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Abstract Research in lymphatic biology and cancer im-
munology may soon intersect as emerging evidence
implicates the lymphatics in the progression of chronic
inflammation and autoimmunity as well as in tumor
metastasis and immune escape. Like the blood vasculature,
the lymphatic system comprises a highly dynamic conduit
system that regulates fluid homeostasis, antigen transport
and immune cell trafficking, which all play important roles
in the progression and resolution of inflammation, autoim-
mune diseases, and cancer. This review presents emerging
evidence that lymphatic vessels are active modulators of
immunity, perhaps fine-tuning the response to adjust the
balance between peripheral tolerance and immunity. This
suggests that the tumor-associated lymphatic vessels and
draining lymph node may be important in tumor immunity
which in turn governs metastasis.
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Abbreviations
APC antigen‐presenting cell
CCL19/21 C‐C chemokine ligand 19/21
CCR7 C-C chemokine receptor 7

CXCL13 C-X-C Chemokine ligand 13
DC dendritic cell
FRC fibroblastic reticular cell
LN lymph node
TLO tertiary lymphoid organ
TReg cell regulatory T cell
VEGF vascular endothelial growth factor

Introduction

The lymphatic system is an extensive network of vessels
that function to regulate tissue fluid homeostasis, immune
cell trafficking and transport of dietary lipids [1]. Lymphat-
ic vessels bring peripheral antigens and antigen presenting
cells (APCs) like dendritic cells (DCs) to lymph nodes
(LNs) where adaptive immunity can be initiated. This
occurs either from lymph-borne antigen capture by B cells
and lymph node resident APCs [2–4], or by the more
classical route of peripherally-activated DC migration to the
LN and activation of resident T cells [5]. Lymph nodes are
also important centers for the maintenance of tolerance to
self-antigens [4, 6–9].

For such functions, lymphatic vessels are traditionally
considered to be passive conduits that deliver peripheral
antigens and cells to the LN. However, new evidence is
emerging that lymphatic vessels play very active roles in
directing the initial steps of the immune response and
sensing and responding to subtle changes in the peripheral
microenvironment that may in turn alter LN functions in
immunity and tolerance. Furthermore, evidence is emerging
that indicates a coupling between lymphatic vessel function
and LN function in tolerance and immunity.
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Adult lymphangiogenesis occurs during inflammation
and wound healing [1, 10], but is also strongly associated
with chronic inflammation, autoimmunity, and allograft
rejection [11–16] as well as with tumor invasion and
metastasis when initiated both around the tumor and in the
draining LN [17–21]. These are all associated with different
immunological outcomes: from Th1 and Th2 inflammatory
responses to immune escape and tolerance. Thus, the
specific and functional roles of lymphatics and lymphangio-
genesis in regulating the host immune response remain
obscure.

Lymphatics pervade the interlobular connective tissue of
the mammary gland during lactating periods and drain into
collecting lymphatics, which run along mammary ducts
[22–24]. During lactation the number of interlobular
lymphatics and interendothelial gaps increase to promote
transport [22]. Additionally, the lymphatics are the key
route for LN and distal metastases, have altered flow
patterns during cancer and increased levels of vascular
endothelial growth factor C (VEGF-C) and its receptor
VEGFR-3 lead to poor overall prognosis [25–27]. In this
way, the lymphatics are active components of both normal
tissue function and disease in the mammary gland;
however, little is known about the dynamics of their
function in this microenvironment.

In this review, we discuss recent insights into the
immunological relationships between lymphatic vessels,
their functional regulation, and the draining LN, with broad
application to the biology of the mammary gland and
tumors. We introduce new perspectives on how lymphatic
vessels may help fine-tune the immune response, and
present new perspectives on the potential role of tumor-
associated lymphatics on tumor immunity and tolerance.

Lymphatic Physiology and Neogenesis

Lymphatic vessels are found in all vascularized tissues,
with the exception of bone marrow and the central nervous
system. Interstitial fluid drains into lymphatic capillaries
(also known as initial lymphatics and terminal lymphatics)
that are blind-ended vessels with a discontinuous basement
membrane that lack pericytes. The interendothelial adhe-
sions are maintained by discontinuous, “button-like” junc-
tions serving to both freely drain interstitial proteins and
also facilitate immune cell transmigration [28–31]. These
overlapping cell-cell junctions serve as primary valves to
prevent backflow from the lymphatic vessel into the tissue
[32] and secondary valves prevent backflow within the
vessel [33]. These capillaries drain into precollecting and
collecting vessels that have continuous, “zipper-like”
interendothelial junctions [30] and are surrounded by
smooth muscle. Collecting vessels are organized into

contractile segments called lymphangions, separated by
bileaflet valves, that create the driving force for unidirec-
tional lymph propulsion [30, 31, 34–36]. Collecting
lymphatic vessels that carry lymph to and from the lymph
nodes are referred to as afferent and efferent lymphatic
vessels, respectively. Lymph typically passes through
several lymph nodes before collecting in the thoracic duct
where it is returned to the blood via connection with the
great veins of the neck. Thus, the lymphatic vascular
hierarchy is adapted to specifically promote the entrance of
APCs and antigen-rich lymph into blind-ended capillaries
and drive continuous, one-way movement of antigen and
cells towards the draining LNs.

The initial lymphatic vasculature can be subdivided into
the initial lymphatic capillaries and the precollectors, which
link the capillaries to the collecting vessels. Interestingly,
these segments express different levels of podoplanin that is
associated with differential chemokine expression [37].
Lymphatic capillaries express high levels of podoplanin as
well as the chemokine (C-C motif) ligand 21 (CCL21),
which may bind podoplanin and which attracts activated
(CCR7+) antigen-presenting cells; the coexpression of
podoplanin and CCL21 may have important implications
for their specific function. On the other hand, precollectors
express lower levels of podoplanin and secrete CCL27,
which recruits memory CCR10+ T cells. In this way,
different immune cell types enter lymphatic capillaries at
specialized sites [37].

Enhanced vascular permeability and leakage is observed
during tissue injury and certain types of inflammation,
thereby increasing the fluid load on the draining lym-
phatics. Both the increase of interstitial pressure and flow,
as well as the change in cytokines and inflammatory
mediators, stand to influence this drainage, yet the latter is
only beginning to be explored [38, 39]. Transmural flow
itself can activate the lymphatic endothelium, increasing
fluid and solute permeability and uptake as well as
upregulating adhesion molecules required for immune cell
transmigration [40]. These changes can be observed at very
low fluid flows of 0.1-1dyn/cm2, which is well-correlated
to the slow interstitial flows observed in normal and
inflamed tissue. Flow also enhances the expression of
CCL21 both in lymphatic vessels [40] and in the lymph
node [41]. In addition to activating lymphatic endothelium,
lymphatic drainage also facilitates interstitial flow, directed
towards the lymphatics. This directional flow promotes cell
homing by biasing pericellular autocrine chemokine gra-
dients thereby driving DC and tumor cell chemotaxis
towards draining lymphatics [42, 43]. Thus, lymphatics
are dynamic sensors of acute biomechanical changes that
accompany the onset of tissue injury and inflammation and
are inherently coupled to immune cell trafficking and
antigen transport to and within the draining LN [44].
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In addition to regulating function, fluid flow is also an
important regulator of lymphatic morphogenesis or lym-
phangiogenesis, and has been shown to drive lymphatic
capillary organization in dermal wound healing models [45,
46] as well as in vitro culture models [47–49]. Without
flow, as in the case of lymphedema, lymphatic endothelium
becomes hyperplastic (i.e. the diameter of lymphatic
capillaries increases while their density remains unchanged)
[50]. In general, lymphatic hyperplasia and lymphangio-
genesis have not been carefully distinguished in the
literature, even though these are likely to have different
effects on tissue fluid clearance and drainage to the lymph
node[1, 28, 51]. Molecular mediators of lymphangiogenesis
are well described in several recent reviews [1, 52, 53] and
will not be discussed in detail here. Briefly, lymphangio-
genesis is mainly associated with vascular endothelial
growth factor (VEGF)‐C and ‐D, VEGFR‐3 ligands, and
contribution from other factors such as VEGF‐A and co‐
receptors VEGFR‐2 and neuropilin-2 have also been reported.
Blocking VEGFR-3 in adult mice, alone or in combination
with VEGFR-2 blockade, can specifically and completely
inhibit lymphangiogenesis [1, 52, 54, 55], and has been a
useful tool to determine the effects of lymphangiogenesis
on graft rejection, autoimmunity, and cancer metastasis, as
described later.

Secondary Lymphoid Organs

Transport of lymph to the draining LN is achieved in such
a way as to optimize the delivery of pathogenic signals,
antigens, and immune cells to promote antigen capture by
B cells and DCs, and facilitate T cell education and
priming [5, 51] (Fig. 1). Lymph enters the subcapsular
sinus of the draining LN through afferent vessels and
moves through the medullary sinus via a network of
conduits, formed by follicular dendritic cells in the B cell
zone and fibroblastic reticular cells (FRCs) in the T cell
zone, prior to leaving the LN via efferent vessels [56, 57].
FRCs express podoplanin (gp38) and the CCR7 ligands,
CCL21 and CCL19; CCL21 is readily immobilized into
the proteoglycan components of the extracellular matrix to
form solid-phase gradients upon which DCs and T cells
migrate [58, 59].

FRCs bundle collagen fibers to form 10–20 μm conduits
that are in close proximity to an extensive network of DCs
that directly sample antigen carried by the lymph for
presentation to naïve T cells [60]. These conduits direct
antigen and APCs towards high endothelial venules, a
specialized vasculature that promotes the delivery of naïve
T cells into the LN. This site of interaction between
extravasating lymphocytes and mature APCs is important
for initiating T cell‐specific immunity.

Fluid flow through this FRC/collagen network is required
for proper 3D organization in vitro [41]. During acute
inflammation or injury, lymph flow through the LN can be
increased, dramatically enhancing CCL21 expression by
FRCs [41] and accelerating the rate of APC and antigen
delivery to the draining LN. Occlusion of the afferent
lymphatic vessel, and consequent blockage of lymph flow
into the LN, results in alterations in high endothelial venules
(flattening of lumen and decreased luminal peripheral node
addressin expression) and a subsequent decrease in lympho-
cyte extravasation from the blood [61]. Thus, the drainage
function of peripheral lymphatic vessels is critical not only
for peripheral tissue homeostasis and fluid balance, but also
for proper LN organization and function.

Lymph node development and organization is accom-
plished mainly by the differential expression of CCL21 and
CXCL13 in the T and B cell zones, respectively [62–65].
CCL21 and CXCL13 are ligands for CCR7 and CXCR5
(expressed by B cells), respectively, and are secreted by
mesenchymal cells in the early developing lymph node to
drive lymphoid tissue formation through the attraction of
CD3ε−CD4+IL-7Rαhi CCR7+ and CXCR5+ lymphoid
tissue inducer cells [62, 66]. The 3D organization of the
lymph node is also driven and maintained by these
cytokines; FRCs of the T cell zone express CCL21 and
CCL19, which guide the interactions between CCR7+ T
cells and APCs, while follicular dendritic cells express
CXCL13 to define and maintain zones of CXCR5+ B cells
[67]. Mice deficient in both CXCR5 and CCR7 lack
peripheral lymph nodes and exhibit abnormal architectures
of the deep mesenteric lymph nodes and the spleen [66].

LN architecture is conserved across anatomical loca-
tions, but the immune responses induced in different
LNs can differ [68] as the homing capacity of T cells is
dependent upon the draining LN in which they are
activated. For example, T cells activated in the mesenteric
lymph node express CCR9 and α4β7 integrin and
specifically home to the intestinal mucosa, whereas T
cells activated by peripheral LN home to skin [68]. This
specificity is unique to the LN stroma and cannot be
replicated by resident DCs; for example, DCs extracted
from the mesenteric LN can stimulate T cells in vitro to
home to the gut, but when injected subcutaneously they
instead direct T cell homing to the skin [69]. Therefore,
the induction of specific and directed immune responses is
attributable to innate functions of the LN stromal
compartments.

Lymphoid Organs in Peripheral Tolerance

The compartmentalized expression of CCL19 and CCL21
in the paracortex of the LN is not only critical for the
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correct positioning of APCs with T cells, but also required
for its tolerance-maintaining functions [62]. Mice lacking
CCR7 show impaired ability to maintain tolerance to
peripheral antigens as they develop signs of autoimmunity
[70, 71]: they exhibit lymphocyte infiltration in peripheral
organs, elevated levels of circulating antibodies towards
tissue-specific antigens, IgG deposition around the renal
glomeruli, and increased susceptibility to inducible diabe-
tes, and they can spontaneously develop chronic autoim-
mune renal disease [70]. These mice, as well as those
lacking CCL19 and CCL21 (plt mice), which lack
recognizable T cells zones within all LNs [72–76], can still
mount strong cellular immune responses [6].

This is consistent with the mounting evidence that
although B cell responses require their residence in
functional lymph nodes, T cell immunity apparently does
not, and T cells can be activated in the spleen or even liver
when lymph nodes are absent or dysfunctional (reviewed in
[77]). For this reason, proper LN function may be more
indispensible for peripheral tolerance than cellular immu-
nity. Unlike CD8+ effector cells, FoxP3+ TReg cells require
LN occupancy and CCR7 signaling for their activation and
function [78–80]. TReg cells sequentially migrate between
peripheral tissues and LNs to both inhibit DC migration from
the periphery as well as prevent effector T cell migration,
activation and proliferation [81]. In the inflamed peripheral
tissues, TReg cells are activated, secrete transforming growth
factor β and interleukin 10 (IL-10) and then migrate to the
draining LN in a CCR7-dependent manner [81]. Upon
reaching the LN, TReg cells preferentially migrate to the
paracortex where they interact with CD8α+ DCs and tissue
derived CD11b−CD8α− DCs [82]. CD8α+ DCs, which are
critical for peripheral cross-tolerance to soluble antigen,

cluster with TReg cells in the paracortical area of the LN
[60, 82]. The role of CCR7 in coordinating these interactions
is again highlighted by studies in CCR7−/− mice, which
exhibit impaired TReg cell positioning and loss of their ability
to promote tolerance and prevent autoimmune pathologies
[83, 84]. In addition, both CCR7+MHCII+CD86+ DCs as
well as CCR7+ TReg cells are required for the optimal
induction of a tolerance response, implying that CCR7
critically functions to bring these two cell types together
within the context of the LN stroma [84].

The tolerance-maintaining functions of the LN are
also facilitated by stromal cells, which express adhesion
molecules and chemokines that shape cell migration
routes, fluid distribution and tissue-specific immune
responses (Fig. 1). In LN transplantation experiments,
where the hematopoietic cells of the LN were completely
replaced by host cells while the stromal compartments
remained donor derived, the specific T cell homing
responses induced were those of the original location,
rather than the transplanted location [9, 69, 85]. Addition-
ally, while removal of the cervical LN blocked the
induction of musosal tolerance, rescue could be achieved
by transplanting a donor cervical LN but not mesenteric or
peripheral LNs [86]. The stromal cells maintain peripheral
tolerance functions through the constitutive expression of
relevant peripheral tissue antigens presented on MHC
class I molecules for CD8+ T cell deletion [87]. This
mirrors the central tolerance maintaining functions of
medullary thymic epithelial cells, which exhibit promis-
cuous gene expression and thereby express antigen from
all tissues of the body to deactivate self-reactive T cells
through deletion (recessive tolerance) and TReg cell
induction (dominant tolerance) [88]. Thus, the LN stromal
cells hold intrinsic, tissue-specific capabilities that likely
play similar roles in peripheral tolerance as thymic
epithelial cells play in central tolerance [7, 89–91].

Recently, it has been shown that lymphatic endothelial
cells in the LN also present endogenous antigen on MHC
class I molecules (Fig. 1), and this tolerance function is
independent of the autoimmune regulator Aire [8]. Specif-
ically, peripheral LNs draining the skin were shown to
express the antigens tyrosinase and melanocytic differenti-
ation antigen, leading to deletional tolerance of autoreactive
CD8+ T cells. Thus, lymphatic vessels themselves are likely
to be important players in maintaining tolerance to self-
antigens, particularly after tissue injury. This is achieved
both through their control over peripheral drainage, which
provides constant antigen sampling to the largely immature
APC population that resides in the draining LN [44], as
well as their ability to directly present endogenous antigens
for deletional tolerance [8].

Together, these recent findings provide a new perspec-
tive on the role of LN lymphangiogenesis, which occurs in

Figure 1 Lymphatic-mediated antigen and cell transport to the
draining lymph node primes the resident stroma and lymphatic
endothelial cells for antigen presentation. Peripheral lymphatics
collect soluble antigen and secrete CCL21 to attract activated dendritic
cells (DCs), which use lymphatics for transport to the draining lymph
node (LN). Lymph is drained through the subcapsular lymphatics and
through the fibroblastic reticular cell conduit network bathing the
LN in antigens and peripherally expressed inflammatory cytokines.
Lymph exits the LN through efferent lymphatic vessels and passes
through several lymph nodes prior to recycling back into the blood
vasculature. Peripherally activated DCs migrate along the
CCL21+gp38+ stromal conduit networks to educate naïve CCR7+ T
cells. Resident immature DCs also lie close to this stromal network
and sample antigen draining through the LN. CCR7+ regulatory T
(TReg) cells similarly require this CCL21+ stroma to migrate through
the LN and become activated while efficient CD8+ T cell responses
can occur outside of the LN. FRCs endogenously express peripheral
antigen on MHC class I molecules to promote tolerance through
CD8+ T cell deletion. Similarly, CCL21+gp38+LYVE1+ lymphatic
endothelial cells express endogenous antigen for T cell deletion.
Thus, the tolerance-maintaining functions of the draining lymph node
are dependent upon peripheral tissue drainage and local non-
hematopoeitic cell populations

R
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LNs draining inflamed [14, 16, 92], immunized [14, 93],
and tumor-bearing tissues prior to metastasis [18, 19]. LN
lymphangiogenesis leads to increased DC trafficking from
the periphery and is dependent on LN resident B cells [14].
Both VEGF-C and VEGF-A promote LN lymphangio-
genesis when secreted by lymphoid tissue inducer cells and
B cells respectively [92, 94]. In addition, VEGF-A
produced by chronically-inflamed tissue induces lymphan-
giogenesis in the draining LN which, taken with lymphan-
giogenesis at the periphery, may enhance the immune
response through trafficking of macrophages and dendritic
cells [14, 16]. The lymph node itself, therefore, acts as an
early downstream signal to promote peripheral changes in
immune cell trafficking and lymphatic expansion. In light
of the new tolerance-maintaining functions of LN lymphat-
ic endothelium described above [8], it is intriguing to
consider the possibility that lymphangiogenesis in the LN
draining inflamed or tumor-bearing tissue might contribute
to tumor tolerance, if these newly formed lymphatic vessels
also express antigen on MHC class I molecules.

Tertiary Lymphoid Organs

While secondary lymphoid tissues can be remodeled
during acute inflammation to alter lymph flow, lymph
content, blood flow and high endothelial cell differentia-
tion [63, 95], de novo lymphoid tissue formation occurs
during states of chronic inflammation. These tertiary
lymphoid organs (TLOs) are characterized by lymphocyte
infiltrates, B cell follicles and defective fluid drainage [96].
TLOs have been observed in a variety of autoimmune
disorders including autoimmune thyroid disease, rheuma-
toid arthritis and Crohn’s disease [62, 97] (Fig. 2). The
defining characteristic of autoimmune-related TLOs are
their germinal centers that produce auto-antibodies [96].
Furthermore, as B cells stimulate lymphangiogenesis
(mentioned earlier), such TLOs are often also associated
with lymphangiogenesis. In renal interstitial disease, for
example, lymphangiogenesis is stimulated around the newly
formed follicles and contributes to the formation of intra-
renal lymphoid follicle-like structures [98]. The crosstalk
between developing B cell follicles and the lymphangio-
genesis that it induces may play an important role in
promoting mature follicle formation and remains an
interesting question to address.

Just as with LNs, TLO formation can be induced through
overexpression of CCL21, CCL19 and CXCL13 in a tissue-
specific manner [65, 99, 100]. Furthermore, they may
accumulate antigen and APCs, bypassing the LN and
therefore restricting normal LN function [62, 101]. Such
circumvention of the normal LN may prevent the induction
of an appropriate immune response to foreign antigen or,

since the LN has important tolerance-maintaining functions
described earlier, result in autoimmunity (Fig. 2). Indeed,
the role of peripheral TLO neogenesis as either a pathology
to target therapeutically or an important protective mecha-
nism of immunity remains controversial. For example,
while TLOs have been shown to sequester pathogen and
prevent its systemic spread during bacterial infection, they
may also contribute to lymphoma development, prion
accumulation and autoimmunity [62]. Importantly, the
way that TLOs affect lymphatic drainage to bypass relevant
LN and thereby circumvent their tolerance-maintaining
function is poorly understood. Further research into this
question will likely lead to therapeutic strategies for
autoimmunity and has potential to strongly impact cancer
research, where increased lymphatic drainage seems to
promote tumor growth (implying an inhibition of anti-
tumor immunity).

Pathological Lymphangiogenesis

Chronic Inflammation

Lymphangiogenesis has long been associated with chronic
inflammation. Inflammatory lymphangiogenesis can be
driven by immune cell-released VEGF-C, and inflammatory
stimuli promote lymphatic endothelial cell susceptibility to
VEGF-C through the upregulation of VEGFR3 and Prox-1
[102]. Tissue necrosis factor α, as well as newly recruited
macrophages and granulocytes, can enhance the local
expression of VEGF-C within inflamed tissue to promote
lymphangiogenesis [103]. Another pro-inflammatory cyto-
kine, interleukin (IL)‐1β, promotes lymphangiogenesis by
stimulating VEGF-A, VEGF-C, and VEGF-D [104]. In
addition to the inflamed tissue, lymphangiogenesis also
occurs in the LN draining this tissue [14, 16, 51].

Inflammation-associated lymphangiogenesis may be
important for the clearance of immune infiltrates; for
example, inhibiting lymphangiogenesis by VEGFR-3
blockage exacerbated pulmonary edema caused by chronic
myocplasma pulmonis infection and prevented the resolu-
tion of inflammation [103]. On the other hand, in cases of
chronic inflammation, the extensive lymphatic remodeling
that occurs can have detrimental affects on normal immune
function [1, 105, 106]. Hyperplastic lymphatics in chronic
diseases such as psoriasis, inflammatory bowel disease,
chronically-inflamed skin disease and rheumatoid arthritis
have negative implications for disease resolution. For these
conditions, treatment with anti-VEGF antibodies can, in
some cases, promote disease resolution [106–109]. Further-
more, while vascular angiogenesis can be reversed in
chronic inflammation, lymphangiogenic structures seem to
persist [103, 110]. This implies that while the blood

346 J Mammary Gland Biol Neoplasia (2010) 15:341–352



vasculature requires both growth and maintenance cues the
lymphatic vasculature may not.

Chronic Graft Rejection

Dysfunctional lymphatics and changes in lymphatic drain-
age and immune cell trafficking can initiate organ-specific
autoimmunity. Chronic graft rejection correlates with
increased lymphatic density within the grafted tissue and
these lymphatic vessels are significantly enriched in areas
of immune cell infiltrates [12, 111]. In models of corneal
implantation, lymphatic ingrowth is significantly associated
with poor graft survival and rejection [11, 112–114].

Blocking lymphangiogenesis using anti-VEGFR-3 anti-
bodies promote the acceptance of grafted tissue [104],
although it is difficult to generalize this to other tissues that
are normally not alymphatic like the cornea. For bone
implants, lymphangiogenesis at the bone-implant interface
can promote host destruction of the tissue as well as the
formation of distal granulomas, neoplasia and lymphoma
[15].

Cancer

Lymphatic dissemination of solid tumors involves the
directional homing of tumor cells to primed and expanding

A

B

C

Figure 2 Peripheral lymphoid organogenesis alters fluid flow to the
draining lymph node and can shift the balance between immunity and
tolerance. a Tertiary lymphoid organs (TLOs) can develop in response
to chronic inflammation and is characterized by immune cell
infiltrates, lymphangiogenesis and altered fluid flow patterns. b
Additionally, melanomas can develop stromal features reminiscent of
the paracortex of the lymph node. Both the lymphoid stromal
transformation that occurs in the peritumoral space as well as that
surrounding immune cell infiltrates in TLOs exhibit a gp38+ER-TR7+

stromal network, high endothelial venule-like PNAd+CD31+ blood
vessels, and gp38+LYVE1+ lymphatics. A distinguishing feature
between the two structures is the absence of B cell follicles and

CXCL13 within the melanoma environment, which is predominated
by T cells and CCL21. B cell germinal centers within TLOs are
largely responsible for autoantibody production and autoimmunity in
chronic inflammation and graft rejection. Additionally, it has been
suggested that TLO-associated lymphatic vessels reroute lymph flow
from the draining lymph node [101], whereas the enhanced flow that
results from lymphangiogenesis in the tumor environment may
promote constant soluble antigen presentation that may be a
requirement for tolerance maintenance by the draining lymph node.
The tolerance-maintaining functions of the draining LN are thereby
critically linked to the functionality of peripheral lymphatics, the
pattern of drainage and inflammatory state of the tissue
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lymphatic vessels [1, 115]. Expression of the lymphangio-
genic factors VEGF-C and -D is significantly correlated
with lymphangiogenesis (tumoral and nodal) and LN
metastasis in a variety of primary tumors including thyroid,
prostate, gastric, colorectal, lung and breast in both human
and animal models [17, 20, 116, 117]. Although VEGF-C is
well-correlated with cancer metastasis, the requirement for
tumor lymphangiogenesis is controversial, and there is
evidence that VEGF-C can promote metastasis in the
absence of tumor lymphangiogenesis [118–123]. VEGF-C
can also attract macrophages [124] that can alter the tumor
microenvironment to promote invasion. Furthermore, some
tumor cells also express VEGFR-3 and thus may benefit
from autocrine signaling of VEGF-C or –D [121, 125–129].
Such autocrine signaling could help tumor cells home to
lymphatics by guiding them in the direction of flow [42].
Finally, in addition to driving lymphangiogenesis, tumor
VEGF-C also upregulates the expression of CCL21 by
lymphatic endothelium to further promote lymphatic inva-
sion via CCR7 expression [121]. Clearly, VEGF-C in the
tumor microenvironment promotes tumor progression and
invasion, but since VEGF-C can play so many different
roles in the tumor microenvironment it has been difficult to
dissect out the specific contributions of tumor lymphangio-
genesis to these processes.

Tumor association with the lymphatic systemmay not only
affect the local microenvironment, but also the host immune
response to the tumor. As mentioned, VEGF-C and CCL21
between tumors and lymphatic endothelium display signifi-
cant cross-talk [121], and the upregulation of CCL21 in the
tumor microenvironment may impart certain features of
lymphoid neogenesis to the tumor. B16-F10 murine mela-
noma cells, like many other cancer cells, express low levels
of CCL21 [42]. When these cells were engineered to
knockdown endogenous CCL21, they were rejected (as
evidenced by tumor-antigen specific CD8+ T cells and tumor
regression), while control and CCL21-overexpressing tumors
recruited lymphoid tissue inducer cells, formed lymphoid-
like stroma, and were infiltrated with TReg cells [130]. Unlike
in autoimmune-associated TLOs, these tumors did not
express CXCL13 or generate B cell follicles, but mimicked
features of the T cell zone stroma of the LN, which are again
important in peripheral tolerance. Therefore, while the LN
contains many different features that collectively orchestrate
an immune response, it is likely that TLOs and tumors only
recapitulate certain features of the LN—germinal center
formation and paracortical stromal mimicry, respectively—to
skew the immune response towards one extreme (autoantibody
formation, as in the case of most TLOs) or the other
(immunological tolerance, as in the case of tumors).

These recent findings raise the interesting possibility that
peritumoral lymphangiogenesis may affect host immunity
(Fig. 2). First, as mentioned, VEGF-C drives an upregula-

tion of CCL21 in the local lymphatic vessels [121], and this
may drive stromal changes that promote a switch from
immunogenic to TReg cell education [130]. Second, the
lymphatic endothelium itself may express tumor antigen to
delete CD8+ effector cells, as it does in the lymph node
with endogenous peripheral tissue antigen [8]. Finally, the
increased drainage it induces to the draining LN [131–133]
could activate the tolerance-maintaining functions of the
lymph node by upregulating CCL21 [41] and bathing the
LN with tumor antigen.

Future Directions

Lymphatic vessels and lymphatic drainage are emerging
players in our understanding of the balance between
immunity and tolerance. The presence of lymphatics
draining mammary tissues and their active regulation
during lactation, infection and cancer highlights their
importance in mammary gland biology and cancer;
however, few studies have addressed this specific topic in
breast tissue. Additionally, the extent to which lymphatic
vessels participate in programming the immune response—
for example, by modulating lymph flow and immune cell
trafficking, by expressing endogenous antigen for T cell
modulation, or by adapting various immune cell functions—
remains incompletely understood.

While individual pieces of the puzzle have been
identified, the overall picture of lymphatic function in
immunity is only beginning to emerge. Recent evidence
demonstrates that LN-resident lymphatic endothelium can
present endogenous antigens, yet its overall importance in
maintaining peripheral tolerance to those tissues that it
specifically drains is unknown; whether this mechanism can
extend to peripheral lymphatics such as those that are
expanded in the tumor microenvironment remains an
interesting question that is yet to be answered. Additionally,
recent work demonstrates the importance of lipid transport
from perilymphatic adipose depots by trafficking APCs,
thereby modulating their ability to present antigen and
stimulate and immune response [134]. The relevance of the
dynamic adipose microenvironment in the breast to lym-
phatic function and immunity remains an open question.

In general, lymphatic sensitivity to the dynamic micro-
environment under steady state and diseased conditions
remains poorly understood. Much more research on the
interface between lymphatic biology and immunology is
needed to elucidate the importance of this underappreciated
component of immunity. In particular, we believe that
expounding the differences between lymphangiogenesis
and TLO formation (or lymphoid stromal mimicry) in
cancer vs. autoimmunity will provide novel therapeutic
targets for cancer immunotherapy.
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