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A B S T R A C T  

There exists a homeomorphism between any compact orientable closed 
surface and the configuration space of an appropriate mechanical linkage 
defined by a weighted graph embedded in the Euclidean plane. 

1. I n t r o d u c t i o n  

A m e c h a n i c a l  l inkage  G is a mechanism in the Euclidean plane R 2 that  is built 

up exclusively from rigid bars joined along flexible links. Some links of the linkage 

may be pinned down with respect to a fixed frame of reference. The conf igu-  

r a t i o n  s p a c e  [G] of a mechanical linkage G is the totality of all its admissible 

positions in the Euclidean plane. In section 4 we present the constructive proof 

of the main result: 
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THEOREM 1.1: Let ~g be any compact orientable closed surface of genus g E 

N U {0}. Then there exists a mechanical linkage Sg, such that its configuration 

space [Sg] is homeomorphic to ~g. 

Recently the authors proved a universality theorem for configuration spaces of 

mechanical linkages, [7]. It is a matter  of an explicit construction in the sense 

that starting from a given compact real algebraic variety, addition and multi- 

plication of the defining polynomials are realized with configurations. So the 

theorem of Nash-Tognoli, cf. [1], implies that only some components of the re- 

sulting configuration space are homeomorphic to a given compact differentiable 

manifold. Notice that using similar proofs different universality theorems for con- 

figuration spaces have already been established and are summarized in a work of 

M. Kapovich and J. Millson, [9]. 

To prove Theorem 1.1 we construct for all g C N a mechanical linkage with only 

3 § 2g bars and 3 § 2g links, such that its configuration space is homeomorphic 

to the compact orientable closed surface of genus g. It is known, cf. [4] or [8], 

that  the set of non-singular configuration spaces of a planar 5-polygon contains 

Eg with g _< 4. Starting with a simple 5-polygon for which the configuration 

space is a toms, we add two edges connected by a link to increase the genus of 

the surface by one. To control the induction we only make use of topological and 

geometrical arguments, i.e. the configuration space is computed with a fibration 

over the admitted locations of an appropriate vertex of the linkage. The final 

explicitly constructed mechanical linkage Sg with [89] ~ ~g is easy to control, as 

Figure 1 shows. 

Figure 1. The mechanical liI~kage Sg. 

ACKNOWLEDGEMENT: We are grateful to J.-C. Hausmann who introduced us 

to the work of his former graduate student A. Wenger, cf. [11], and to P. Mani- 

Levitska for numerous conversations. 

2. P r e l i m i n a r i e s  

Let us give an exact mathematical  definition of a mechanical linkage: 
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Definition 2.1: The triple G -- (V, E, d) consisting of 

(1) a set of ver t ices  V = Vfix U Vfr~, with Vy~x = {V1,.. . ,  Vm} and Vfree = 

vn}, 

(2) a set of edges  E = {{Vii,Vii}, {Vi2,Vj2},..., {V~k,Vjk)} such that il,jl C 
{1 , . . . ,  n}, il r jr, where any two vertices in V are connected by a sequence 

of elements of E, and 

(3) a weight  f unc t i on  d: E --+ ]~_, that  attaches to every edge {V~,, Vj~ } in E 

a length (weight) d(V~t, Vj~) �9 R+, 

is called a c o n n e c t e d  we igh ted  graph.  

Definition 2.2: Let 6 -: (V, E, d) be a connected weighted graph. 

(1) The graph 6 is called a mechan ica l  l inkage, if 6 is rea l izable  in R 2 , i.e. 

if a mapping ~: V --+ R 2 exists, such that I~(Vi) - ~(Vj) I -- d(V~, Vj) for all 

{v .  vj} �9 E. 

(2) A rea l i za t ion  of 6 -- (V, E, d) is the evaluation ~(Y) = (~(V1),..., ~(Vn)) 

in R 2n with I~(V~) - ~(Vj) I = d(Vi, Vj) for all {V~, Vj} �9 E. 

Denote by 6 C 6' = (V', E' ,  d') a mechanical linkage 6 = (V, E, d), such that 
V C V t, E C E r and d = dllE. Notice that  we often abuse notation by identifying 

the mapping ~ to its evaluation ~(V). The configuration space of a mechanical 
linkage is defined as a subset of R 2n with the natural topology: 

Definition 2.3: Let 6 = (V, E, d) be a mechanical linkage and {Pl , . . .  ,Pro} fixed 

points in R 2 with m _> 2, such that IPi-Pjl  = d(Vi, Vj) for all {V~, Vj} �9 E with 

Vi, Vj �9 (V1, . . . ,  Vm} -- Viix. Then the conf igura t ion  space  of 6 is defined by 

[6] -- {~ realization of 6; ~(Vlix) = (p l , . . .  ,Pm)} 

:- {(Xl,.- . ,Xn) �9 (R2)n; Xj : p j  Vj  �9 {1 , . . . ,m}  and 

- -- d(V~, Vj) V {V~, Vj} �9 E} 

with the topology induced by the Euclidean metric of ]R 2'~. 

Definition 2.4: Let 6 -- (V, E, d) be a mechanical linkage and Vj �9 V. Then 

W~ (Vj) -- {~(Vj); ~ �9 [6]} C R 2 is called the work  space  of the vertex Vj. 

Next we introduce a fibration ~r: F -+ X which drops the requirement of local 

triviality: 

Definition 2.5: A spUt ted  f ib ra t ion  is a surjective map ~r: F ~ X, where F 

and X are topological spaces and lr-l(x) is the f iber  over x �9 X. 
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Two splitted fibrations r :  F -+ X and zr~: F ~ ~ X ~ are called equ iva len t ,  if 

homeomorphisms f :  F -+ F ~ and g : X -+ X t exist, such that the diagram 

f 
F > F' 

X �9 X' 

commutes. 

This notion is related to the definition of the configuration space and the work 

space of a mechanical linkage: let G = (V, E,  d) be a mechanical linkage and 

Wg (Vj) the work space of the vertex Vj E V. Then we obtain a splitted fibration 

and the fiber above p C Wg (Vj) consists of all realizations ~ e [G] with ~(Vj) = p, 

in particular r~ l (Wg (Vj)) = [G]. Notice that W~ (Vj) is a compact subset of R 2 

since G is supposed to be connected. 

Finally, for a mechanical linkage G we consider the polynomials L i l j l , . . . ,  Likjk 

defined by Li,j~ := [~(Vi , ) -  ~(Vj,)I 2 in ~ [ X l , . . . , X 2 n  ] with {Vi,,Vj,} �9 E, 

such that Vi~, Vj~ are not both elements of Vfix. We say that the k-tuple p := 

(d2(V/,, Vj , ) , . . . ,  d2(V/k, Vjh)) of 6 is r e g u l a r  i f p  �9 R k is a regular value of the 

map L := (Li , j l , . . . ,L ik /k) :  R 2n -q R k, otherwise p is cr i t ical .  A first result 

about the topological behaviour of [G] allowing small perturbations of p is given: 

PROPOSITION 2.6: Let p be as above for a mechanical linkage ~ and suppose that 

an open neighborhood U of p �9 ]Rk exists, such that for all mechanical linkages 

G' with p' �9 U we have [~'] ~ [G]. Then [~] is an orientable smooth manifold of 

dimension 2(n - m) - k. 

Proof If p is regular then L- l (p )  = [G] is an orientable smooth manifold by 

the Implicit Function Theorem. Conversely, i fp  is critical, then a regular p~ E U 

exists, since by the Lemma of Sard the critical values of L: R 2n ~ R k have 

measure zero in ~k. This completes the proof since [6] ~ [~'] = L- I (p ' ) .  | 

3. n-Polygons 

A n-polygon is a special mechanical linkage built up by a cyclic arrangement of 

its edges: 
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Definition 3.1: An n - p o l y g o n  :Pl is a mechanical linkage, such that 

(1) V = {V1,. . . ,  Vn} with Vf~z = {V1, V2}, 

(2) E = U 3 } , . . . ,  and 

(3) l = ( /1 , . . . ,  In), such that lj = d(Vj, Vj+I) C R+ with indices modulo n. 

In the proof of Theorem 1.1 we assume some knowledge about the configuration 
space of a special 5-polygon whose computation in Example 3.2 is prepared by 
some considerations on 4-polygons: the configuration space of a 4-polygon Pt is 
discussed in [3] using Morse Theory, but  no classification depending on the length 

tuple 1 = (11,12,/3,/4) is given. We state a complete classification, using either 
the cited article or elementary geometric considerations, i.e. the work space of 

the vertex V3 and its splitted fibration: 

Since we require that Pl is realizable, there is lj <_ ~ i # j  li for all j C {1 , . . . ,  4}. 

If we have equality in the above condition for one j C {1 , . . . ,  4} then [Pl] = pt, 
(point), otherwise we consider the pair of relations 0 = (01, 02), where 

(11+/2) 01 (13+14) and 111-121 82 113-141 

for 01,02 E {> ,= ,  <}. For the classification we distinguish the following two 
cases :  

(i) I f l l  # 12 or 13 # 14 and 
0 e {(<, <), (>, >)} then [Pl] ~ S 1 (manifold); 

0 E { ( < , > ) , ( > , < ) }  then [Pt] ~ S I I I S  1 (disjoint union of two S 1, 

manifold); 

0 E {(=, <), (=, >), (<, =), (>, =)} then [Pl] ~ S 1 V S 1 (one point union of 
two $1); 

0 = (=, =) then [Pz] ~ ((Z 1, So) U (S 1, S~o))/{so ~ S~o, -So  ~" -S~o}. 
(ii) If 11 = 12 and 13 = 14 and 

0 E {(<, =), (>, =)} then [Pl] ~ ((S 1, so) U (S 1, S'o))/{so ~ S'o, - s o  "~ -s~}; 
0 = ( = , = )  then [Pz] ~ ( ( S l , so )W (S 1, s~)U (S 1, sg)) /{so ~ s g , - s g  

! 
- s o  ~ - s o } .  

Thus the configuration space of a 4-polygon is given up to homeomorphism. 

Example  3.2: Consider the 5-polygon [Pl] with l = (9, 3, 5, 1, 3) as shown in 

Figure 2; then [Pt] ~ El. In fact, take orthogonal coordinates of C, such that 

~(V1) = 0 and ~(V2) = l ie i~ Then it is easy to see that the angle T defined by 

arg(~(Vh)) satisfies ~v e [-~0, ~0] with ~0 := arccos(1) for any ~ �9 [Pl], in terms 

of the work space W~,, (Vh) = {15eiv; ~v �9 [-~0, ~o]}. Using the above classifi- 
cation for 4-polygons we deduce [Pt(~)] as a function of l(~) := (d(~), 3, 5, 1), 

where d ( ~ ) : =  I( (V2)-  ~(Vh)I e [6,9]. 
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/ {(v=) 
-~>~/W~,, (V~) 

- - ( f l o ~  " 

Figure 2. 5-polygon Pt and work space Wp, (V5). 

If ~ -- ~o we have d(+po) = 9, thus [Pl(+~o)] = pt. For ~ = ~1 : -  arccos(~)  
we have d(+~l )  = 7 which implies 8 = (>, =), thus [Pl(+~:)] ~ $1 v S 1. Let be 

6 ] -~o,  -~1[  U ]~1, ~o[ =: I_ t3 I+, so d(~) 6 ]7, 9[ which implies O = (>, >) 
and thus [Pt(,)] ~ S1. I f~  �9 ] -Vl ,  ~1[ --: M we have d(~) �9 ]6, 7[ which implies 

0 = (>, <), so [Pt(r ~ S:  II S:.  Since the map from [Pt] to [-~o,  ~o] which 

assigns to any realization the angle ~ defines a Morse function, we obtain ~rp x : 

[Pt] --+ Wpt (V5) with fibers ~r~:(/~e i~) = [Pt(~)]: for all points (I~2,1~3,1~4, l~) �9 
Uylo(3, 5, 1, 3) C R 4 the splitted fibrations Irp~ : ['Pt] --+ Wp~ (V5) and ~rp; : 
[:Pt'] --+ Wp~, (1/5) with l' = (/:, l~, l~, l~, l~) are equivalent, thus by Proposition 2.6 
the configuration space [Pt] is an orientable compact two-dimensional manifold. 

S1 SIvS 1 SI]ISIsIvSI S1 

7['p t .~ 

I I I 
--(riO --~Pl 0 ~1 ~0 w'pl (V5) 

Figure 3. Splitted fibration over the work space Wp, (Vh) ~ [-~0, ~0]. 

The Euler characteristic X of the fiber space 

pt for U = {-~o},  {qOo} 
S 1 V S 1 for U = {-~Pl},  {~1} 

~r~l{15ei~; ~ 6 U} ~ I-~ x S:  for U = I_,  I+ 

M x ( S : I I S : )  for U - - M  
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illustrated in Figure 3 finally determines the genus of [Pl]: 

x(A)  " x (B )  to get 

181 

use x (A  x B) = 

x(pt) = 1 for U={-qo0},{qOo} 
~(S 1 V S 1) ~--- - 1  for U = {-qol}, {qol} 

X ( I + ) . x ( S  1) = 0 for U = I _ , I +  
x ( M ) ' x ( S  1 U S  1) = 0 for U = M  

and therefore X([Pl]) = 0. We obtain [Pt] ~ El.  

Remark 3.3: The reader is invited to look for a 5-polygon "Pl such that  [Pl] "-~ S 2- 

Denote this mechanical linkage by 80- Notice that by the computation method 

as proposed above one can get a full classification of the configuration spaces for 

5-polygons. 

4. P r o o f  o f  T h e o r e m  1.1 

Before stating an inductive construction of the mechanical linkage $9 with [$g] 

Eg we need two lemmas presented in the first and second parts of the proof. The 

inductive step consists of cutting the configuration space of an assumed mechani- 

cal linkage, such that the borders are either homeomorphic to S 1 II S 1 (g even) or 

to S 1 (g odd), throwing away one of the connected components, duplicating the 

other component and then pasting the canonically isometric borders. We obtain 

that the genus of the configuration space is increased by one. 

All this can be done mechanically by adding two edges to a given linkage, 

whose sizes are determined by Lemma 4.1; see Figures 1 and 5. This gives enough 

freedom to execute the cut at the right position in each inductive step. Lemma 

4.2 states the the resulting gluing procedure during this step as illustrated in 

Figures 6 and 7. 

1. Assume a mechanical linkage 6 = (V, E,  d) with {0 ,  A} r E, d(O, A) = r and 

0 C Vlix with ~(O) = p C R 2, such that W~ (A) = {q(~o) = p + rei~'; ~ e [a, r 

for fl - a < ~r, where the angles are measured according to any direction in p. 

We define a mechanical linkage 6' = (V', E', d') D 6, such that V ~  = Vi~eeU 

{A'}, V~i x = Vfi~U{O'},  E'  = EU{  {O' ,A '} ,  {A ,A ' }  }, d(O' ,A')  = r', d (A ,A ' )  = 

s and dllE = d. In the next lemma we lay down the lengths r', s and ( ( & )  = 

p' E R2; see also Figure 4. 

LEMMA 4.1: Let 6 be a mechanical linkage with W G (A) and g E]a, fl[. Then 6' 

exists, such that 

(i) W~, (A) = {q(qo); qo e [a,5]} c W6(A), 
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(ii) W6, (A') = {q'(~');  ~ ' E  [a ' ,fl ' ]},  whereq'(~')  -=p'+r'e ~ '  a n d l Y - a '  < re, 
(iii) i f  S' 1 , -- ~(~ - ~') then the map~ FE,~, ~, I : W~,(A)  + {q'(~'); ~' e [~',5']} 

and F[x,t~,]: W6,(A) --+ {q'(~');  ~o' E [5',fl ']) with F[~,,x],F[x,~,](~(A)):= 

~(A') are homeomorphisms. 

The angle ~ is measured in p and ~' in p', both with respect to the direction 

given by p' - p. 

q(~) S ( ~ ' ) i  

+/_ ................................. 
q'(~') 

Figure 4. Par t  of the mechanical linkage G': a realization with R = 0 (dashed), 

a realization with R -- - d  (lined) and a realization with R E] - d, 0[ (dotted).  

Proof'. First  let us describe the exact shape of the mechanical linkage G' to get 

(i) and (ii). Pu t  p' E ]R ~ on the ray from q(5) through q(a),  and q'(a') E R e on the 

ray from p through q(a), such tha t  the rectangular  triangle q(a),p' ,  q'(a') with 

right angle at q ' (a ' )  has sidelength IP' - q(a) l = s + r' - 2r cos % [p' - q' (a')[ = r '  

and [q'(a') - q(a)[ = s, where ~ := ~r/2 - (5 - a ) /2 .  We obtain two defining 

equations s = (s + r ~ - 2rcos 'y)  cos7  and (s + r ~ - 2 r c o s ~ )  2 = r ~2 + s 2, thus 

s = 2r(cos~/)2(sin7 + cos0' - 1) -~ and r '  = r ( s i n7  + cos7  + 1), which shows the 

existence of G'. 

The  oriented input angle ~ := Ap(p',~(A)) E In, 5] and the oriented ou tpu t  

angle ~'  := 7r - Ap, (p, ~(A')) E In', ~'], are related by Freudenstein's Equation 

2rdcos  ~ + 2 r 'dcos (~ '  - ~r) - (r 2 + r '2 + d 2 - s 2) = 2 r r '  cos(~ - ~ '  + ~r) 

where d := [p - p'[; cf. Section 5.2 in [2], Formulas (5.6) and (5.7). 

It suffices to show tha t  f ( ~ )  := ~'  is strictly increasing if f :  [a, 5] ~ [a', 5'] 

and str ict ly decreasing if f :  In, 5] ~ [5',/3'] respectively. The Formula (3.11) 

~ ( ~ )  _ 
R ~ - d  
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for the first derivative of the input-output  relation f E CI[(~, 5] supplied for the 

Carter-Hall Construction in Subsection 3.4.2 of [2] is useful. Here R := :Lip - I I 

where I = line 11 through p and p~ M line 12 through ~(A) and ~(At). Remember I 

is empty or equal to ll if and only if ll II 12, then R := =t=oc. The sign convention 
is plus if p lies between I and p~ else minus. Determine R as a function of the 

input angle p: 

- Let p = ~. Then p '  E {c~',/~'}. If p '  = (~' then p,p',~(A') is a triangle 

with A~(A,)(p,p ~) = ~/2,  hence R = 0 (dashed realization in Figure 4). If 

~ '  = /3 '  then A~(A)(P, ~(A')) = ~r - 2% thus R E] - d, 0[ (dotted realization 

in Figure 4). 

- Let p E In, 5[. Then I~(n) - p'[ < s + r ' ,  thus exactly two positions for 
~(A') on W~, (A') can occur. I f p '  E In', 5'[ then the triangle ~(A),p',~(A') 
is positively oriented, and A~(A)(p,~(A')) E ]% ~[. Then either l~ and 12 

cut where R > 0, or It II 12 then R = :t:c~, or ll and 12 cut where R < - d .  
If p '  E ]5',/3'[ then the triangle ~(A),p',~(A') is negatively oriented, and 

A~(A)(p,~(A')) E ]7,7r -- 27[. Then 11 and 12 cut where R E ] - d,0[. 

- Let p --+ 5. Then p '  -+ 5' and the quadrilateral p,p',~(A'),~(A) degener- 

ates to the triangle p,p~, ~(A ~) (lined realization in Figure 4). Therefore if 

p~ -+ 5 ~ from above/below then R --+ - d  from above/below. 

We get dd-~(p) > 0 where f ( p )  E]a',5'] for all p E]a, 5], and dd-~(p) < 0 where 

f ( p )  E [5',/3'[ for all p E]a, 5], thus (iii). t 

2. The inductive construction of a mechanical linkage ,Sg with [$9] ~ E9 builds 

on the knowledge about  the following gluing procedure: consider the mechanical 

linkages G, G' as presented above and set Wa, (d')[~,,~,] = {q'(p'); p '  E [a', 5']}, 

W~, (A')[~,,~,] = {q'(p'); p ' E  [5',/3']}, cf. Figure 5, 

~(A) W6, (A')[~, ,,] 

Figure 5. Par t  of ~ with a realization in general position. 
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then by 

{{ E ~r~,~ (Wa, (A)); ~(A') E Wa, (A')[w,a,]} 

l h[a'.~'] 

[G]i~,~] := ~ra~ (w~ ' (A)) 

T.61 -- 1 , o ~I-',~'l (w~, (A){~',~'1) 

F 
~-,~(w~, (A'/I~',<) =: [r 

there is [~][a,aJ ~ [G'][w,a,p where h{a,,a,}: ~(V) ~-+ ({(V), F[~,,a,] o((A),p') defines 
a homeomorphism, and [9][a,a] ~ lrg, l (WP (A')[a,,fl,]) =: [G'][~,,fl,] respectively. 
The space [~][a,a] is illustrated in Figure 6. 

[G]I~,< 

I I W a ( A )  

Figure 6. Splitted fibration over W~ (A) ~ [a, fl] of G. 

Notice that lr~l(~(A)) ~ 7r~,l(~(A')) gives a one to one correspondence between 
the fibers over W G, (A) in [G] and Wr (A') in [~'] for all ~ E [G']. In particular the 
subspaces [~'][a',~'] and [G'][~,,~,] in [G'] are glued by the identity at the common 
border Ir~',l(q'(6')) as shown in Figure 7. 

[~'li~,,~,j [r 

I I Wg, (A') 

Figure 7. Splitted fibration over W~, (A') ~ [a', fl'] of G'. 

Summarizing we conclude: 

LEMMA 4.2: The splitted [ibrations rrp: [~'][w,~'l -4 W~, (A')[a,,~,], 7rg,: [~'][~,,~,] 
-+ Wp, (A')[~,,~,], ~rp: [g][~,a] -+ Wp (A) are equivalent, and there is 
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where t': Tr~,l(q'(6')) --+ [G'][~,,~,] and t: lr~l(q(5)) --~ [G][a,~] are the inclusions. 

3. Departing from a mechanical linkage Sg, g E N with [$g] ~ Eg we give 

89+1 corresponding to the construction of G ~ D G in the preceding parts of the 

proof. First we need a sequence of special subsets of a closed interval I C R: 

U1 < .. �9 < Un is called an increas ing  d e c o m p o s i t i o n  of  I, if 

(1) UI U ' " U U n  = I, 
(2) Ui N Uj = ~ for all i , j  E {1, . . .  ,n}, i r j and 

(3) Ui < Uj :~=~ sup(U/) _< inf(Uj) for all i , j  C {1 , . . . , n} ,  i < j .  

Let g = 1 and define 81 = Pl as in Example 3.2 by changing the denotations so 

that V1 of T'l corresponds to O1 of $1, I72 to O0, V5 to A1 and 15 to rl  respectively, 

i.e. O0 := V2, O1 := 171 E Viii. Then 

W~.~ 1 (A1)= {rlei~~ qO1 e [O~1,/~1] } 

where a l  = -arecos(-~) and ~1 = arceos(-~), therefore fll - a l  < 7r. In particular 

there is [S1] ~ E~ and ~rs~ : [S~] + Ws~ (A1) with 

pt for U = {o~1}, { i l l}  
_ S 1 V S 1 for U = {~,~-}, {~,+} 

('1) ~rs~ {r le i~;  qol e U} .~ U x S 1 for U = 11,12 

U x  (S I I I S  1) for U = M 1  

where I1, I2, M1 are open intervals and {al} < 11 < {3'i-} < M1 < {')'t} < 12 < 
{ill} is an increasing decomposition of [al, ill]; see Figure 3. 

We assume a mechanical linkage Sg with [$~] ~ Eg for g C N and 

Ws~ (A 9) = {qg(~g) = Pg + rgei~;~g e lag, fig]} 

with fig - ag < 7r for the vertex Ag of Sg. In addition we assume 7rsg : [$g] --+ 

Wsg (Ag), such that  

pt for U = {ag}, {~9} 
S 1 V S 1 for U = {71}, {3'+}, -..  , {Tg-}, {7 +} 

~r -1 U} U x for U = I1 , . . . ,  I9+1 sg {qg(~g); q~ E ~ S1 

U x ( S  I I I S  1) f o r U = M 1 , . . . , M  9 

where Ij, Mj are open intervals and {a~} < I t  < {~/1} < M1 < {~/1 +} < I2 < 

�9 .. < Ig < {O'~-} < M~ < {~/+} < I~+1 < {/3~} is an increasing decomposition of 

By Lemma 4.1 there exists a mechanical linkage ,S~+1 D Sg, such that 

Wsg_t_l (A,) = {q~(~); ~o~ e [a 9, 5~]}, 

Wa,+t (Ag+l )=  {pg+l + rg+leis"+'; ~g+l e [O~g+l ,/~g+l]} 



186 D. JORDAN AND M. STEINER Isr. J. Math. 

and flg+l - ag+l < r for any 5g E]ag, fig[. Let us distinguish two cases: if g is 

even, then take 5g E Mg/2+l and conversely, if g is odd, then 59 E I(9+1)/2+1. 

By Lemma 4.2 we obtain [$g+1] ~ [$g][~g,~g] U~ [3g][~9,~] where [$g][~9,~9] := 

r~:(Ws~+l (Ag)) and t : r~:(qg(hg)) --+ [$g][ag,~9] is the inclusion. The above 

description of rs~ : [$g] --+ Wsg (Ag) implies that [$g+1] is an orientable compact 

two-dimensional manifold since ~r~:(qg((~g)) = bd[Sg][~,~] is homeomorphic to 

S 1 II S 1 (g even) or to S 1 (g odd). This allows us to compute X([Sg+l]) = 

2(1 - (g + 1)), thus [Sg+l] ~ Eg+I. For rs~+l: [8g+1] ~ Ws~+, (Ag+I) the 
relation ('9+1) holds where Ij, Mj are open intervals and {a9+1 } < I1 < {~-} < 

+ 
M1 < {~+} < / 2  < . . .  < Ig+l < {~9-+1} < Mg+l < {~g+l} < Ig+: < {fl9+1} is 

an increasing decomposition of lag+l, fig+,], so we obtain identical properties for 

Sg+~ as assumed in S~. This completes the proof. | 

Remark 4.3: To make the inductive construction of •g more easily we used 

Lemma 4.2 to add handles g - 1  times. This defines a mechanical linkage with 3+ 

2g edges. However, adding two edges to the construction may double the number 
of the genus. By suitable binary encoding of g one can achieve a configuration 

space homeomorphic to Eg with at most 5 + 2 log 2 (g) edges. 

Remark 4.4: For $g we have Vl~x = {O0, O1, . . . ,  Og} pinned down in the plane 

with dim aff{~(O0),~(O1),... ,~(Og)} = 2 whenever g > 2. Adding all edges of 

Pot2(Vl~x) := {{Oi,Oj};Oi,Oj G Vli~,i • j}  to the set E and extending the 
weight function d on Pot2(V/i~) defines a mechanical linkage Sg. If the config- 

uration space is introduced as all realizations of Sg in the plane modulo proper 
Euclidean motions, then we obtain [$g] II [$g] ~ Eg H Eg as the configuration 

space of ,~g. 

Remark 4.5: The work [7] makes available a constructive method to produce a 

huge mechanical linkage with one component of its configuration space being a 

projective plane, a Klein Bottle or even a non-orientable compact closed surface 

of any genus. But in contrast to the orientable case it seems to be much harder 

to find such an easy analyzable mechanical linkage, whose configuration space is 

exactly a non-orientable compact closed surface. Because of Proposition 2.6 this 

may be impossible. 
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