cross-correlation of the

factors of change tend to become less important. None-

theless, the computational time required to take the full

advantage of the methodology grows with �N considerably,

making it less suitable for typical modeling applications.
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An ensemble size of �N ¼ 50 was used in this study as a

representative number allowing one to demonstrate the

range of uncertainty in the factors of change without

excessively large computational requirements. Specifically,

fifty ensemble parameterizations were computed with the

BWA approach and used for the generation of fifty 30-year

long time series for each of the three time windows: 2000

through 2009, 2046 through 2065, and 2081 through 2100.

In the SA case, only a single set of factors of change can be

generated for each period of interest. Fifty time series were

generated for each of the tree time windows by using the

same parameterization of the weather generator but dif-

ferent random seeds at the beginning of each generation

simulation. Note that the fifty series only address the

intrinsic stochastic variability of the climate process

Additional three 30-year long series were generated to

represent a possible form of the ‘‘likeliest’’ expression of

future climates for each of the considered time windows.

Specifically, the corresponding AWE-GEN parameterizations

were obtained by using the medians of the PDFs of factors of

change obtained with the BWA approach (i.e., the series do

not represent the medians of ensembles for the respective

periods). The same approach was used in Fatichi et al. 2011.

Finally, one hundred 30-year long series representing

the control scenario (CTS), i.e., representative of historical

climate over the period of 1962 through 1992, were sim-

ulated using the AWE-GEN parameterization derived

using observations for this period. The generated series

allow us to explore the stochastic variability of hydrome-

teorological variables. Stochastic realizations of 30-year

long time-series are generally insufficient to represent such

variables as precipitation and thus an ensemble is preferred

to fully reflect the process of stochasticity.

Theoretically, a stochastic ensemble (of, say, 30-year

long series) could be generated for each possible repre-

sentation of future climate, expressed with a given AWE-

GEN parameterization. For example, a stochastic ensemble

can be generated for each of the �N ¼ 50 climate
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Fig. 2 Observations and probability density functions (PDFs)

obtained for two climate variables using a multi-GCM ensemble for

the location of Firenze, the month of April. a The PDF of mean April

temperature for CTS (1962–1992) (yellow bars) and FUT

(2046–2065) (red bars) scenarios. Also shown are the observations

(OBS) and results from the individual models for the CTS (green
dots) and FUT (magenta dots) scenarios. b The PDF of the additive

factor of change for air temperature obtained with a Bayesian

weighted (BWA) multi-model ensemble (blue bars) and the PDF

obtained using equal weights (BSA) approach (gray dashed line).

Also shown are the predictions by the individual models (black dots)

and the simple average (SA) of all models (white triangle). c The PDF

obtained of mean April precipitation for the CTS (yellow bars) and

FUT (red bars) scenarios. Also shown are the observations (OBS) and

results from individual models for the CTS (magenta dots) and FUT

(green dots) scenarios. d The PDF of the product factor of change for

precipitation obtained with a Bayesian weighted (BWA) multi-model

ensemble (blue bars) and the PDF obtained using equal weights

(BSA) approach (gray dashed line). Also shown are the predictions

by the individual models (black dots) and the simple average (SA) of

all models (white triangle). Note that the distribution obtained using

equal weights (BSA) has a different mean from the simple average of

factor of changes (SA) because two parameters affect the outcome of

the BSA weighting: h (the inflation–deflation parameter that repre-

sents the relative weight of future realizations of GCMs compared to

the control scenario realizations) and b (the correlation parameter that

represents a possible dependence between GCM simulations in the

control scenario and future conditions) that are determined by the

MCMC procedure (Tebaldi et al. 2005; Fatichi 2010)
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alternatives, for each future time window. This would

allow one to simultaneously consider both the uncertainty

of climate change projections and the stochastic variability

within the assumed stationary climate. Given the compu-

tational burden implied by such a large number of simu-

lations, the stochastic variability of a given climate

representation is only explored for (a) the control scenario

climate and (b) the SA case. While limited, inferences with

regards to the other types of climate projections are still

meaningful: the stochastic variability is partly reflected in

30-year long series and an ensemble of projected climates

for a given period is expected to represent most of the

stochastic variability (Deser et al. 2012). For example,

ensemble members corresponding to the same probabilities

of the factors of change CDF will correspond to ‘‘fairly

similar’’ climates with different stochastic trajectories.

3 Data

The reference climate used in this analysis is that of Fire-

nze (11.25E, 43.76N; elevation 50.1 m a.s.l., Italy), where

observations were available as a combination of different

datasets, as described in the following. Hourly air tem-

perature, wind speed, relative humidity, and atmospheric

pressure for the period of 1962 through 2010 were obtained

for the Firenze Peretola station from the National Climatic

Data Center (NCDC) (Peterson and Vose 1997). The

dataset of Firenze Peretola lacks precipitation series and

was replaced with observations obtained for the Firenze

Ximeniano station. The station is a part of the Tuscany

region precipitation network and is located about 5.5 km

from Firenze Peretola. Data were available for the periods

of 1962–1992 and 2000–2009. The small distance between

the two stations does not appreciably affect the results of

this study. Finally, the shortwave radiation and cloudiness

parameters of the weather generator were estimated from

the data for another station, Firenze Università (about

2.1 km distant from Firenze Ximeniano), available for the

period of 2000 through 2009 (Fatichi et al. 2010). Since no

information was available for the period of 1962 through

1992, the 2000–2009 parametrizations for shortwave radi-

ation and cloudiness, were also used over the former period

to make feasible weather generator simulations.

Model realizations for twelve GCMs were obtained

from the dataset compiled in the World Climate Research

Programme’s (WCRP’s), Coupled Model Intercomparison

Project, Phase 3 (CMIP3) (Meehl et al. 2007a). Specifi-

cally, climate realizations for the following models were

used in this work: CCSM3, CSIRO-Mk3.5, ECHAM5-MPI-

OM, IPSL-CM4, CGCM3.1(T63), GFDL-CM2.1, INGV-

SXG, MIROC3.2(medres), BCCR-BC2, CNRM-CM3,

GISS-ER, and PCM. The selection of GCMs was based on

similar criteria used by Fatichi et al. 2011. Data for air

temperature and precipitation were available for all of the

models at the daily time scale over the periods of

2046–2065 and 2081–2100. Using the same reasoning as

outlined in Fatichi et al. 2011, this study used outputs of

GCMs for a grid cell that contained the location of Firenze.

Since not all of the models had outputs for the ‘‘vali-

dation’’ period of 2000–2009, the factors of change for this

period were estimated using the methodology of interpo-

lating transient factors of change presented by Burton et al.

2010. Specifically, the factors of change for each GCM for

any given year (e.g., 2005) were obtained through a linear

interpolation of the factors of change for the period of 2046

through 2065 and the ‘‘factors of change’’ for the period of

1962 through 1992 (all equal to unity or zero). In com-

parison to Burton et al. 2010, a single set of factors of

change was used for the period of 2000 through 2009,

which was assumed to be stationary. Specifically, the

interpolated factors of change for the year 2005 were used.

The factors of change obtained for all of the 12 GCMs were

successively weighted with the Bayesian approach to pro-

duce probabilistic information of the change for that time

period in a similar fashion, as for the future time periods

(e.g., Fig. 2).

4 Results

A comparison between the observations and weather gen-

erator simulation for the control scenario and the ‘‘valida-

tion’’ (i.e., 2000–2009) periods are illustrated first. Such a

comparison highlights the capability of AWE-GEN in

reproducing the already observed climate and provides a

first assessment of reliability of the stochastic downscaling

methodology. An ensemble of simulated climates for the

periods of 2046 through 2065, and 2081 through 2100 are

also illustrated and discussed subsequently.

4.1 Precipitation

Mean monthly precipitation of the control scenario is

exactly reproduced by AWE-GEN, when the one hundred

of 30-year long series are averaged (Fig. 3a). If only a

single 30-year climate trajectory is used, the differences of

about 10–15 mm month-1 can be observed, as demon-

strated by the ranges between the 5th and 95th percentiles

of monthly precipitation, derived using all of the 100

ensemble members (Fig. 3a). Defining the possible sto-

chastic variability for a single 30-year realization of cli-

mate is important in order to properly frame a discussion of

precipitation changes in future. As seen in the figure, the

simulated monthly precipitation for the ‘‘validation’’ period

of 2000–2009 is relatively unchanged, when compared to
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the control scenario (Fig. 3b). The trajectory obtained

using the medians of the PDFs of the factors of change

differs somewhat from the reference climate (CTS) but is

always within the 5–95th percentile range of stochastic

variation. The range of monthly precipitation simulated

using the factors of change from the SA approach is also

very similar to the uncertainty of stochastic simulations for

the control scenario, thus entailing a negligible change.

When an entire ensemble of possible realizations is con-

sidered, the differences between the predicted climate and

the stochastic ensemble of the CTS are observed in the

months of March, August, and September. In these months

several ensemble members exhibit a decrease in precipi-

tation outside of the 5–95th percentile range of the his-

torical climate. When actual observations are considered

for the period of 2000–2009, one can see that these are well

within the range of variability of the BWA simulated cli-

mate for most of the months, with the exception of January

and March. For these months, the observed precipitation is

significantly less than possible for the period of

1962–1992. This is only partially captured by the simulated

climate (Fig. 3b) for March. Despite this difference, the

relatively unchanged mean precipitation regime confirmed

by both the simulated climate and the observations

corroborates the stochastic downscaling methodology for

this climatic property.

A relative change in the precipitation regime is more

appreciable when the future period of 2046 through 2065 is

analyzed. While the possible trajectories of future climate

show a fair amount of uncertainty and do not exclude a

‘‘zero-change’’ scenario, most of the ensemble members

and the median show a reduction in precipitation. This is

especially pronounced during the summer-fall months

(June to September), where more than a half of the simu-

lation members are below the lower uncertainty bounds of

precipitation of the control scenario (Fig. 3c). This reduc-

tion during spring-summer-fall months is further exacer-

bated in the far future, during the period of 2081–2100,

where majority of the members of the ensemble show

lower precipitation (Fig. 3d). Future simulations obtained

in the SA case predict similar patterns of change with more

pronounced differences in February, March and November

during the period of 2081–2100. The uncertainty of sto-

chastic realizations of the SA case overlaps with the mul-

tiple simulated scenarios of the BWA approach, although,

as expected, tends to be smaller.

Note that the relative uncertainty of the simulated future

climates does not change significantly for different periods,
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(a) Control Scenario 1962−1992

Fig. 3 Mean monthly precipitation observed and simulated with the

weather generator for different climate periods a 1962–1992, b
2000–2009, c 2046–2065, and d 2081–2100. The diamonds represent

the observed values for the period of 1962–1992 (subplot a), and the

triangles represent the observed values for the period of 2000–2009

(subplot b), the dashed line is the mean of the ensemble of AWE-

GEN generated climate trajectories for the control scenario, the

vertical bars represent the 5th and 95th percentiles (subplots a, b, c,

and d), the solid gray lines represent the result obtained using the

medians of the factors of change PDFs (subplots b, c, and d). The thin

green lines represent the ensemble of climate realizations obtained

with the BWA approach. The blue dotted lines and blue bars are the

results of the SA simulation approach (subplots b, c, and d)
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i.e., the range of the BWA ensemble is approximately the

same for different periods. This is likely due to the fact that

uncertainty is already relatively high in the ‘‘validation’’

period, because of a fairly poor capacity of GCMs to represent

historical records. The predicted evolution of the precipita-

tion regime for Firenze implies a change from the simulated

annual total of 802 mm year-1 (or 796 mm year-1 based on

observed data) in the control scenario to 764 mm year-1 (or

746 mm year-1 based on observations) for the period of

2000–2009, to 722 mm year-1 for the period of 2046–2065,

and as low as 669 mm year-1 for the period of 2081 through

2100. The values refer to the simulations with the median

factors of change. This represents a -17 % change of annual

precipitation from the control scenario by the end of the

twenty-first century, with a sharper decrease after the year of

2050. The change is mainly concentrated during summer

months in the first half of the century and ‘‘spreads’’ to earlier

and later months afterwards.

The nature of these changes can be further observed by

inspecting the survival functions of hourly precipitation in

Fig. 4. AWE-GEN reproduces the entire distribution of

precipitation very well in the control scenario, with only

marginal differences within the uncertainty bounds for very

low exceedance probabilities (Fig. 4a). For the ‘‘valida-

tion’’ period of 2000–2009, an increase in the probability of

occurrence of intense precipitation, even outside the

uncertainty range, is detectable in the observations and

only in some of the most extreme members of the simu-

lated ensemble. This highlights the importance of

accounting for the uncertainty in future climate simulations

as well as using an ensemble of stochastic trajectories.

Using a particular realization obtained as the median cli-

mate (gray solid line) would have led to a significantly

distorted representation of future intense precipitation

(Fig. 4b). Survival functions obtained in the SA case for

the period of 2000–2009 are essentially identical to the

control scenario. The survival functions of precipitation for

the periods of 2046–2065 and 2081–2100 confirm the

general tendency to a reduction in precipitation. However,

as inferred for the latter period, the reduction in precipi-

tation will be accompanied by an increase of rainfall

intensity at low probabilities, as indicated by the different

curvatures of lines corresponding to the control scenario

and future climate (Fig. 4c, d). While the reduction in

precipitation is also confirmed by the SA case, the inferred

increase of rainfall intensities is not as pronounced.

The return periods for extreme precipitation for 24-hour

aggregation period are shown in Fig. 5. The weather gen-

erator reproduces rainfall extremes satisfactorily in the

control scenario (Fig. 5a). There is no projected change for
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(a) Control Scenario 1962−1992

Fig. 4 One hour precipitation survival function from observed data

and simulated with the weather generator for different climate periods

a 1962–1992, b 2000–2009, c 2046–2065, and d 2081–2100. The

diamonds represent the observed values for the period of 1962–1992

(subplot a), and the triangles represent the observed values for the

period of 2000–2009 (subplot b), the red dashed lines are the mean

and the 5th and 95th percentiles of the ensemble of generated climate

trajectories for the control scenario (subplots a, b, c, and d), the solid
gray lines represent the result obtained using the medians of the

factors of change PDFs (subplots b, c, and d). The thin green lines
represent the ensemble of climate realizations obtained with the BWA

approach. The blue dash-dotted lines are the results of the SA

simulation approach (subplots b, c, and d)
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the ‘‘validation’’ period since the uncertainty of the BWA

ensemble is well within the 5 to 95 percentile bounds of the

control scenario climate. The reduction of 24-hour extreme

rainfall that appears to be present in the observations can be

also explained by the uncertainty of determining precipi-

tation extremes using short observational records (Fig. 5b).

It is also important to note that if a single simulation is

used, for instance, corresponding to the medians of PDFs of

factors of change, this would have led to an erroneous

conclusion. In order to make a more certain statement with

regards to future extreme events, it is very important to

generate an ensemble of realizations that can concurrently

capture the uncertainty of climate change projections and

inherent stochastic variability (Fig. 5b). In particular, the

stochastic variability appears to be dominant for the

assessment period of 2000–2009, as testified by simula-

tions obtained with the SA approach.

The projected change of the 24-hour extreme precipi-

tation for the other future periods (Fig. 5c, d) is dominated

by uncertainty, however, for most of the BWA ensemble

members this uncertainty is still bounded by the variability

of stochastic realizations. The future simulations with the

SA approach show a more evident increase of 24-hour

extreme precipitation, as compared to the control scenario,

regardless of the large stochastic uncertainty. However, the

SA bounds still do not include some of the most extreme

BWA ensemble realizations.

This large range of projections is not surprising, given

the difficulty of transferring climate model information to

the reproduction of extreme events and to short observa-

tion/simulation periods. Nonetheless, we believe that

information produced by this analysis is useful. Even

though the uncertainty is large (see the range of ensemble

members in Fig. 5d), it provides an approximate range of

variability and trends that have a physical basis of changes

simulated by climate models, preserved by the weather

generator. Note that very intense precipitation events

([150 mm) with return periods above 15 years are simu-

lated as possible (although with low probabilities, i.e., only

few ensemble members) only for the 2081–2100 period but

not for 2000–2009.

4.2 Air temperature

The mean monthly temperature is reproduced with a high

accuracy by the weather generator for the control scenario
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Fig. 5 Extreme precipitation for 24-hour aggregation period from

observed data and simulated with the weather generator for different

climate periods a 1962–1992, b 2000–2009, c 2046–2065, and d
2081–2100. The diamonds represent the observed values for the

period of 1962–1992 (subplot a), and the triangles represent the

observed values for the period of 2000–2009 (subplot b), the red
dashed line is the mean of the ensemble of generated climate

trajectories for the control scenario, the red vertical bars represent the

5th and 95th percentiles (subplots a, b, c, and d), the solid gray lines
represent the result obtained using the medians of the factors of

change PDFs (subplots b, c, and d). The thin green lines represent the

ensemble of climate realizations obtained with the BWA approach.

The blue dash-dotted lines and blue bars are the results of the SA

simulation approach (subplots b, c, and d)
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(Fig. 6a). Contrary to precipitation, the variability intro-

duced by considering an ensemble of one hundred, 30-year

long stochastic trajectories of air temperature is almost

negligible. The standard deviations of 30-year mean

monthly temperatures are around 0.03 �C. An annual

average increase of 0.92 �C with respect to the control

scenario is projected for the ‘‘validation’’ period of

2000–2009, with a larger warming during the summer

months (Fig. 6b). This projection agrees very well with the

observed change of 1.05 �C, providing a strong support to

the reliability of both climate predictions and the down-

scaling methodology of air temperature. Note that the

changes are predicted very well for most months with only

a slight underestimation of warming in May and June and a

slight overestimation in September. The mean air temper-

ature is projected to increase in future climate conditions

for the periods of 2046 through 2065 and 2081 through

2100 by 2.53 and 3.45 �C, respectively, as compared to the

control scenario (Fig. 6c, d). Note the inferred deceleration

of warming for Firenze in the second half of the twenty-

first century. Fig. 6 also illustrates how the uncertainty of

the BWA ensemble (referred to here as the ensemble

range) grows with time. However, it is not particularly high

even for the period of 2081–2100, underlying how climate

model predictions tend to be in a general agreement with

respect to air temperature changes. The uncertainty is also

unevenly distributed throughout the year, with summer

months exhibiting the largest range of variability (&1 �C).

Future mean monthly temperatures simulated with the SA

approach for the period 2081–2100 are always close to the

BWA ensemble median or slightly higher (by

*0.2–0.5 �C). The stochastic variability of the SA simu-

lations is practically negligible.

Analogous considerations can be made with respect to

the daily maximum, and minimum air temperatures (not

shown). The predicted positive changes of maximum and

minimum temperatures are uniform: 0.92, 2.59, and 3.48

for maximum, and 0.95, 2.51, and 3.46 �C for minimum

temperatures for the ‘‘validation’’, 2046–2065, and

2081–2100 periods, respectively. To some extent, such a

uniform pattern of changes is corroborated by the fairly

similar changes of daily maximum and minimum
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(a) Control Scenario 1962−1992

Fig. 6 Average monthly air temperature from the observed data and

simulated with the weather generator for different climate periods a
1962–1992, b 2000–2009, c 2046–2065, and d 2081–2100. The

diamonds represent the observed values for the period of 1962–1992

(subplot a), and the triangles represent the observed values for the

period of 2000–2009 (subplot b), the dashed line is the mean of the

ensemble of generated climate trajectories for the control scenario,

the vertical bars represent the 5th and 95th percentiles (subplots a, b,

c, and d), the solid gray lines represent the result obtained using the

medians of the factors of change PDFs (subplots b, c, and d). The

thin green lines represent the ensemble of climate realizations

obtained with the BWA approach. The blue dotted lines and blue bars
are the results of the SA simulation approach (subplots b, c, and d)
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temperatures estimated from observations for the control

scenario and the validation period: 1.15 and 1.06 �C,

respectively. A clear seasonal pattern, consistent with the

changes simulated for the mean temperature, i.e., a stronger

warming during summer, is similarly reproduced.

The diurnal cycle of mean air temperature is simulated

realistically by AWE-GEN in the control scenario, even

though non-negligible differences of 0.5–1 �C during early

morning and midday hours can be observed (Fig. 7a).

These differences are due to a poor performance of the

weather generator in reproducing the exact daily cycle for

the location of Firenze Peretola, most probably due to the

interpolation of three-hour observation intervals in the

NCDC record. This precludes a direct comparison in terms

of absolute hourly values for the ‘‘validation’’ period, since

the errors are of the same magnitude as the expected

change. The simulated and observed daily cycles of tem-

perature for the period of 2000–2009 show that the overall

direction and magnitude of the change are fairly well

captured by the stochastic downscaling. The distribution of

the warming signal between daylight (6–18) and night (0–6

and 19–23) hours is however not well captured (Fig. 7b).

The observed warming of 1.48 �C (1962–1992 vs.

2000–2009) during the daylight hours is larger than that

during night hours, 0.75 �C. The simulated warming for

different parts of the day is only slightly different, i.e., the

changes during day-light and night-time hours are 0.94 and

0.91 �C, respectively. The parameterization of the weather

generator is currently unable to reflect differences in

warming across the daily cycle. Note however, that the

factors of change for air temperature are calculated only at

the monthly scale. This shortcoming points to the need of

estimating the factors of change from climate model real-

izations at the hourly scale, in order to better describe the

intra-daily variability. Presently, the solution of this issue is

only constrained by current practices of GCM data

archiving and their availability: all climate models can

produce information at such fine time scales and it can be

used by stochastic downscaling methodologies, such as the

one employed in this study.
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(a) Control Scenario 1962−1992

Fig. 7 Mean daily cycle of air temperature from the observed data

and simulated with the weather generator for different climate periods

a 1962–1992, b 2000–2009, c 2046–2065, and d 2081–2100. The

diamonds represent the observed values for the period of 1962–1992

(subplot a), and the triangles represent the observed values for the

period of 2000–2009 (subplot b), the dashed line is the mean of the

ensemble of generated climate trajectories for the control scenario,

the vertical bars represent the 5th and 95th percentiles (subplots a, b,

c, and d), the solid gray lines represent the result obtained using the

medians of the factors of change PDFs (subplots b, c, and d). The

thin green lines represent the ensemble of climate realizations

obtained with the BWA approach. The blue dotted lines and blue bars
are the results of the SA simulation approach (subplots b, c, and d)
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The simulated warming for the periods of 2046–2065

and 2081–2100 is fairly similar across all hours of the day

and coincides with the mean annual warming (Fig. 7c, d).

It can be also noticed that the BWA uncertainty of simu-

lated future temperature tends to increase significantly for

scenarios that are more distant in the future.

The simulated and observed standard deviations of the

daily cycle of air temperature are shown in Fig. 8a. AWE-

GEN is able to reproduce the diurnal distribution of stan-

dard deviation of air temperature in the control scenario

very well. The observed and simulated delta changes of

standard deviations of the daily cycle between the control

scenario and the 2000–2009 period are very similar on

average, ?0.11 and ?0.16 �C respectively, with data for

most of the hours well within the BWA uncertainty bounds.

This is a rather surprising result since the mean monthly

temperature is the only property for which the factors of

change are computed. This further corroborates the sto-

chastic downscaling methodology that provides realistic

changes for the second order statistics, which are only a

result of the weather generator simulation, increasing

confidence in the reliability of internal assumptions. The

standard deviation of the daily cycle of air temperature is

simulated to further increase in the future periods of

2046–2065 and 2081–2100. Most of the change is pro-

jected to occur between the 2000–2009 and 2046–2065

periods (Fig. 8c, d). The uncertainty of changes of standard

deviation appears to be smaller than that for the daily cycle

of mean air temperature but it is hard to assert whether this

occurs by chance or is a consistent prediction. The simu-

lated standard deviations of temperature of the SA

approach overlap with the median for the 2000–2009 and

2046–2065 periods but are somewhat higher for the period

of 2081–2100.

4.3 Relative humidity, shortwave radiation, wind

speed, and atmospheric pressure

Changes in other meteorological variables, such as relative

humidity, shortwave radiation, wind speed, and atmo-

spheric pressure are not a direct consequence of the cal-

culated factors of change (Fatichi et al. 2011). Therefore,

any inferred changes are only due to statistical and causal

relationships assumed by the weather generator. Assessing

magnitudes and directions of these changes and validating

them with observations is an important benchmark of the
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Fig. 8 The diurnal cycle of average standard deviation of hourly air

temperature from the observed data and simulated with the weather

generator for different climate periods a 1962–1992, b 2000–2009,

c 2046–2065, and d 2081–2100. The diamonds represent the observed

values for the period of 1962–1992 (subplot a), and the triangles
represent the observed values for the period of 2000–2009 (subplot

b), the dashed line is the mean of the ensemble of generated climate

trajectories for the control scenario, the vertical bars represent the 5th

and 95th percentiles (subplots a, b, c, and d), the solid gray lines
represent the result obtained using the medians of the factors of

change PDFs (subplots b, c, and d). The thin green lines represent

the ensemble of climate realizations obtained with the BWA

approach. The blue dotted lines and blue bars are the results of the

SA simulation approach (subplots b, c, and d)
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downscaling methodology. Such tests evaluate the effec-

tive capability of AWE-GEN to transfer ‘‘informed’’

changes of the principal variables (temperature and pre-

cipitation) to secondary effects.

Vapor pressure, or equivalently, relative humidity is an

important variable for many environmental processes, e.g.,

it controls the process of evapotranspiration in the hydro-

logic cycle. Therefore, its predicted change may have non-

negligible consequences. Nonetheless, near ground vapor

pressure (or expressed in equivalent metrics, such as spe-

cific humidity and relative humidity) is not among con-

ventionally archived outputs available from GCMs and the

related factors of change cannot thus be directly calculated.

AWE-GEN can reproduce the seasonal cycle of relative

humidity highly satisfactorily for the present climate

(Fig. 9a). Similar to air temperature, the BWA uncertainty

bounds (the 5th and 95th percentiles) due to the stochastic

variability explored for the control scenario are small and

can be neglected. The predicted climate for the period of

2000–2009 captures the fundamental nature of the change,

with lower relative humidity during the period of May

through September and a slightly smaller relative humidity

during the other months (Fig. 9b). Although the direction

of the change is well predicted, its magnitude is simulated

within the envelope of the BWA ensemble members only

for a few months. This suggests that the effect of climate

change obtained with the stochastic downscaling is

underestimated. This can be partially explained by the

slight underestimation of warming (Sect. 4.2) and non-

feasibility to account for large-scale climate feedbacks,

since a point-scale stochastic weather generator is used.

Future predictions of relative humidity show its significant

decrease, especially during summer months (Fig. 9c, d).

Winter months are also projected to be affected by the end

of the century. An average change of -0.12 for the months

of July and August is predicted, when the control scenario

of 1962 through 1992 and the median of the future period

of 2081 through 2100 are compared. The uncertainty of the

prediction has a tendency to grow as the time interval from

the control scenario increases (Fig. 9). As for air temper-

ature, the future relative humidity simulated with the SA

approach is always very close to the changes predicted with

the ensemble median (with the apparent exception for July

for the period of 2081–2100).

The daily cycle of relative humidity is reproduced by

AWE-GEN for the control scenario quite well, especially
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(a) Control Scenario 1962−1992

Fig. 9 Average monthly relative humidity from the observed data

and simulated with the weather generator for different climate periods

a 1962–1992, b 2000–2009, c 2046–2065, and d 2081–2100. The

diamonds represent the observed values for the period of 1962–1992

(subplot a), and the triangles represent the observed values for the

period of 2000–2009 (subplot b), the dashed line is the mean of the

ensemble of generated climate trajectories for the control scenario,

the vertical bars represent the 5th and 95th percentiles (subplots a, b,

c, and d), the solid gray lines represent the result obtained using the

medians of the factors of change PDFs (subplots b, c, and d). The

thin green lines represent the ensemble of climate realizations

obtained with the BWA approach. The blue dotted lines and blue bars
are the results of the SA simulation approach (subplots b, c, and d)
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for the midday and late evening hours (Fig. 10a). However,

similarly to the diurnal cycle of air temperature, the sim-

ulated changes are distributed evenly within a day

(Fig. 10b–d). Conversely, the observed changes of daily

cycle of relative humidity between the periods of

1962–1992 and 2000–2009 exhibit a diurnal pattern with a

larger decrease of relative humidity during morning (hour

5–12) and almost unchanged dynamics during late evening

hours (hour 16–23) (Fig. 10a, b). Fig. 10b also confirms a

substantial underestimation of the change in relative

humidity for the validation period of 2000 through 2009.

It should be noted that the inferred changes in relative

humidity are mainly a result of changes in air temperature.

This is likely to be the reason why the presented results

agree well with observations, at least in terms of change

patterns. Relative humidity can be transformed to vapor

pressure but its changes at the monthly scale are typically

minor (not shown), with the annual difference between the

1962–1992 and 2000–2009 periods equal to ?38 Pa for the

simulated results, and -6 Pa for observations. These

values are small and can be considered negligible. When

predictions for the later periods are analyzed, the simulated

mean vapor pressure tends to slightly increase: ?98 Pa for

the period of 2046–2065, and ?134 Pa for the period of

2081–2100. This agrees with theoretical expectations of an

increase in atmospheric water vapor due to the higher

saturation vapor pressure of a warmer air (Held and Soden

2006; Pall et al. 2007; Lenderink and vanMeijgaard 2008;

Schneider et al. 2010). Note that these predicted changes

represent an outcome of imposed internal linkages among

meteorological variables in AWE-GEN. They demonstrate

the capability of the weather generator to effectively

transfer the implication of the factors of change of pre-

cipitation and air temperature to other variables.

An assessment of performance of the stochastic down-

scaling methodology for shortwave radiation is not possible

because the relevant observational data data are only avail-

able for the period of 2000–2009. Data for this period were

used to estimate the parameters of the shortwave radiation

module of the weather generator. The results of the
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(a) Control Scenario 1962−1992

Fig. 10 The mean diurnal cycle of relative humidity from the

observed data and simulated with the weather generator for different

climate periods a 1962–1992, b 2000–2009, c 2046– 2065, and

d 2081–2100. The diamonds represent the observed values for the

period of 1962–1992 (subplot a), and the triangles represent the

observed values for the period of 2000–2009 (subplot b), the dashed
line is the mean of the ensemble of generated climate trajectories for

the control scenario, the vertical bars represent the 5th and 95th

percentiles (subplots a, b, c, and d), the solid gray lines represent the

result obtained using the medians of the factors of change PDFs

(subplots b, c, and d). The thin green lines represent the ensemble of

climate realizations obtained with the BWA approach. The blue
dotted lines and blue bars are the results of the SA simulation

approach (subplots b, c, and d)
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simulation for the periods of 1962–1992 and 2000–2009 are

shown in Fig. 11a and b. It is not surprising to observe a good

performance given the fact that shortwave radiation param-

eters are calibrated for the 2000–2009 period. However, the

effect of other meteorological variables results in a small

variability of radiative flux (e.g., it is higher for the month of

April in Fig. 11b. Future predictions of seasonality of

shortwave radiation show very small changes (Fig. 11c and

d) and a very limited range of variability among different

members of the BWA ensemble. Future simulations using

the SA approach yields results that are almost identical to the

median of the ensemble. The relative changes of the simu-

lated mean shortwave radiation with respect to the baseline

1962–1992 period are ?1.97 W m-2 for the 2046–2065

period, and ?2.87 W m-2 for the 2081–2100 period. These

small variations are mainly a result of decrease in precipi-

tation that causes a reduction of cloud cover. Such effects are

accounted for by the internal structure of AWE-GEN. Other

effects of climate change on radiative forcing (e.g., aerosol

loading) cannot be captured by the generator with a high

degree of certainty.

The simulated changes in wind speed with respect to

the baseline 1962–1992 are negligible for all of the

analyzed periods, i.e., the validation and the two future

periods (not shown). This simulated stationarity in the

mean wind speed is not confirmed by a comparison of

observations for the periods of 1962–1992 and

2000–2009. Although the presence of numerous missing

values in the available time series make the analysis less

robust, data show a significant increase of wind speed by

*1 m s-1. The influence of other variables on wind

speed is typically small in AWE-GEN (Fatichi et al.

2011). This implies that the current approach is unable to

capture any significant change in this variable. Therefore,

an improvement of the stochastic downscaling method-

ology can be only achieved by explicitly calculating a

factor of change for near ground wind speed. However,

GCMs currently do not report this variable among

standard outputs.

Atmospheric pressure in AWE-GEN is completely

uncorrelated with other variables, therefore, the predicted

change is always equal to zero. A lack of change is also

confirmed by a comparison of observations for the

periods of 1962–1992 and 2000–2009, over which

atmospheric pressure did not show any significant change

(\1 Pa).
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(a) Control Scenario 1962−1992

Fig. 11 Average monthly shortwave radiation from the observed data

and simulated with the weather generator for different climate periods

a 1962–1992, b 2000–2009, c 2046–2065, and d 2081–2100. The

triangles represent the observed values for the period of 2000–2009

(subplot b), the dashed line is the mean of the ensemble of generated

climate trajectories for the control scenario, the vertical bars

represent the 5th and 95th percentiles (subplots a, b, c, and d), the

solid gray lines represent the result obtained using the medians of the

factors of change PDFs (subplots b, c, and d). The thin green lines
represent the ensemble of climate realizations obtained with the BWA

approach. The blue dotted lines and blue bars are the results of the SA

simulation approach (subplots b, c, and d)
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5 Discussion and conclusions

An extension of the stochastic downscaling methodology to

an ensemble simulation approach has been developed and

its reliability assessed. A detailed analysis of future climate

predictions at the local spatial scale and hourly temporal

scale has been presented by assessing climate change

effects for the location of Firenze (Italy). The employed

weather generator allows one to reproduce changes for

different aggregation periods and meteorological variables

for which the factors of change are not explicitly com-

puted. The stochastic downscaling methodology has been

corroborated by climate predictions for the period of

2000–2009 for which observations were also available.

This corroboration can be regarded as a validation within

the framework of stochastic simulation and, to the author’s

knowledge, this is a first attempt of this kind in climate

downscaling studies. Note that observations for the period

of 2000–2009 have been used neither for tuning or

parameterizing the climate models (see Sect. 3), nor for

deriving the parameters of the weather generator. These

observations therefore represent relatively independent

information. Although differences between the predicted

and the observed changes were noted, it is argued that the

presented methodology responds to the challenge quite

satisfactorily.

The novelty of this study is represented by a transfer of

the uncertainty of climate change predictions inferred from

an ensemble of climate models to an ensemble of hourly

time series representing future climate conditions. While

the uncertainty derived with the presented methodology of

Bayesian weighting (the BWA approach) or simple aver-

aging (the SA approach) of multiple GCMs does not reflect

all possible sources of uncertainty (for instance, it con-

siders a single emission scenario and cannot incorporate

some of climate model structural uncertainties), it repre-

sents important information for evaluations of climate

change predictions (Knutti 2008; Knutti et al. 2010). Spe-

cifically, we considered three sources leading to variability

in predictions: (a) the intrinsic stochasticity of climate of a

‘‘finite’’ 30-year period, (b) the effect of using multiple

GCMs, and (c) the methodology for weighting the GCMs.

In this study, weighting GCMs according to bias or con-

vergence criteria as opposed to using equal weights was

found to affect the mean signal of climate change only

marginally. This is testified by the proximity of the pro-

jections, for essentially all of the climate variables,

obtained with the SA approach and with the medians of the

PDFs computed with the BWA approach. However, a

possible added value of the Bayesian approach that permits

uniform or weighted averaging of GCM realizations is the

capability to summarize multi-model predictions in the

form of PDFs of factors of change. Using the single factors

of change can imply a reduced uncertainty range even after

accounting for the stochastic variability (Figs. 3, 4, 5).

Whether such a reduced range corresponds to more accu-

rate or too certain projections cannot be verified as yet.

Consequently, the assumption of a larger uncertainty

obtained with the Bayesian approach can be regarded as a

conservative choice that is not ‘‘blind’’ to alternative sce-

narios of the future. Predictions in the form of PDFs are

found to be very important, especially for variables such as

precipitation, for which different GCMs provide varying

trajectories of the change (e.g., Fig. 1). Accounting for the

stochastic variability is found of paramount importance for

precipitation, where stochastic variability can be compared

with the climate change signal but has a negligible effect

for other meteorological variables.

One of the implications of the presented approach is a

possibility to assess plausibility of change of extreme

precipitation in the future. We demonstrated that by using

the ensemble mean or a single climate model projection as

a ‘‘representative’’ mode of the change can lead to a sig-

nificant underestimation of the range of expected future

conditions or even to erroneous conclusions. The uncer-

tainty of projections of rainfall extremes is so high that

might question its practical utility. However, we believe

that such methodologies nonetheless represent a step for-

ward in capturing ‘‘vital details’’ of climate change (Kerr

2011).

The embedded causal and statical relationships of the

weather generator also allow one to obtain realistic trends

and magnitudes of the change for a number of variables for

which the factors of change are not directly computed (e.g.,

relative humidity, or higher order statistics). Accounting

for this information can be important for a variety of

environmental processes and management strategies. For

instance, changes in the standard deviations of the daily

cycle of air temperature can have important consequences

in terms of temperature extremes, making very high or low

temperature extremes less unusual and beyond the present

historical records. This can have very important conse-

quences for environmental processes related to temperature

thresholds such as the survival of vegetation species or

microorganisms.

Components of methodology where the stochastic

downscaling needs improvements were also identified.

While the methodology can reproduce the absolute changes

of average air temperature and relative humidity fairly

well, the simulated changes of the daily cycles are uniform

across the day and this is not supported by the observed

changes. This finding warrants efforts of archiving GCM

and RCM realizations at the hourly scale, whereas the

current practices make available outputs only at the daily

or monthly time scales. An explicit computation of the

factors of change at the hourly scale would indeed provide
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a great benefit for this type of downscaling. The compu-

tation of a factor of change for wind speed is also war-

ranted, since changes in precipitation and temperature

cannot trigger changes in wind regime; observations,

however, indicate that other non-local processes may alter

wind magnitudes.

According to the emission scenario A1B used in this

study, the practical implications of the predicted climate

for the city of Firenze can be considered as significant. The

changes in the precipitation regime are difficult to evaluate,

given the uncertainty of stochastic realizations and climate

model predictions. Yet a reduction of the total annual

precipitation appears to be a consistent feature emerging

from the downscaling that will be stronger during summer

months for the period of 2046 through 2065, and will

ultimately affect almost the entire year by the end of the

twenty-first century. The median predicted change is about

14 % decrease of annual precipitation from the period of

2000–2009 to the period of 2081–2100. Similar tendencies

of changes in the averages were also identified by an

analysis carried out with a dynamic downscaling method-

ology for the entire Italian peninsula (Coppola and Giorgi

2009).

The expected change of air temperature exhibits a high

confidence of an increase of about 2.5 �C by the end of the

century, as compared to the 2000–2009 period, with a

higher increase during summer months. The increase in air

temperature leads to a significant reduction of relative

humidity, especially during summer periods, because vapor

pressure is predicted to increase only slightly. Solar radi-

ation is expected to remain nearly the same across the

twenty-first century exhibiting minor increments due to a

reduced cloud cover.

The combination of warmer and drier conditions of

future climate might have non-negligible implications for

Firenze and its surrounding Tuscany countryside, in terms

of water resources and natural ecosystem management, and

tourism. An adaptation strategy to this expected change is

therefore warranted. The discussed results were obtained

accounting for the uncertainty due to biases of a multiple

number of climate models. In combination with the dem-

onstrated validation of the stochastic methodology, this

allows us to conclude that the presented results can be

regarded as robust estimates of climate change for the

location of Firenze, given the present knowledge of climate

systems (climate model realizations) and data available for

downscaling.
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