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Abstract Online systems that help users select the most preferential item from a
large electronic catalog are known as product search and recommender systems. Eval-
uation of various proposed technologies is essential for further development in this
area. This paper describes the design and implementation of two user studies in which
a particular product search tool, known as example critiquing, was evaluated against
a chosen baseline model. The results confirm that example critiquing significantly re-
duces users’ task time and error rate while increasing decision accuracy. Additionally,
the results of the second user study show that a particular implementation of example
critiquing also made users more confident about their choices. The main contribution
is that through these two user studies, an evaluation framework of three criteria was
successfully identified, which can be used for evaluating general product search and
recommender systems in E-commerce environments. These two experiments and the
actual procedures also shed light on some of the most important issues which need
to be considered for evaluating such tools, such as the preparation of materials for
evaluation, user task design, the context of evaluation, the criteria, the measures and
the methodology of result analyses.
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1 Introduction

Whether choosing the right job candidate to hire among a dozen applicants, selecting
a software contractor to outsource your IT work, or determining which digital camera
to purchase, every decision maker is likely to employ one of two approaches [22]. In
the first case, we try to achieve high decision accuracy, but we face the very time
consuming task of sifting through all k options and trading off the pros and cons be-
tween multiple attributes. Alternatively, we can adopt heuristic decision strategies and
process information more selectively. Although we expend less effort, these heuristic
strategies can lead to decision errors and are likely to cause decision regrets. Clearly,
neither approach is ideal, since adopting one or the other implies a compromise on
either decision accuracy or effort. According to [22], the tradeoff between accuracy
and effort is an inherent dilemma in decision-making that cannot be easily reconciled.

We investigate the problem of users searching for the most preferred item in an
online catalog. This problem is generally known as preference-based multi-criteria
product search. Systems that address this problem are recently being developed and
employed in E-commerce environments to help users select and decide about their
choices.1 Even though many of them allow users to narrow down a large choice of
products to a smaller set of k interesting candidates, making the final selection where
k can be a very high number, especially in an E-commerce environment, remains a
daunting task. The effort in processing all the product information in order to make
accurate decisions can potentially be tremendous. Most of these systems do not sat-
isfactorily address the effort and accuracy dilemma that decision makers face in the
search process.

We propose a system, called example critiquing, which aims at assisting the user
to not only find the product that she is looking for, but also help her process trade-
off information in order to achieve better decision accuracy. While looking for ways
to find out if this tool indeed achieves high decision accuracy while lowering the
barrier of effort for decision makers, we realized that this research domain lacks a
coherent framework of evaluation techniques. Therefore, identifying the right criteria
to evaluate the real benefits of these systems has become a priority. Indeed, evalu-
ation of various proposed technologies is essential for further development in this
area. Current methods such as precision and recall were adopted from the informa-
tion retrieval domain, which only address the performance issues, not the interaction
aspect, of the underlying search algorithm. More recently, researchers started de-
veloping more user-centric evaluation framework, known as the mean average error
(MAE) mechanism, to measure the performance of rating based collaborative filter-
ing recommender systems [14]. However, neither framework captures the accuracy
vs. effort tradeoff that underlies the usability issue of product search: will users be

1See for example http://shopping.yahoo.com/.

http://shopping.yahoo.com/
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more likely engaged in interacting with the tool, or will they turn away because the
interaction effort demanded of them is too high.

This paper describes the design and implementation of two user studies in which
our tool, the example critiquing, was evaluated against a chosen baseline model. Re-
sults show that example critiquing significantly reduces users’ task time and error rate
while requiring a lower level of interaction effort than the baseline model. Results of
the second user study showed that a particular implementation of example critiquing
also made users more confident about their choices.

The main contribution of this paper is that through these two user studies, an eval-
uation framework of three criteria was successfully identified: (1) the relative deci-
sion accuracy that a user is able to achieve via the use of the tool compared with the
baseline model, (2) the effort that she expends on interacting with the tool also com-
pared with the baseline model, and finally (3) decision confidence, which measures
whether users are convinced of the products that were recommended to them. These
three criteria and the evaluation methodology, which will be reported in detail later
in this article, can serve as a general evaluation framework for product search and
recommender systems used in E-commerce environments.

Another contribution of this paper is the identification of a baseline model to
measure relative accuracy and effort. For a model to serve as the usability baseline
we decided to look for a tool that is easy to use and is the current norm used in
E-commerce websites. Our final selection went to the ranked list product search tool
where a user search for her most preferred item by sorting on the list of products
based on a set of criteria judged to be important to her. In the search for a digital
camera case, the ranked list tool allows users to browse the entire catalog based on
the price, the optical zoom, the weight, etc. In addition, users can browse a subspace
of the catalog by specifying a range of values of a criterion. This model implements
the lexicographical ordering decision strategy, which is known to be a low effort re-
quiring and non-accurate heuristic strategy [22]. We reasoned that if a tool achieves
higher accuracy, but requires less or the same amount of effort as the ranked list, it
is likely to offer significant benefits to consumers in terms of decision accuracy and
effort and therefore will motivate users to adopt the tool.

The first user study was reported in the ACM E-Commerce conference in 2004
[26]; a follow up user study, reported for the first time here, points out new devel-
opments relevant to the evaluation of recommender tools. A fisheye view interface
capable of displaying more recommended items was able to significantly improve
users’ subjective confidence of their choices compared to the earlier example cri-
tiquing interface. Putting these two related user studies into a single publication is
therefore essential to the coherent reporting of our work. Together, we learned that
one way of designing a successful product search and recommender tool is to com-
bine the use of critiquing features with a fisheye view interface in which more results
are displayed and the recommended items are emphasized. These two experiments
and the actual procedures also shed light on some of the most important issues which
need to be considered for evaluating such tools, such as the preparation of materials
for evaluation, user task design, the context of evaluation, the criteria, the measures
and the methodology of result analyses.

This article is organized as follows: Sect. 2 discusses related work, Sect. 3 de-
scribes in detail our tool, the SmartClient system, based on the example critiquing
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paradigm, Sect. 4 presents the results of the first user study, Sect. 5 then introduces
the fisheye interface, Sect. 6 presents the user study of this interface as well as the
analysis of results, and Sect. 7 concludes the article followed by acknowledgements.

2 Related work

We focus our attention on buyers using an electronic product catalog to find items
that best suit their needs in an E-commerce environment, although these techniques
can be applied in other decision and choice scenarios as well. We primarily consider
the final product selection stage where k items have been selected and displayed by a
recommender system. We briefly describe the background of multi-attribute product
search and recommender systems, specify how they display search results, and com-
pare related works in terms of ways to evaluate such systems and user benefits that
have been established by previous evaluations.

2.1 Multi-attribute product search tools

An electronic product catalog is an online database containing well organized infor-
mation about products and their features. Most E-commerce websites, such as Ama-
zon (www.amazon.com), Expedia (www.expedia.com), or eBay (www.ebay.com),
use such catalogs. A crucial element of these electronic catalogs is a search func-
tion that takes the customer’s needs and preferences as input and returns a set of
matched items. When products can be represented by the same set of attributes, a
search tool often uses a utility model to determine the attractiveness (or utility) of an
item based users’ preference specification [16]. Items matching or partially matching
the preference specification are displayed in a descending order of the utility scores.
A commercial tool of this type can be found at www.activedecisions.com. These sys-
tems are also known as content-based recommendation systems [3], decision support
interface systems [34], product search with personalized recommendation systems,
and utility based product ranking systems [35, 40]. We will refer to them as multi-
attribute product search tools (MAPST).

Determining a good match between a product and a user’s product needs requires
accurate information on users’ preferences, known as the preference model. Thus, a
crucial element in MAPST is a preference elicitation tool. Users’ participation of the
elicitation process varies depending on the effort expected of the user. In the sim-
plest case, a system will try to recognize a new user as a member of a particular
community of users and use the preference information previously gathered of that
community to infer the needs and preferences of the newcomer [12, 30]. The most
successful of these methods is called collaborative filtering. Herlocker et al. [14] has
proposed an excellent evaluation framework for these so called community-based
recommender systems. While very effective for low-risk products such as films and
books, users are much less likely to accept an inferred preference structure from a
community-based recommender system for choosing products which present high fi-
nancial and emotional risks [6, 22]. For these so-called high involvement products,
more refined preference models are favored which involve asking users to state their

http://www.amazon.com
http://www.expedia.com
http://www.ebay.com
http://www.activedecisions.com
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needs and preferences up-front or interactively with varying degrees of effort. The
non-incremental elicitation methods were found to be too difficult for novice users
and often force them to focus on wrong decision objectives [25], and they will not
be further discussed here. There are three types of methods which elicit users’ pref-
erence models incrementally and interactively: the single-item critiquing-based, the
k-item non critiquing based, and the k-item critiquing-based systems. A critiquing
interface offers not only product recommendations, but also the possibility for users
to provide critiquing feedback to improve the recommendation. Spiekermann and
Paraschiv [34] offered a similar classification of MAPST based on the number of re-
quired search criteria. However, they did not include the treatment of critiquing-based
systems. The feedback offered by the critiquing-based systems was in fact described
as a major drawback lacking in the DSISs that they reviewed. Results presented here
thus indicate a major development in the design and evaluation of MAPST.

2.1.1 Single-item critiquing-based MAPST

The FindMe [4] system was the first known single-item critiquing-based MAPST. It
uses knowledge about the product domain to help users navigate through the multi-
dimensional space by recommending one product at a time. An important interface
element in FindMe is called tweaking, which enables users to navigate from an item
to its tradeoff alternative and compare them. Via tweaking, a user trades off more of
one valued attribute for less of another valued attribute. For example, by tweaking the
current suggested restaurant on its price for a lower value, a user gets a recommenda-
tion of a cheaper restaurant that possibly has a less desirable ambiance. However, the
evaluation of FindMe systems to quantify the benefits did not occur until 2004 [20,
21, 28, 29, 32].

Researchers evaluated several dynamic critiquing systems whose interface was
based on the tweaking philosophy originally used in the FindMe systems. Dynamic
critiquing systems continue to recommend items one at a time. However, for each
recommended item, several sets of compound critiques are suggested to the user in
addition to the unit critiques. For example, in the case of recommending a digital
camera, the system suggests that “We have more matching cameras with the follow-
ing.” Then a compound critique such as “more memory and larger and heavier (134)”
is displayed, suggesting that 134 digital cameras with more memory, but are larger
and heavier are available in the catalog. A compound critique is therefore an item
with improved values on one attribute and compromised values on two attributes. The
evaluation of dynamic critiquing systems has mainly focused on the session length
criterion, which is the number of times recommendations are given to users. One user
study showed that participants who selected the compound critiques more frequently
were able to reduce the interaction session length from an average of 28 recommen-
dation cycles to 8.53 cycles.

According to Spiekermann and Paraschiv [34], minimizing consumer’s time
should not be the only design goal for MAPST. Minimizing purchase risk is equally
important. Since decision accuracy is important in minimizing purchase risk, it should
be measured at the same time. Therefore, evaluating dynamic critiquing systems
based on session length alone may not indicate the fundamental user benefits.
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2.1.2 k-item non critiquing-based MAPST

The simplest and most commonly used interface to show k-item in multi-attribute
product search tools is a ranked list. Items are sorted and displayed in descending
order of their relevance to users’ current preference specification. The interfaces used
by PersonaLogic [19], ScoreCat [35], Active Decisions (www.activedecisions.com),
and shopping.yahoo.com (http://shopping.yahoo.com/) are some examples based on
this approach. Notice that there are no critiquing components in these systems. Select-
ing the final winner requires users to exhaustively examine all potentially interesting
candidates and perform tradeoffs manually.

More recently, researchers have shown the benefits of including a tool, called the
comparison matrix (as is available on CompareNet website), in the ranked list in-
terface [13]. This component facilitates users’ tradeoff examination of products in
the final stage of their search. As users view the recommended k items, they can
manually select a set of finalists and compare them in a side-by-side matrix based
on attribute values. Evaluation of such tools found that the comparison matrix aug-
ments the quality of the consideration sets and the quality of purchase decisions [13].
These benefits are crucial to the final selection process of product search. Compared
to their work, we provide two pieces of additional knowledge. We identify the cri-
tiquing feature as yet another decision aid component which can be used on top of
the comparison matrix. The critiquing interface (Fig. 2 and explained subsequently)
assists users in identifying the relevant items to be included in the comparison ma-
trix and therefore lessons the burden of completing this task manually. Secondly, we
show that the critiquing component provides additional benefits to improve users’
decision quality. The decision accuracy criterion that we use measures the amount of
information a user processes to resolve tradeoffs among a set of options, whereas the
decision quality used in [13] estimates the likelihood that users select non-dominated
products. Therefore the accuracy criterion is an additional desirable property of de-
cision quality. Other researchers have also argued for decision accuracy as a quality
measure. Jedetski et al. [11] showed that the use of a side-by-side comparison matrix
increases the likelihood that a user will employ more compensatory (i.e., accurate)
decision strategies. However, they did not identify the component which assists users
in selecting the items.

2.2 k-item critiquing-based MAPST

The ATA (Automated Travel Assistant) system [18] and our system, SmartClient,
were examples of MAPST which provide all three components: a recommender agent
that provides a set of k items that best match users’ current preference model, a cri-
tiquing component that provides feedback to the recommender system and allows
users to actively identify and confront a set of tradeoff alternatives, and a comparison
matrix in the form of a multi-attribute basket to compare the finalists. ATA displays
three items at a time, whereas SmartClient displayed 7 items in the most recent ver-
sion. Users can select any of the displayed items and navigate to products that offer
tradeoff potentials. Any interesting items viewed along the way can be kept in a bas-
ket for further comparison and final selection.

http://www.activedecisions.com
http://shopping.yahoo.com/
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To our knowledge, no prior work has evaluated the k-item critiquing or the k-
item non-critiquing based MAPST in terms of decision accuracy and effort. Since
the ranked list interface implements the k-item non-critiquing based MAPST, and is
the current accepted norm in E-commerce websites, we will use that as the baseline
model, and measure the performance increase offered by the k-item critiquing based
MAPST. More precisely we measure the benefits offered by the critiquing compo-
nent.

3 Example critiquing interface

The example critiquing interaction paradigm, initially used in ATP [38], was devel-
oped around the same time as FindMe. Later on, ATP became SmartClient, an online
product catalog for finding flights [24]. This method was subsequently applied to
catalogs of vacation packages, insurance policies, and apartments.

The example critiquing interface (see Fig. 1) contains a critiquing module and
a basket. It is powered by SmartClient’s search engine which helps users narrow
the product space down to a smaller consideration set. The critiquing module assists
users to encounter and resolve tradeoff decisions, and provides feedback to improve
the system’s recommendation. The basket helps users memorize potentially inter-
esting products and compare them side-by-side based on their attribute values. The

Fig. 1 Step one in example critiquing: system showing a set of 7 results after a user query
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search engine can be a simple ranking function for simple products based on multi-
ple attribute utility theory [16] as in the case for finding apartments. For configurable
products, SmartClient employs more sophisticated constraint satisfaction algorithms
and models user preferences as soft constraints [25]. More detail on SmartClient’s
architecture and the modeling of preferences for configurable products was provided
in Torrens and Faltings [36] and Torrens et al. [37]. We focus our attention on the
design and evaluation of the example critiquing interface in this paper.

3.1 How example critiquing interface works

A user starts the search by specifying one or any number of preferences in the query
area. Based on this initial preference model, the search engine will find and display a
set of matching results (see [7] for the optimal number of displayed solutions). He/she
is able to revise his/her preferences if the displayed results are not satisfactory.

However, when a user is ready to select an apartment to put in the basket, the exam-
ple critiquing interface will first show a pop-up window (see Fig. 2) where he/she can
compare his/her current selection with others and perform tradeoff analysis. For ex-
ample, suppose that the current selection is apartment 34. In the comparison window,
the user can specify his/her desire for a bigger apartment by clicking on the checkbox

Fig. 2 Step two in example critiquing: guiding users to find tradeoff alternatives in the product comparison
pop-up window
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Fig. 3 Step three in example critiquing: the system showing tradeoff alternatives

next to the “bigger area” label. However, knowing that he/she may sacrifice some-
thing for a bigger apartment, he/she specifies “compromise” for both the distance
and kitchen attributes by clicking on the checkboxes next to these two attributes.
Compromise means that a user is willing to accept a lesser value of the respective
attribute. Once a set of critiques has been composed, the system will show another
set of matching examples (see Fig. 3). Apartment 31 seems quite interesting, since it
is around the same price, but 5 square meters bigger, although it is 10 minutes more
commuting time and the bathroom is shared. The system does not resolve tradeoffs
for the user, but provides relevant information for him/her to understand the decision
context. The final choice is left to the user.

This query/critiquing completes one cycle of interaction, which can continue if
users change their preference structures. In our general observation, users perform
on average 3 to 4 cycles. The “Compare” pop window will become accessible by
clicking the “Compare” button and will not be forced on users when they put items
in the basket.

4 Evaluating example critiquing interfaces

4.1 User task design

We compare the performance of the example critiquing interface against the ranked
list interface focusing on decision accuracy and effort. We ask all of the participants
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to find simple and complex tradeoff alternatives of a given item while using both
interfaces that are to be compared. The design of these identification tasks is based
on the fact that decision makers undertaking these tasks use compensatory strategies
[15, 22] and are more likely to achieve higher decision accuracy. Therefore, the more
complex tradeoff alternatives a user can identify, the more accurate his or her decision
is; and the faster a user finds answers to tradeoff alternatives, the less effort he or she
makes. We demonstrate that example critiquing significantly reduces users’ task time
and error compared to the ranked list when complex tradeoff tasks were performed.
Before describing the procedure for conducting such a comparative user study, we
define more precisely the notion of tradeoff tasks.

4.2 Tradeoff navigation

In finding tradeoff alternatives, a user explores the product space by navigating from
one product to others that provide tradeoff scenarios. As explained before, the more
tradeoff scenarios a user examines, the more accurate his/her decisions are. In the
example critiquing interface, he/she starts the navigation from a recommended item
after the initial search, and then posts a critique (e.g., a cheaper apartment) in order
to see a new set of products. We call this process the tradeoff navigation process.
More precisely, tradeoff navigation refers to a user navigating from an item to its
tradeoff counterparts which offer improved values on one or several attributes, and
compromised values on other attributes. This type of tradeoff is known as attribute
value tradeoff. Pu and Faltings [25] discussed other types of decision tradeoffs in
product search.

As the number of attributes becomes larger, the complexity of the tradeoff navi-
gation task increases. Let us define each tradeoff navigation task as having two vari-
ables: (optimize, compromise), where optimize represents the set of attributes to be
optimized, and compromise the set of attributes to be compromised. So ({price},
{size of room}) denotes that a user wants to get a better price by sacrificing the size
of his/her room. ({price}, {size of room, distance to work}) denotes that the user
wants to get a better price by sacrificing the size of his/her room, the distance to
work, or both. Furthermore, we use pairs (x, y) to specify the complexity of trade-
off navigation tasks. (1,1) denotes that one attribute is being optimized, while at the
same time another attributed is being compromised. (1,2) denotes the participation
of two attributes for the compromising process, and one attribute for the optimization
process. It is clear that (1,1) entails one single tradeoff scenario, while there are three
scenarios for the (1,2) case because there are three ways to compromise the values
of two attributes (two times on one attribute alone, and one time on both attributes).
As the number of variables participating in a tradeoff scenarios increases, the opti-
mize/compromise scenario pairs increase exponentially. For the case of (1,3), there
are 7 optimize/compromise pairs. That is, there are 7 different ways to compromise
the values of the three chosen attributes, thus 7 different ways to navigate.

4.3 Tradeoff identification tasks

Tradeoff navigation takes place most likely in the final stage of product selection
where users are comparing and examining in detail a set of candidates [13]. Therefore
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we assume that a user has narrowed down the search space to a smaller set. This
provides the reasoning for having only 50 products in the test catalog.

Our goals were to instruct all of our users to perform tradeoff navigations using the
example critiquing and ranked list interfaces respectively and to measure their task
time and error rates. We started with a rather specific decision goal by asking them
to identify their most preferred apartment encountered so far (the first choice). Then
we asked everyone to improve various attributes of that apartment and evaluated how
quickly they found tradeoff alternatives in relation to the first choice. The specific
tasks given to our users were as follows:

1. Find your most preferred apartment.
2. Can you find something closer? You can compromise on one and only one at-

tribute.
3. Can you find something bigger than what you found for question #1? You can

compromise on one and only one attribute.
4. Find something which is roughly 100 Swiss francs less than the answer to question

#1. You can compromise on up to two attributes, but not more.
5. Find an apartment which is 5 square meters bigger than the answer to question #1.

You can compromise on up to two attributes but not more.

The questions can be broadly divided into three categories. The first question is a
simple search task of finding a multi-attribute product from a list of products. This
question on one hand ensures that we get an idea of the user’s comfort level with the
interfaces; it also gives us a starting point for answering subsequent tradeoff ques-
tions. The second category of questions (Questions 2, 3) deals with simple multi at-
tribute tradeoff tasks with one attribute being optimized and the other compromised,
i.e., the (1,1) tradeoff case. The third category of questions (Questions 4, 5) deals
with complex multi attribute tradeoff tasks where the user gains on one attribute, and
compromise on two attributes, i.e., the (1,2) case.

The entire user study was carried out in experiments scheduled in three phases,
with 11, 5, and 6 participants involved in each of the phases respectively. The task
completion time was defined to be the amount of time a participant took to answer
each of the questions. The error rate was defined to be the total number of wrong
answers a participant gave over the total number of questions.

4.4 Data set and participants

The data set originally used in SmartClient dealt with multi-attribute and configurable
products in the travel industry. However, we chose to evaluate SmartClient for apart-
ment searches in this study. First, it is easier for our participants to relate to task
scenarios used in apartment searches rather than finding flights because they are not
likely to be frequent travelers. Second, travel data (price, intermediate airports, fly-
ing routes) undergo frequent changes and therefore cannot remain relevant through-
out the duration of a research project (in this case two years). On the other hand,
apartment data are relevant for up to three years, especially in countries where rent
control is tight. Furthermore, the evaluation of SmartClient for apartment searches
could demonstrate that the example critiquing interface is useful not only for travel
planning, but also for other domains.
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We used two sets of 50 rental properties (student apartments) located in the vicin-
ity of our university. Each set is used for evaluating the ranked list (called RankedList
henceforth) or the example critiquing interface (called EC). The entries in these two
sets are not identical to avoid any learning effects when users compare and evaluate
the two tools. However, they are equivalent with respect to user tasks. That is, each
data set contained at least a correct and similar answer for each of the user questions.
The rental properties used in the experiment were based on real data with slight mod-
ifications. For instance, each property, regardless of its type, was normalized for the
purpose of accommodating one person only.

The 22 participants (8 females) were graduate students, research assistants and
administrative personnel recruited from our university (the Swiss Federal Institute of
Technology or EPFL). Since EPFL does not provide sufficient dormitory rooms for
our graduate students, most of them are likely to be familiar with apartment search-
ing tasks in either online or offline environments. To make the group as diverse as
possible, participants were selected from a variety of nationalities. They were Swiss,
Algerian, American, Indian, Vietnamese, Chinese, and Mexican.

Participants were given adequate time to familiarize themselves with the inter-
faces. The data set used for this warm-up exercise was different from those used for
the real experiments. To help them learn how to use the interfaces, users were in-
structed to perform a test search, for example finding an apartment for the price of
550 Swiss Francs and an area of 20 square meters.

4.5 User debriefing and experiment procedure

Before each experiment session, we informed each participant of the experiment’s
objectives, explained the meaning of labels on each of the interfaces, and told them
that we would be recording their task performances. We then gave them 5–10 minutes
to try out the interfaces with test scenarios.

We used a within-subjects design for the experiment procedure. Each of the 22
users was asked to perform the 5 tasks (described in Sect. 4.3) using Interface 1
(RankedList) and Interface 2 (Example Critiquing or EC). The order of the interfaces
evaluated alternated for every two consecutive users. This was to counterbalance any
biases that users may develop while evaluating one interface and carrying these biases
to the evaluation of the other one.

4.6 Post session questionnaire

To understand our participants’ perception of the two interfaces, we conducted a
semi-structured interview after each user study. Besides collecting their comments
and opinions regarding these two interfaces, we asked participants to answer the fol-
lowing two questions:

1. Which of the two interfaces do you prefer? Why?
2. Which one of the interfaces makes you feel more certain that you have found the

correct answers? Why?
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Table 1 Statistics of task time and error rate for task 1

Condition Group A: Group B:

RL first (n = 11) EC first (n = 11)

Min Max Mean SD Min Max Mean SD

RL Time 20.00 111.00 69.60 35.58 50.00 150.00 102.20 34.84

Error – – – – – – – –

EC Time 41.00 84.00 62.20 15.03 30.00 180.00 90.60 46.65

Error – – – – – – – –

4.7 Results

The recorded average task completion time and error rate were smaller for the exam-
ple critiquing interface (61.7 versus 73.9 seconds for the ranked list, and 0.27 versus
0.67 errors per task for the ranked list). To further understand the significance of these
results and to verify if the counter balance measure had worked, we performed the re-
peated measures Analysis of Variance (RM-ANOVA) on the collected data. We also
divided the tasks into three categories in order to know where the significance had
occurred.

4.7.1 Multi attribute searching task

The first task required users to find an apartment of their choice. No errors can be de-
fined for such personal choices. A number of individuals took more time to find the
answer while using EC than RankedList, especially when EC was given first to eval-
uate (see Table 1). From observing how the participants’ worked with the interfaces,
we believe that this was largely due to the unfamiliarity of the example critiquing in-
terface compared to the RankedList interface. Participants tended to take more time
to learn to use EC, especially under testing conditions. A RM-ANOVA test yielded
no statistical significant differences in task time due to interfaces used or due to any
interaction effects between interfaces and order, at the 0.05 level of significance (see
Table 2).

4.7.2 Trade-off with 2 attributes

This category of tradeoff tasks (#2 and #3) are simple tradeoff tasks and required
the participants to find alternatives that improve the value on one identified attribute
while compromising the values of only one of the four remaining attributes. Although
participants took less time on average to do these two tasks with EC (see Table 3), a
repeated measure analysis of variance (RM-ANOVA) yielded no statistical significant
difference for task time at the 0.05 level of significance. However, the same analysis
showed statistical significances for a higher error rate when RankedList was used (see
Table 4). The significance was further maintained for within group analysis regard-
less whether RL or EC was used first. We concur that the relatively high error rate
was due to the fact that participants had to do a significant amount of visual search
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Table 2 RM-ANOVA of
differences for task time and
error rate for task 1

Type of comparison RM-ANOVA results

df F P

Between group

RL vs. EC Time 1 1.245 0.278

Error – – –

RL first vs. EC first Time 1 0.036 0.850

Error – – –

Within group

Group A: Time 1 0.372 0.557

First RL, then EC Error – – –

Group B: Time 1 0.852 0.380

First EC, then RL Error – – –

Table 3 Statistics of task time and error rate for simple tradeoff tasks

Condition Group A: Group B:

RL first (n = 11) EC first (n = 11)

Min Max Mean SD Min Max Mean SD

RL Time 20.00 113.00 54.40 30.45 43.00 168.50 84.95 36.88

Error 0.00 2.00 1.10 0.74 0.00 2.00 1.30 0.67

EC Time 38.50 97.50 54.65 20.07 28.50 172.50 65.80 40.82

Error 0.00 2.00 0.20 0.42 0.00 1.00 0.60 0.52

Table 4 RM-ANOVA of
differences for task time and
error rate for simple tradeoff
tasks

Type of comparison RM-ANOVA results

df F P

Between group

RL vs. EC Time 1 2.016 0.172

Error 1 26.435 5.8e−05

RL first vs. EC first Time 1 0.864 0.359

Error 1 0.277 0.602

Within group

Group A: Time 1 0.001 0.972

First RL, then EC Error 1 14.878 0.004

Group B: Time 1 3.098 0.112

First EC, then RL Error 1 10.756 0.010

using RankedList, and as a result they were more susceptible to making mistakes.
Furthermore, the order of interfaces did not seem to have an effect on task time, or
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error rate, thus confirming that the counterbalanced measure was rather successfully
implemented.

4.7.3 Trade-off with more than 2 attributes

This category of questions (#4 and #5), called complex tradeoff tasks, increased the
task complexity by requiring participants to perform tradeoffs on more than two at-
tributes. They have to improve the value on one identified attribute while compromis-
ing the values of two of the four remaining attributes. A repeated measure analysis of
variance (RM-ANOVA) yielded statistical significant differences not only for error
rates, but also for task time due to interfaces used at the 0.05–0.08 level of signifi-
cance (see Tables 5 and 6). Furthermore, the order of interfaces used did not seem to
have an effect on task time or error rate, again confirming that the counterbalanced
experiment was successfully designed. However, the within group analysis showed
that the significance was not maintained for the user group where EC was used be-
fore RL. That is, the difference in mean error rates, 0.8 for RL and 0.5 for EC, did
not reach significance, although the other p values were relatively small (between
0.028–0.093) for the within group analysis.

Table 5 Statistics of task time and error rate for complex tradeoff tasks

Condition Group A: Group B:

RL first (n = 10) EC first (n = 10)

Min Max Mean SD Min Max Mean SD

RL Time 30.50 137.50 69.15 33.56 38.00 92.50 63.10 19.11

Error 0.00 1.00 0.80 0.42 0.00 2.00 0.80 0.79

EC Time 26.00 60.00 46.05 12.57 21.50 109.50 50.90 26.09

Error 0.00 1.00 0.30 0.48 0.00 2.00 0.50 0.71

Table 6 RM-ANOVA of
differences of task time and
error rate for complex tradeoff
tasks

Type of comparison RM-ANOVA results

df F P

Between group

RL vs. EC Time 1 10.362 0.005

Error 1 3.234 0.088

RL first vs. EC first Time 1 0.510 0.479

Error 1 0.261 0.612

Within group

Group A: Time 1 6.836 0.028

First RL, then EC Error 1 5.000 0.052

Group B: Time 1 3.520 0.093

First EC, then RL Error 1 0.574 0.468
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4.7.4 Overall performances of EC compared to RankedList

The overall performance of these two interfaces indicates that users took increas-
ingly less time and made fewer errors when performing tradeoff tasks using EC even
though the task complexities increased (see Fig. 4). On the other hand, the differ-
ence in task completion time for RankedList compared to EC increased as tradeoff
tasks became more complex (Fig. 4). While the error rate for the second and third
categories of tasks decreased both for EC and RankedList, the average of errors com-
mitted for RankedList remained high (see Fig. 5). The obtained data suggests that EC
provides a time efficient tool for making multi-attribute tradeoff analysis, especially
as the complexity of tasks increases. In addition, by observing participants interacting
with the interfaces, we noticed that the tradeoff tasks were made significantly easier
in EC because users could just set an attribute to the “compromise” value when they
were willing to sacrifice it and concentrate on improving the values of those attributes
which are important to them.

Fig. 4 Average task completion times in seconds for the three categories of tasks when evaluating
RankedList and EC respectively

Fig. 5 Average error rates for the three categories of tasks when evaluating RankedList and EC respec-
tively
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4.7.5 User preference and confidence level

10 out of 22 participants preferred the RankedList interface over EC despite the fact
that many of them took more time to perform the tasks and made more errors. In
addition to preference, we also asked participants to comment on their confidence
levels with respect to the two interfaces. By confidence level, we mean a user’s level
of certainty in believing that a correct answer has been found with respect to an
interface. After compiling the responses, we were somewhat surprised to find that
more participants felt higher confidence levels when RankedList was used.

We decided to further analyze users’ feedback regarding confidence level by ana-
lyzing in detail participants’ comments recorded during the user study. Many of them
said that “the search engine used in EC hides something from me,” whereas “I can
see everything in the ranked list.” Some also expressed concern about the fact that
the results returned by the EC interface did not correspond to their ranking of de-
cision outcomes. That apparently increased the doubt as well. To summarize, there
were two main reasons for the preference for RankedList: (a) users would like to see
more search results than the 7-result set, even though they may not want to examine
all of the details; and (b) they sometimes have difficulties in accepting the outcomes
ranked by the machine, thus wondering if other (better) outcomes existed beyond the
7-result set. We then did a trial user study where we used the scroll bar to display all
50 items, 7 results at a time. Many users scrolled down briefly, only few stopped to
carefully examine a result. Only one user actually selected a result which was ranked
outside of the initial 7-result set in the EC interface.

We further extended our study by searching for answers in decision behavior the-
ory to understand why it is not always easy for people to accept the ranking of de-
cision outcomes calculated by the multi-attribute utility theory. It turned out that hu-
man decision strategies can be very different from the utility model, also called the
weighted added sum strategy, which underlies many decision support systems [22].
Largely due to effort limitations, a human cannot be as detailed as a machine in sum-
ming up the utilities of each of the attributes towards ranking the set of outcomes.
Instead, they are likely to develop biases. For example, there is a phenomenon called
the prominence effect [8, 39]. When a set of choices were given to users, they were
more likely to select an alternative that maximizes the value of a single attribute.
However, if they were given a matching problem (which is equivalent to the choice
problem), they would give different values to the prominent attribute. If the search
engine uses a utility model to calculate the ranking of each outcome, it is possible
that humans may have trouble accepting the machine’s scores. This is especially true
when outcomes’ utility values only differ by a small amount. For these outcomes,
which we call the gray area, a linear display imposes an implied ranking despite
the fact that displayed outcomes do not have a clear order. In other words, people’s
judgment of certain results cannot conform to such a strict assignment of order. We
believe that this is the cause of the discomfort expressed by our subjects when they
claimed a low confidence level for the example critiquing interface.

4.7.6 Conclusion: the real benefits of example critiquing

The user study described in this section reports an interesting evaluation of example
critiquing. Contrary to the common belief that EC is naturally better than the ranked
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list, results here show that EC performed comparably as the RankedList for sim-
ple tradeoff tasks. However, when complex tradeoff tasks were given, EC not only
reduced users’ task time significantly, but also the likelihood of making mistakes in
choosing the right item. Therefore, we conclude that EC is likely to attract more atten-
tion in the next generation E-commerce sites where products become more complex.
In those circumstances, users are likely to rely more on the critiquing component to
perform tradeoff to achieve high accuracy in making their final decisions.

4.8 Follow-up interface design

Based on the trial user study, we began designing a new interface for the example
critiquing interaction paradigm. We focused our efforts on enlarging the displayed
result set and began looking for a display strategy which is less likely to allow users
to dispute the ordering of results. One display technique, fisheye views, seems to pro-
vide solutions to both objectives (see Fig. 6). In the new interface, the basic principles
of example critiquing interaction model stay the same. However, the number of dis-
played results increases from 7 to 50. The 7 recommended results are emphasized by
a significant distortion effect so that their text stands out, while the other 43 results
are displayed with much smaller font sizes. The distortion effects are achieved by
row heights which are proportional to the utility scores of each of the recommended
results. Furthermore, the natural ordering in the display follows the price attribute,
or any other quantitative attributes (e.g., the size of the rooms or the distance to the
university).

Because of the fisheye views, the 50 results can still be displayed in a single
overview, which provides an overall context for users to see the recommended re-
sults. Additionally, it seemed that the human eyes’ imprecision in judging precisely
the row heights provided an advantage to display the ranking of the decision out-
comes, especially for the gray areas. The new design, therefore, resulted in a less
disputable display in terms of ranking order, while at the same time providing much
more room for showing search results.

5 Implementing fisheye views for example critiquing interfaces

Fisheye view techniques, already described in Spence and Apperly in 1982 [33], were
developed by Furnas [9] into a general framework called the Generalized Fisheye
View. The principle idea is that information should be displayed according to its
importance.

The name is an analogy to how a fisheye lens distorts an image. That is, it gives
more details about what is being observed (the focus) and less to elements which are
distant from the focus. Fisheye views therefore increase the detail or visual emphasis
of a focalized set of displayed items, while filtering or deemphasizing less important
results to maintain context. Fisheye views have been used to visualize a range of data
structures: tables [27], trees [17], graphs [31], menus [1], and semantic information
[10]. User studies of comparing fisheye views with non-distortion displays were also
carried out: Pirolli et al. [23], Callahan and Koenemann [5], and Bederson et al. [2].
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Fig. 6 Example critiquing interface using fisheye views

Of particular interest to this work was the study by Callahan and Koenemann which
showed that users learned the content of a product catalog more quickly using the
InfoZoom system (which implements fisheye views) than a regular electronic product
catalog system.

According to Funas, the degree of interest function (DOI) determines the relevance
of each item in the information space. The DOI is then used to calculate the size and
visibility of an item. In our case, the DOI of each decision outcome is simply the
utility score of that outcome. However, there is a high density of low utility scores
of outcomes and a wide gap between low and high scores. Thus, we must use a non-
linear function for calculating the DOI of each outcome so that their visibility is well
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maintained. That is, a wide range of utility values must be modeled, while at the same
time the mapping results in groups of 10 distinct visual ranges. After experimenting
with several functions, we opted for the slow-in slow-out method developed by Sarkar
and Brown [31].

6 Evaluating example critiquing with fisheye view techniques

Our objective in the second experiment was to compare two example critiquing in-
terface designs (the original and the one with fisheye views) and see if the later de-
sign significantly improves a user’s confidence level. Our hypothesis was that users
would give a higher confidence score when using the example critiquing interface
with fisheye views (henceforth EC + FE) than the original example critiquing inter-
face (henceforth EC). On the other hand, because more results are displayed in FE,
we expected the users to take more time to complete tasks.

Twenty participants (6 females) took part in this second user study. 16 of them
were undergraduate students from our university, who were in their early 20s, and
four were regular employees between the ages of 30 and 80 years old. The same
data sets, where each set consists of 50 rental properties, were used. We again chose
the within-subjects design for the experiment procedure. Participants were first de-
briefed about the goal of the experiment, and then given a period of 5–10 minutes to
familiarize themselves with each of the interfaces. The user tasks, consisting of five
questions, were also identical to those used in the first experiment. The first task was
to find the user’s favorite apartment, the second two tasks were to find (1,1) tradeoff
alternatives (gain and sacrifice on one attribute respectively), and the last two tasks
were to find (1,2) tradeoff alternatives (gain on one attribute, but sacrifice on up to
two attributes). To measure the confidence level that participants associated with each
of the interfaces, we asked the following question after each task was completed: Are
you sure that you have found the best answer using this interface? (100% very sure—
0% not at all.)

In addition, we asked each participant to indicate which interface he or she pre-
ferred after each session (post experiment questionnaire). Task completion time and
error rate were defined exactly in the same way as in the first experiment.

6.1 Analysis of experimental results

6.1.1 Task time

On average, participants took more time to answer the questions using FE than EC,
especially for the first two categories of questions (see Fig. 7). However, upon closer
examination, ten participants took less time using FE, and ten took more time using
it. The difference did not reach significance at the level of 0.05 via a RM-ANOVA
test (see Table 8) when data for all five tasks were combined. At the same time, we
found no dependency of task completion time on the order of interfaces presented in
the evaluation procedure (Table 8). That is, there was no interaction between the task
completion time and the order in which the user evaluated the two interfaces.
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Fig. 7 Average task completion times in seconds for the three categories of tasks when evaluating EC and
FE respectively

It is quite surprising to see that users did not take on average much more time with
FE than EC for completing the tasks, which is contrary to what we had expected.
In fact, when they got to the third category of tasks, they performed faster with FE
than EC. The difference in task time actually reached significance at the level of 0.05
via a RM-ANOVA test (see Tables 9 and 10). The result confirmed our observation
that users increasingly relied on the outcomes recommended by the search engine for
answering the questions as they became more familiarized with the interface. Only
one of them spent some time browsing data that was not emphasized. There seemed to
be, however, dependencies between the task time and the order in which participants
evaluated the interfaces for the complex tradeoff tasks. For both within-group and
between-group comparisons, users performed faster with FE if EC was given first to
evaluate. That is, there seems to be some learning effect carried over from EC to FE,
but not from FE to EC. We are unable to explain the general meaning of this result.

6.1.2 Error rate

Figure 8 shows that 20 participants made a total of 8 errors using FE versus a total of
10 while using EC. Although the error rate is slightly higher for EC, the difference did
not reach significance at the level of 0.05 via the RM-ANOVA analysis (see Table 8).

6.1.3 Confidence level

Figure 9 shows the average confidence levels that users expressed while using EC
and FE respectively to answer the five questions. While both were very high, only
three participants out of twenty expressed higher confidence levels for EC than FE.
These differences reached significance at the level of 0.05 via a RM-ANOVA test (see
Tables 7 and 8). Furthermore, 12 out of 20 users preferred the FE interface over the
EC interface.
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Fig. 8 Average error rates for the three categories of tasks when evaluating EC and FE interfaces respec-
tively

Fig. 9 Average confidence levels associated with EC and FE respectively in three task categories

6.2 Conclusion of the second experiment

Analysis of the second user study indicated that the design of a new example cri-
tiquing interface using fisheye views is a viable solution to combine the benefits of
a ranked list and a critiquing interface. On one hand, the suggested solutions from
a decision aid tool enabled users to quickly find tradeoff alternatives. On the other
hand, the enlarged set provided them with a high level of certainty for their resulting
choice.

We have introduced two new elements into the new EC + FE interface: a longer
result list and the fisheye view effect. Measuring confidence may not provide a clear
answer as to whether the improvement is due to the longer list or the fisheye view
effect. However, the trial study reported in Sect. 4.7.5 did not indicate that users
actively pursued the items outside of the 7 recommended set. We therefore assume
that while a longer result could lead to more confidence, the items outside of the 7 set
did not provide much recommendation power. Thus, the benefit of higher confidence
levels is due to a combined effect of a longer display list and fisheye view effect.
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Table 7 Statistics of task time, error rate, and confidence level for all tasks

Condition Group A: Group B:

EC first (n = 10) FE first (n = 10)

Min Max Mean SD Min Max Mean SD

EC Time 72.00 167.67 126.05 35.88 64.33 163.17 113.88 36.57

Error 0.00 0.67 0.17 0.24 0.00 1.00 0.17 0.32

Conf. 0.75 0.98 0.85 0.07 0.73 1.00 0.90 0.10

FE Time 70.50 216.67 115.05 41.90 58.17 225.17 133.23 47.78

Error 0.00 0.33 0.13 0.17 0.00 0.33 0.10 0.16

Conf. 0.87 1.00 0.93 0.04 0.82 1.00 0.95 0.06

Table 8 RM-ANOVA of
differences of task time, error
rate, and confidence level for all
tasks

Type of comparison RM-ANOVA results

df F P

Between group

EC vs. FE Time 1 0.184 0.673

Error 1 0.681 0.419

Conf. 1 17.377 0.0005

EC first vs. FE first Time 1 1.383 0.247

Error 1 0.051 0.822

Conf. 1 0.452 0.506

Within group

Group A: First EC, then FE Time 1 0.537 0.482

Error 1 0.184 0.678

Conf. 1 11.783 0.007

Group B: First FE, then EC Time 1 3.009 0.117

Error 1 0.474 0.509

Conf. 1 5.759 0.040

Table 9 Statistics of task time, error rate, and confidence level for complex tradeoff tasks

Condition Group A: Group B:

EC first (n = 10) FE first (n = 10)

Min Max Mean SD Min Max Mean SD

EC Time 54.50 187.00 127.70 39.49 44.00 186.00 105.50 54.24

Error 0.00 1.00 0.30 0.48 0.00 1.00 0.20 0.42

Conf. 0.75 0.95 0.84 0.07 0.65 1.00 0.90 0.12

FE Time 45.00 119.50 76.15 21.82 54.50 199.00 110.05 47.20

Error 0.00 1.00 0.20 0.42 0.00 1.00 0.10 0.32

Conf. 0.75 1.00 0.92 0.10 0.70 1.00 0.95 0.10
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Table 10 RM-ANOVA of
differences of task time, error
rate, and confidence level for
complex tradeoff tasks

Type of comparison RM-ANOVA results

df F P

Between group

EC vs. FE Time 1 4.942 0.039

Error 1 2.111 0.163

Conf. 1 4.888 0.040

EC first vs. FE first Time 1 4.367 0.044

Error 1 0.000 1.000

Conf. 1 0.136 0.714

Within group

Group A: First EC, then FE Time 1 15.376 0.004

Error 1 1.000 0.343

Conf. 1 3.950 0.078

Group B: First FE, then EC Time 1 0.167 0.693

Error 1 1.000 0.343

Conf. 1 1.324 0.280

We therefore conclude that example critiquing, together with a fisheye-view display
technique, enables users to accurately select their final products and convinces them
of their choices.

7 Conclusion

We reported the experimental procedures and data analysis of two related user stud-
ies, comparing the performance of the example critiquing (EC) system that we have
developed with the baseline model. In the first one, we found that the example cri-
tiquing (EC) paradigm enables users to achieve higher decision accuracy more effec-
tively while requiring less effort compared to the ranked list model. This is because
the effort required for using EC corresponds to the correct manipulation of the in-
terface elements and is less than the effort needed to manually process tradeoff in-
formation in order to achieve high decision accuracy. The surprise finding from this
evaluation was that, under simple task conditions, EC performed comparably to the
ranked list in terms of task time and error rate. However, when task conditions became
more complex, EC significantly reduces a user’s task time and likelihood of making
mistakes. Results of the second user study showed that a particular implementation
of example critiquing also made users more confident about their choices.

Traditionally, people could not reach their full potential of decision accuracy due
to limited cognitive resources. They use heuristic decision strategies that save time
and effort, although these strategies often lead to serious errors that can cause emo-
tional pain and financial loss.

We have shown in this article that interface technology and computerized deci-
sion support tools could make it easier for people to make accurate decisions with a
modest level of effort, thus overcoming the classical dilemma. In addition, through
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the two user studies, we have identified three criteria to evaluate advanced search and
recommendation tools: decision accuracy and effort, and user confidence. Tools that
achieve these three objectives simultaneously provide significant benefits to users.
Earlier research has indicated a cost-benefit framework to explain online users’ will-
ingness to make efforts based on perceived benefits [34]. We therefore predict that
consume are more likely to adopt example critiquing and similar tools in large scales
in the so-called second generation E-commerce environments, where products are be-
coming more complex and vendors are eager to offer more product information. Such
tools will also make consumers likely to buy with confidence, therefore increasing the
overall conversion rates of E-commerce sites.
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