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c© 2008 Birkhäuser Verlag Basel/Switzerland
0378-620X/010127-24, published online December 22, 2008
DOI 10.1007/s00020-008-1645-y

Integral Equations
and Operator Theory

Anisotropic Operator Symbols Arising From
Multivariate Jump Processes

Nils Reich
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1. Introduction

On Rn, n ≥ 2, consider the integrodifferential equation

Au = f, (1.1)

where A denotes an integrodifferential operator of anisotropic order α ∈ Rn, i.e.
A : Hα(Rn) → L2(Rn) is continuous. Here Hs, s ∈ Rn, denotes the anisotropic
Sobolev space

Hs(Rn) =
{
f ∈ S ′(Rn) :

∥∥∥∥ n∑
i=1

(1 + ξ2i )
si/2f̂

∥∥∥∥
L2(Rn)

<∞
}
.

We assume that the operator A is a pseudo differential operator with symbol
p : Rn × Rn → R, i.e.

Au(x) = Apu(x) := −
∫

Rn

ei〈x,ξ〉p(x, ξ)û(ξ)dξ, u ∈ S(Rn). (1.2)
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In [21, 39], it was shown that such integral operators occur as infinitesimal gener-
ators of certain Lévy copula processes X. In this case (1.1) can be regarded as the
stationary part of the Kolmogorov equation of X. Such equations occur, for in-
stance, in the field of asset pricing in multidimensional Lévy models as introduced
in [21, 34, 39, 47].

In terms of Bessel potential spaces corresponding to a continuous negative
definite reference function ψ(·), symbols arising from rather general stochastic
processes have been studied in [19, 20, 26, 27, 30, 45]. For an overview, we refer to
the monographs [31, 32, 33]. However, classical numerical analysis of (1.1) is based
on a Sobolev space characterization of the operator A. To this end, we shall see
below that the infinitesimal generators of Lévy copula and certain Feller processes
give rise to a new class of pseudo differential operators with symbols that extend
the classes Sm1,0, m ∈ R, of Hörmander (cf. e.g. [28, 48]). The operators in this class
act continuously on anisotropic Sobolev spaces and their symbols admit a more
complex singularity structure than classical pseudo differential operators.

The structure of anisotropic symbols and their corresponding distributional
integral kernels has been analyzed by many authors since the 1960s: Extending
the fundamental results of [8, 9] that were obtained for homogeneous singular
operators, in [17, 18] a symbolic calculus is constructed for certain anisotropic
operators with kernels of mixed homogeneity, spectral asymptotics are considered
in [3, 5, 43] and the references therein. Furthermore, for the closely related analysis
of hypo- and multi-quasi-elliptic operators we refer to [1, 3, 4, 6, 22, 25, 42, 41].
Even though the focus of this work lies on classical Sobolev- and hence L2-based
results, note that a great number of Lp-boundedness results for (different classes
of) anisotropic integral operators can be found in [10, 16, 29, 40, 46] and the
references there.

Finally, in order to obtain numerical solutions of (1.1) we shall also extend
the numerical analysis of [7, 21, 24] to obtain a minimal regularity finite element
discretization of (1.1) with essentially dimension independent convergence rates
for the class of anisotropic operators under consideration. For related numerical
analysis we also refer to [23, 49] and the references therein. In addition, the symbol
estimates provide the basis for further numerical analysis such as wavelet compres-
sion techniques, see [37, 38].

The outline of this work is as follows:
In Section 2 we recall the fundamentals of Lévy copula processes and their

characteristic exponents.
Section 3 provides the new classes of anisotropic symbols and some examples.
In Section 4 it is shown that symbols of infinitesimal generators of certain

Lévy copula processes are indeed contained in these new symbol classes. These
symbols are in general not contained in the classes of Hörmander-type.

Finally, in Section 5 we show that the (stationary) Kolmogorov equations for
operators with such anisotropic symbols can be discretized very efficiently using
a wavelet finite element scheme. Based on the symbol estimates of the previous
sections, a priori convergence analysis is provided.
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2. Motivation: Infinitesimal generators of Lévy copula processes

Based on [21, 34, 47], in this Section we briefly introduce Lévy copula processes
and characterize their infinitesimal generators. Recall that a stochastic process
L = (Lt)t≥0 with state space Rn and L0 = 0 a.s. is a Lévy process if it has
independent increments, is temporally homogeneous and stochastically continuous.

The characteristic function ΦL and the characteristic exponent ψL of L are
defined by

ΦL(ξ) = exp(−tψL(ξ)) = E(exp(i〈ξ, Lt〉)), ξ ∈ Rn, t > 0.

The characteristic exponent ψL(ξ) is also called Lévy symbol. The infinitesimal
generator A of L and the associated bilinear form E(·, ·) are given by

Au(x) = −
∫

Rn

ei〈x,ξ〉ψL(ξ)û(ξ)dξ, u ∈ C∞
0 (Rn), (2.1)

E(u, v) = 〈Au, v〉 = −(2π)n
∫

Rn

ψL(ξ)û(ξ)v̂(ξ)dξ, u, v ∈ S(Rn). (2.2)

Furthermore, the characteristic exponent ψL admits the Lévy-Khinchin represen-
tation

ψL(ξ) = i〈γ, ξ〉+Q(ξ) +
∫

Rn\{0}
(1− ei〈ξ,x〉 +

i〈ξ, x〉
1 + |z|2

)ν(dx), (2.3)

where Q(ξ) denotes the quadratic form 1
2ξ

>Qξ with a symmetric, nonnegative
definite matrix Q, a drift vector γ ∈ Rn and the Lévy measure ν(dx) which satisfies∫

Rn

(1 ∧ |x|2)ν(dx) <∞. (2.4)

Any Lévy process L is completely determined by its characteristic triple (Q, γ, ν)
in (2.3). We speak of a pure jump Lévy process if Q = 0 and γ = 0.

We shall now define a pure jump Lévy copula process. It is denoted by X:
For each i = 1, . . . , n the i-th marginal Lévy measure of X is given by νi(dxi) =
kβi

i (xi) dxi with densities kβi

i : R \ {0} → R. These densities are defined by

kβi

i (xi) = ci
e−βi|xi|

|xi|1+αi
, (2.5)

where 0 < α1, . . . , αn < 2 and β1, . . . , βn ∈ R≥0 are governing the Lévy densities’
tail behavior and ci > 0 are constants. The strongest singularity of all marginal
Lévy measures is given by

α := |α|∞ = max {αi : i = 1, . . . , n} < 2. (2.6)

To characterize the dependence among the margins, let F : Rn → R be a Lévy
copula as defined in [21, 34] that is homogeneous of order 1, i.e. F (tξ1, . . . , tξn) =
tF (ξ1, . . . , ξn) for all t > 0 and ξ ∈ Rn.
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By Sklar’s Theorem, [34, Theorem 3.6], we know that if the partial derivatives
∂1 . . . ∂nF exist in a distributional sense, then one can compute the Lévy density
of the multivariate Lévy copula process by differentiation as follows:

ν(dx1, . . . , dxn) = [∂1 . . . ∂nF ] (U1(x1), . . . , Un(xn))ν1(dx1) . . . νn(dxn), (2.7)

where ν1(dx1), . . . , νn(dxn) are the marginal Lévy measures defined above and Ui,
i = 1, . . . , n, denote the corresponding marginal tail integral

Ui(xi) =

{
νi([xi,∞)), if xi > 0,

− νi((−∞, xi]), if xi < 0.

Herewith, one obtains

ν(dx1, . . . , dxn)=[∂1 . . . ∂nF ] (U1(x1), . . . , Un(xn))k
β1
1 (x1) . . . kβn

n (xn) dx1 . . . dxn,
(2.8)

and this can be written as

ν(dx1, . . . , dxn) = kβ(x1, . . . , xn) dx1 . . . dxn, (2.9)

with β = (β1, . . . , βn). To define the copula process X we specify its characteristic
exponent using the Lévy-Khinchin representation (2.3). Since we are interested in
pure jump processes, the characteristic exponent ψX of X is given by

ψX(ξ) =
∫

Rn

(1− ei〈ξ,y〉 +
i〈ξ, y〉

1 + |y|2
)ν(dy)

=
∫

Rn

(1− ei〈ξ,y〉 +
i〈ξ, y〉

1 + |y|2
)kβ(y)dy, (2.10)

with kβ as in (2.8) and (2.9). Herewith the Lévy copula process X is completely
determined (see e.g. [44, Section 2.11]).

Definition 2.1. The Lévy copula process X is said to have α-stable margins if its
marginal Lévy densities in (2.5) are of the form

kβi

i (xi) = ci
1

|xi|1+αi
, for all i = 1, . . . , n,

i.e. β1 = . . . = βn = 0 in (2.5). If βi > 0 for all i = 1, . . . , n then the Lévy copula
process X is said to have tempered stable margins.

Lemma 2.2. For any Lévy copula process X with marginal Lévy densities as in (2.5)
there holds

ψX(ξ) =
∫

Rn

(1− cos〈ξ, y〉)kβ(y)dy. (2.11)

Proof. The symmetry of (2.5) implies that the density kβ is symmetric with respect
to each coordinate axis. A simple change of coordinates in (2.10) implies that ψX =
ψX , i.e. ψX is real-valued. Thus, the result follows from [31, Corollary 3.7.9]. �
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Since, by (2.11), the characteristic exponent ψX is real-valued it obviously
satisfies the so-called sector condition (cf. e.g. [31]). From [2, Theorem 3.7] one
therefore infers that E(·, ·) defined in (2.2) is in fact a (translation invariant)
Dirichlet form. In the important case that X has α-stable margins, i.e. βi = 0
for all i = 1, . . . , n in (2.5), the domain D(E) of the Dirichlet form E(·, ·) is well
known:

Proposition 2.3. The domain D(E) of the Dirichlet form associated to the generator
of a Lévy copula process with α-stable margins can be identified with the anisotropic
space Hα/2(Rn) with α = (α1, . . . , αn) as in (2.5).

Proof. [21, Theorem 3.7]. �

From Proposition 2.3 one infers

Corollary 2.4. The domain D(A) of the infinitesimal generator of a Lévy copula
process X with α-stable margins can be identified with Hα(Rn).

We conclude this section by an example of a Lévy copula that shall be of
reference throughout this work:

Example. The cardinal example for our purposes is the Clayton family of Lévy
copulas taken from [34, Example 5.2]: Let n ≥ 2. For θ > 0, the function Fθ defined
as

Fθ(u1, . . . , un) = 22−n
( n∑
i=1

|ui|−θ
)−1/θ (

η1{u1···un≥0} − (1− η)1{u1···un<0}
)
,

(2.12)
defines a two parameter family of Lévy copulas which resembles the Clayton family
of ordinary copulas. It is a Lévy copula homogeneous of order 1, for any θ > 0 and
any η ∈ [0, 1].

We shall frequently write a . b to express that a is bounded by a constant
multiple of b, uniformly with respect to all parameters on which a and b may
depend. Then a ∼ b means a . b and b . a.

3. Anisotropic operators and their symbol classes

Recall that for any symbol p : Rn × Rn → R, the corresponding operator Ap is
defined by

Apu(x) = −
∫

Rn

ei〈x,ξ〉p(x, ξ)û(ξ)dξ, u ∈ S(Rn). (3.1)

Furthermore, denote the axes in Rn by Λ := {x ∈ Rn : xi = 0 for some i ∈
{1, . . . , n}}. Herewith we can define a suitable class of anisotropic symbols and
corresponding operators.
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Definition 3.1. A function p : Rn × Rn → R is called a symbol in class Γα(Rn),
α ∈ Rn, if p(·, ξ) ∈ C∞(Rn) for all ξ ∈ Rn, p(x, ·) ∈ C∞(Rn\Λ) ∩ C(Rn) for all
x ∈ Rn, and for any τ , τ ′ ∈ Nn0 there holds∣∣∣∂τ ′x ∂τξ p(x, ξ)∣∣∣ . ∏

i∈Iτ

|ξi|αi−τi ·
∑
k/∈Iτ

(1 + |ξk|2)
αk
2 , for all x, ξ ∈ Rn, (3.2)

where we set Iτ := {i : τi > 0}. The multiindex α is called the (anisotropic) order
of the symbol p and the operator Ap.

Some possible realizations of operators A with symbols p ∈ Γα(Rn) are:

Example. If for any τ ∈ Nn0 the function p ∈ C∞(Rn\Λ) ∩ C(Rn) satisfies∣∣∣∂τξ p(ξ)∣∣∣ . n∑
i=1

(1 + |ξi|2)
αi−τi

2 , for all ξ ∈ Rn,

then p ∈ Γα(Rn) and Ap is admissible in this setting.

Example. Consider a symbol p : Rn × Rn → R in the Hörmander class Sα1,0 with
non-negative order α, i.e. there exists some α ∈ R≥0 such that for all τ ∈ Nn0 there
holds ∣∣∣∂τξ p(ξ)∣∣∣ . (1 + |ξ|2)

α−|τ|
2 , for all ξ ∈ Rn. (3.3)

Then p ∈ Γα(Rn) with α1 = . . . = αn = α. To see this, one may use that for
τ ∈ Nn0 there holds

n∏
i=1

(
1 + |ξi|2

) τi
2 ≤

n∏
i=1

(
1 +

n∑
j=1

|ξj |2
) τi

2

=
(
1 + |ξ|2

) |τ|
2 ,

and thus (
1 + |ξ|2

)− |τ|
2 ≤

n∏
i=1

(
1 + |ξi|2

)− τi
2 . (3.4)

Furthermore, (
1 + |ξ|2

)α
2 .

( n∑
i=1

(
1 + |ξi|2

))α
2

.
n∑
i=1

(
1 + |ξi|2

)α
2 , (3.5)

since α ≥ 0. Clearly, (3.4) and (3.5) imply that (3.2) holds for any symbol p ∈
C∞(Rn) that satisfies (3.3). Note that this statement does not remain true if α < 0
in (3.3).

Example. Also, symbols of the following structure belong to Γα(Rn) with suitable
α ∈ Rn:

p(x, ξ) =
M∑
j=1

bj(x)ψj(ξ),

for some M ∈ N. Here it is assumed that each ψj : Rn → R satisfies (3.2).
The functions bj : Rn → R≥0 are assumed to be C∞-functions with bounded
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derivatives. Note that similar symbols have already been studied in terms of the
symbol classes Sm,ψ% of [27], see e.g. [26, 30].

It is straightforward to see that if a symbol p : Rn → Rn is independent
of the state variable x, then the order α ∈ Rn of p ∈ Γα(Rn) has a natural
interpretation in terms of mapping properties of the corresponding bilinear form
E(u, v) := 〈Apu, v〉:

Lemma 3.2. Let p ∈ Γα(Rn) be independent of x and let Ap be the corresponding
pseudo differential operator. Then the bilinear form E(·, ·) = 〈Ap·, ·〉 corresponding
to Ap acts continuously on the anisotropic space Hα/2(Rn), i.e. there exists some
constant c > 0 such that

|E(u, v)| ≤ c‖u‖Hα/2(Rn)‖v‖Hα/2(Rn), for all u, v ∈ Hα/2(Rn). (3.6)

Proof. For u, v ∈ Hα/2(Rn) there holds

E(u, v) = (2π)n
∫

Rn

p(ξ)û(ξ)v̂(x)dξ.

Thus, by (3.2), the Cauchy-Schwarz inequality yields

(2π)−n |E(u, v)|

=
∫

Rn

n∑
k=1

(1 + |ξk|2)αk/2
∣∣∣û(ξ)v̂(x)∣∣∣ dξ

≤

(∫
Rn

n∑
k=1

(1 + |ξk|2)αk/2 |û(ξ)|2 dξ

) 1
2
(∫

Rn

n∑
k=1

(1 + |ξk|2)αk/2 |v̂(ξ)|2 dξ

) 1
2

= ‖u‖Hα/2(Rn)‖v‖Hα/2(Rn). �

From Lemma 3.2 one immediately infers

Corollary 3.3. Let p ∈ Γα(Rn) be independent of x and let Ap be the corresponding
pseudo differential operator. Then Ap maps the anisotropic space Hα(Rn) contin-
uously into L2(Rn), i.e. there exists some constant c′ > 0 such that

‖Apu‖L2(Rn) ≤ c′‖u‖Hα(Rn), for all u ∈ Hα(Rn).

Remark 3.4. In order to prove the continuity of general operators Ap, with x-
dependent symbol p ∈ Γα(Rn), further smoothness assumptions on p are required.
For instance, the Calderón-Vaillancourt Theorem can be employed to obtain the
desired estimates if the partial derivatives ∂τ

′

x ∂
τ
ξ p, |τ ′|, |τ | ≤ 3, exist and are con-

tinuous on the whole Rn ×Rn, see e.g. [32, Theorem 2.5.3]. However, since in this
work we are mainly interested in symbols arising from Lévy processes (which are
stationary) we omit such considerations here.
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4. Anisotropic symbol estimates

In this section, we prove anisotropic symbol estimates for the characteristic expo-
nent ψX : Rn → R of a Lévy copula process defined by (2.10). We will see that
indeed ψX ∈ Γα(Rn) with αi, i = 1, . . . , n, given by (2.5).

4.1. Symbol estimates for processes with stable margins

At first, we consider the generator A of a Lévy copula process X0 with α-stable
margins. Its symbol is denoted by ψX

0
. The following two lemmas provide the

necessary estimates:

Lemma 4.1. There holds,

ψX
0
(ξ1, . . . , ξn) .

n∑
i=1

(1 + |ξi|2)
αi
2 , for all (ξ1, . . . , ξn) ∈ Rn.

Proof. By [21, Theorem 3.3], ψX
0

: Rn → R is an anisotropic distance function
such that for any t > 0,

ψX
0
(t

1
α1 ξ1, . . . , t

1
αn ξn) = t · ψX

0
(ξ1, . . . , ξn), for all ξ ∈ Rn. (4.1)

Since all anisotropic distance functions of the same homogeneity are equivalent,

ψX
0
(ξ1, . . . , ξn) ∼ |ξ1|α1 + . . .+ |ξn|αn ,

and the result follows. �

To state the following lemma, recall that for τ ∈ Nn0 we denote

Iτ := {i ∈ {1, . . . , n} : τi > 0} , (4.2)

and let Sn−1 be the unit sphere in Rn.

Lemma 4.2. Let τ ∈ Nn0 . Suppose there exists some constant c > 0 such that∣∣∣∂τξψX0
(ξ)
∣∣∣ ≤ c ·

∏
i∈Iτ

|ξi|αi−τi ·
∑
k/∈Iτ

(1 + |ξk|2)
αk
2 , for all ξ ∈ Sn−1. (4.3)

Then there holds, ∣∣∣∂τξψX0
(ξ)
∣∣∣ . ∏

i∈Iτ

|ξi|αi−τi ·
∑
k/∈Iτ

(1 + |ξk|2)
αk
2 , (4.4)

for all ξ ∈ Rn such that |ξi| ≥ 1 if i ∈ Iτ .

Proof. Without loss of generality one may assume that τi ≥ 1 for at least one
i ∈ {1, . . . , n}. Otherwise, the claim in (4.4) coincides with Lemma 4.1. By differ-
entiation of (4.1) one obtains,∣∣∣∂τξψX0

(ξ)
∣∣∣ = t

t1
α1

+...+ tn
αn

−1
∣∣∣∂τξψX0

(t
1

α1 ξ1, . . . , t
1

αn ξn)
∣∣∣ , t > 0, ξ ∈ Rn.
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By [15, Lemma 2.1, (iv)], the mapping t → |(t
1

α1 ξ1, . . . , t
1

αn ξn)|, ξ 6= 0, maps
(0,∞) onto itself. Thus, one can choose t = t(ξ), such that

|(t
1

α1 ξ1, . . . , t
1

αn ξn)| = 1.

By (4.3) one obtains∣∣∣∂τξψX0
(ξ)
∣∣∣

≤ c · t
t1
α1

+...+ tn
αn

−1 ·
∏
i∈Iτ

|t
1

αi ξi|αi−τi ·
∑
k/∈Iτ

(1 + |t
1

αk ξk|2)
αk
2

≤ c · t
t1
α1

+...+ tn
αn t−1 ·

∏
i∈Iτ

(
t |ξi|αi−τit

− τi
αi

)
·
∑
k/∈Iτ

(1 + |t
1

αk ξk|2)
αk
2

= c · t|Iτ |−1 ·
∏
i∈Iτ

|ξi|αi−τi ·
∑
k/∈Iτ

(1 + |t
1

αk ξk|2)
αk
2 .

Since there exists some i ∈ {1, . . . , n} with |ξi| ≥ 1, t
2

α1 ξ21 + . . .+t
2

αn ξ2n = 1 implies
t

1
αi ≤ 1

|ξi| ≤ 1. Thus, t ≤ 1 and the result follows. �

Remark 4.3. The technical assumption (4.3) is satisfied by all common examples of
anisotropic distance functions (cf. e.g. [15]). Furthermore, using the Lévy-Khinchin
representation (2.11) it can be shown that (4.3) is satisfied if the underlying Lévy
copula is of Clayton-type as in (2.12). Nonetheless, to prove the validity of (4.3)
in general, one requires further analytical properties of the Lévy copula.

The combination of Lemmas 4.1 and 4.2 implies ψX
0 ∈ Γα(Rn) with αi,

i = 1, . . . , n, given by (2.5). In the following section, we extend this result to the
case of tempered stable margins.

4.2. Symbol estimates for processes with tempered stable margins

Let X be a Lévy copula process as defined in Section 2. Suppose that the marginal
densities of X are given by (2.5) with β1, . . . , βn > 0. The structure of the density
kβ of X is illustrated in Figure 1. Throughout, we denote by ψX

0
: Rn → R the

symbol of a Lévy copula process X0 with α-stable margins corresponding to X.
In particular, X and X0 share the same α1, . . . , αn in (2.5). The Lévy density of
X0 is denoted by k0 : Rn → R≥0.

Denote by kβ : Rn → R≥0 the Lévy density of X defined in Section 2. Since
for any τ ∈ Nn0 there holds (1 − cos〈x, ξ〉)∂τx(xτ11 . . . xτn

n k
β(x)) ∈ L1(Rn) for all

ξ ∈ Rn, one may apply integration by parts to obtain,∣∣∣ξτ11 . . . ξτn
n ∂

τ
ξψ

X(ξ)
∣∣∣ = ∣∣∣∣ξτ11 . . . ξτn

n

∫
Rn

f(〈x, ξ〉)xτ11 . . . xτn
n k

β(x)dx
∣∣∣∣

=
∣∣∣∣∫

Rn

(1− cos〈x, ξ〉)∂τx
(
xτ11 . . . xτn

n k
β(x)

)
dx

∣∣∣∣ , (4.5)
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Figure 1. Illustration of a two-dimensional density kβ under a
Clayton-type Lévy copula with marginal densities defined by (2.5)
with α1 = 1, α2 = 1, β1 = 2, β2 = 2.

where f is either cos or sin depending on whether |τ | is even or odd. By the
Riemann-Lebesgue Lemma, the singularity structure (and strength) of

k
β
τ (x) := ∂τx(xτ11 . . . xτn

n k
β(x))

governs the behavior of |ξτ11 . . . ξτn
n ∂τξ1ψ

X(ξ)| as |ξ| → ∞. To study this struc-
ture, from now on, we make the following technical assumption on the underlying
copula F .

Assumption 4.4. Assume for any τ ∈ Nn0 the underlying Lévy copula F satisfies

∂τx
(
∂1 . . . ∂nF (x)

)
= ∂1 . . . ∂nF (x) ·

n∏
i=1

1
|xi|τi

· bτ (x), for all x ∈ Rn, (4.6)

where bτ : Rn → R is uniformly bounded.

Herewith, one obtains the following crucial result:

Proposition 4.5. Under Assumption 4.4, for any τ ∈ Nn0 and x ∈ Rn, |x| ≤ 1,
there holds ∣∣∂τx(xτ11 . . . xτn

n k
β(x1, . . . , xn)

)∣∣ . k0(x1, . . . , xn). (4.7)

The proof of Proposition 4.5 is long and technical. It is detailed in Appen-
dix A.

Remark 4.6. Assumption 4.4 is often satisfied in practice. For instance, in dimen-
sion n = 2, the Clayton-type Lévy copulas Fθ given by (2.12) satisfy (4.6) for any
θ > 0 with bounded function bτ (x1, x2) of the form

τ1−1∑
k1=0

τ2−1∑
k2=0

[
ak
|x1|k1θ|x2|k2θ(bk2 |x2|θ − bk1 |x1|θ)

(|x1|θ + |x2|θ)k1+k2+1
+ ck

dk1 |x1|k1θdk2 |x2|k2θ

(|x1|θ + |x2|θ)k1+k2

]
,
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where k = (k1, k2) and ak, bki , ck, dki 6= 0 for ki = 0, . . . , τi − 1, i = 1, 2, are some
suitable coefficients depending only on θ and ki.

With Proposition 4.5 one obtains the desired symbol estimates.

Theorem 4.7. If the Lévy copula F satisfies Assumption 4.4 then there holds∣∣ψX(ξ)
∣∣ . n∑

i=1

(1 + |ξi|2)
αi
2 , for all ξ ∈ Rn. (4.8)

Furthermore, for τ ∈ Nn0 there holds,∣∣∣∂τξψX(ξ)
∣∣∣ . ∏

i∈Iτ

|ξi|αi−τi ·
∑
k/∈Iτ

(1 + |ξk|2)
αk
2 , (4.9)

for all ξ ∈ Rn such that |ξi| > 1 if i ∈ Iτ . Here, as above, Iτ = {i : τi > 0}.

Proof. Let ψX
0

be the characteristic exponent of the α-stable copula process X0

corresponding to X, i.e. the margins of both processes share the same α1, . . . , αn
in (2.5). We split the integral∣∣∣ξτ11 . . . ξτn

n · ∂τξψ
X(ξ)

∣∣∣ ≤ ∣∣∣∣∣
∫
B1(0)

(1− cos〈ξ, x〉)kβτ (x)dx

∣∣∣∣∣
+

∣∣∣∣∣
∫

Rn\B1(0)

(1− cos〈ξ, x〉)kβτ (x)dx

∣∣∣∣∣ ,
where B1(0) denotes the unit ball in Rn. Since k

β
τ ∈ L1(Rn\B1(0)), by the

Riemann-Lebesgue Lemma, for each τ ∈ Nn0 there exists some constant D > 0
such that ∣∣∣∣∣

∫
Rn\B1(0)

(1− cos〈ξ, x〉)kβτ (x)dx

∣∣∣∣∣ ≤ D, for all ξ ∈ Rn. (4.10)

Thus, using Proposition 4.5, there exists some constant C1 ≥ 0 such that∣∣∣ξτ11 . . . ξτn
n · ∂τξψ

X(ξ)
∣∣∣ ≤ C1 ·

∣∣∣∣∣
∫
B1(0)

(1− cos〈ξ, x〉)k0(x)dx

∣∣∣∣∣+D

≤ C1 · ψX
0
(ξ) +D

≤ C1 · C2 ·
n∑
i=1

(1 + |ξi|2)
αi
2 +D,

where the last line follows from Lemma 4.1 with some suitable constant C2 ≥ 0.
Merging the constants thus implies∣∣∣ξτ11 . . . ξτn

n · ∂τξψ
X(ξ)

∣∣∣ . n∑
i=1

(1 + |ξi|2)
αi
2 , for all ξ ∈ Rn.

Hence, setting τ = 0 ∈ Nn0 implies (4.8). For any τ ∈ Nn0 , estimate (4.9) follows
from division by |ξ1|τ1 . . . |ξn|τn . �
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5. Sparse Tensor Product Approximation of Anisotropic Operators

In this section we study the numerical solution of the original integrodifferential
equation (1.1),

Au = f,

with A = Ap, p ∈ Γα(Rn) for some α ∈ Rn. For the numerical solution of (1.1), we
restrict the state space Rn to a bounded subdomain � := [0, 1]n, say, and employ
the Galerkin finite element method with respect to a hierarchy of conforming trial
spaces V̂J ⊂ V̂J+1 ⊂ . . . ⊂ Hα/2(�), where

Hα/2(�) :=
{
u|� : u ∈ Hα/2(Rn), u|Rn\� = 0

}
.

For an analysis of the error introduced by the localization of Rn to �, we refer
to [39, Section 4.5]. Now, the variational problem of interest reads: Find uJ ∈ V̂J
such that,

E(uJ , vJ) := 〈AuJ , vJ〉 = 〈f, vJ〉 for all vJ ∈ V̂J . (5.1)

The index J represents the meshwidth of order 2−J . In order to ensure that there
exists a unique solution to (5.1), in addition to the continuity (3.6) of E(·, ·) we
assume that the bilinear form satisfies a G̊arding inequality in Hα/2, i.e. there
exist constants c > 0, c′ ≥ 0 such that

E(u, u) ≥ c‖u‖2Hα/2 − c′‖u‖2L2 , for all u ∈ Hα/2. (5.2)

The nested trial spaces V̂J ⊂ V̂J+1 we employ in (5.1) shall be sparse tensor
product spaces based on a wavelet multiresolution analysis described in the next
sections.

5.1. Wavelets on the unit interval

On the unit interval [0, 1] we shall employ scaling functions and wavelets based on
the construction of [12, 13, 35] and the references therein.

The trial spaces Vj are spanned by single-scale bases Φj = {φj,k : k ∈ ∆j},
where ∆j denote suitable index sets. The approximation order of the trial spaces
we denote by d, i.e.

d = sup
{
s ∈ R : sup

j≥0

{
infvj∈Vj ‖v − vj‖0

2−js‖v‖s

}
<∞ , ∀ v ∈ Hs([0, 1])

}
. (5.3)

To these single-scale bases there exist biorthogonal complement or wavelet bases
Ψj = {ψj,k : k ∈ ∇j}, where ∇j := ∆j+1\∆j . Denoting by Wj the span of Ψj ,
there holds

Vj+1 = Wj+1 ⊕ Vj , for all j ≥ 0, (5.4)

and
Vj = W0 ⊕ . . .⊕Wj , for all j ≥ 0. (5.5)
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Crucial for the following analysis is that the wavelets on [0, 1] satisfy the following
norm estimates (cf. e.g. [13, 14], for the one-sided estimates we refer to [50]): For
an arbitrary u ∈ Ht([0, 1]), 0 ≤ t ≤ d, with wavelet decomposition

u =
∞∑
j=0

∑
k∈∇j

uj,kψj,k,

there holds the norm equivalence,∑
(j,k)

22tj |uj,k|2 ∼ ‖u‖2Ht([0,1]) , if 0 ≤ t < d− 1/2, (5.6)

or the one-sided estimate,∑
(j,k)

22tj |uj,k|2 . ‖u‖2Ht([0,1]) , if d− 1/2 ≤ t < d. (5.7)

In case t = d there only holds,∑
(j,k)
j≤J

22tj |uj,k|2 . J ‖u‖2Ht([0,1]) , if t = d. (5.8)

For concrete examples of wavelet bases we refer to [11, 21].

5.2. Sparse tensor product spaces

For x = (x1, . . . , xn) ∈ [0, 1]n, we denote,

ψj,k(x) := ψj1,k1 ⊗ . . .⊗ ψjn,kn
(x1, . . . , xn) = ψj1,k1(x1) . . . ψjn,kn

(xn).

On [0, 1]n =: �, we define the subspace VJ ⊂ Hα/2(�) as the (full) tensor product
of the spaces defined on [0, 1]

VJ :=
n⊗
i=1

VJ , (5.9)

which can be written using (5.5) as

VJ = span {ψj,k : ki ∈ ∇ji , 0 ≤ ji ≤ J, i = 1, . . . , n}

=
J∑

j1,...,jn=0

Wj1 ⊗ . . .⊗Wjn .

We define the regularity γ > |α|∞/2 of the trial spaces by

γ = sup {s ∈ R : VJ ⊂ Hs(�)} . (5.10)

The sparse tensor product spaces V̂J are defined by,

V̂J :=span {ψj,k : ki ∈ ∇ji , i = 1, . . . , n; 0 ≤ |j|1 ≤ J}

=
∑

0≤|j|1≤J

Wj1 ⊗ . . .⊗Wjn .
(5.11)



140 Reich IEOT

One readily infers that NJ := dim(VJ) = O(2nJ) whereas N̂J := dim(V̂J) =
O(2JJn−1) as J tends to infinity. However, both spaces have similar approximation
properties in terms of the finite element meshwidth h = 2−J , provided the function
to be approximated is sufficiently smooth. To characterize the necessary extra
smoothness we introduce the spacesHs([0, 1]n), s ∈ Nn0 , of all measurable functions
u : [0, 1]n → R, such that the norm,

‖u‖Hs(�) :=
( ∑

0≤αi≤si,
i=1,...,n

‖∂α1
1 . . . ∂αn

n u‖2L2(�)

)1/2

,

is finite. That is

Hs([0, 1]n) =
n⊗
i=1

Hsi([0, 1]). (5.12)

For arbitrary s ∈ Rn≥0, we defineHs by interpolation. By (5.9), one may decompose
any u ∈ L2(�) into

u(x) =
∑
ji≥0

i=1,...,n

∑
ki∈∇ji

uj,kψj,k(x) =
∑
ji≥0

i=1,...,n

∑
ki∈∇ji

uj,kψj1,k1(x1) . . . ψjn,kn
(xn).

In this style, the sparse grid projection P̂J : L2(�) → V̂J is defined by truncation
of the wavelet expansion:

(P̂Ju)(x) :=
∑

0≤|j|1≤J

∑
k∈∇j

uj,kψj,k(x), (5.13)

where ∇j = ∇(j1,...,jn) := ∇j1 × . . .×∇jn .

5.3. Convergence rates

Denoting by u and uJ the solutions of (1.1) and the corresponding variational
problem (5.1), we need to analyze the error

‖u− uJ‖E ∼ ‖u− uJ‖Hα/2(�).

For this, at first we derive an anisotropic version of the approximation property of
the sparse tensor product projection P̂J , see [49, Proposition 3.2] for its isotropic
properties.

Theorem 5.1. For i = 1, . . . , n suppose 0 ≤ αi

2 < γ and let αi

2 < ti ≤ d with γ and
d given by (5.10) and (5.3). For u ∈ Hα/2(�) there holds

‖u− P̂Ju‖Hα/2(�) .


2( α

2−t)J‖u‖Ht(�) if
{
α 6= 0 or
ti 6= d for all i,

2( α
2−t)JJ

n−1
2 ‖u‖Ht(�) otherwise,

(5.14)

where we denote t = (t1, . . . , tn) and (α2 − t) = max{α1
2 − t1, . . . ,

αn

2 − tn}.
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Proof. At first recall that, as shown in [36], in contrast to the tensor product
structure of

Hs =
n⊗
i=1

Hsi([0, 1]),

for each s ∈ Rn the spaces Hs(�) admit an intersection structure

Hs(�) =
n⋂
i=1

Hsi
i (�),

in the sense of equivalent norms. Therefore, due to the norm equivalences (5.6)
one infers that if 0 ≤ si < γ, i = 1, . . . , n, there holds for each v ∈ Hs,

‖v‖2Hs(�) ∼
∞∑

j1,...,jn=0

(1 + 22s1j1 + . . .+ 22snjn)‖Qj1 ⊗ . . .⊗Qjnv‖2, (5.15)

where the mappings Qji : L2([0, 1]) → Wji , i = 1, . . . , n, denote the projections
onto the increments spaces Wji defined in Section 5.1. Furthermore, because of
the tensor product structure of Ht(�), for each v ∈ Ht(�) there also holds the
one-sided estimate

∞∑
j1,...,jn=0

22
∑d

i=1 tiji‖Qj1 ⊗ . . .⊗Qjnv‖2 . ‖v‖2Ht(�), (5.16)

provided that ti < d for all i = 1, . . . , n. Combining (5.15) and (5.16), setting
s = α/2, and writing wj = Qj1 ⊗ . . . ⊗ Qjnu, one obtains in case ti < d for all
i = 1, . . . , n,

‖u− P̂Ju‖2Hα/2

.
∑
|j|1>J

(1 + 2α1j1 + . . .+ 2αnjn)‖wj‖2

.
∑
|j|1>J

(2−2
∑n

i=1 tiji + 2(α1−2t1)j1 + . . .+ 2(αn−2tn)jn)22
∑n

i=1 tiji‖wj‖2

. max
|j|1>J

{
(2−2

∑n
i=1 tiji + 2(α1−2t1)j1 + . . .+ 2(αn−2tn)jn)

}
‖u‖2Ht(�)

. 2(α−2t)J‖u‖2Ht(�),

with (α− 2t) = max{α1 − 2t1, . . . , αn − 2tn}. In case the set

I := {i ∈ {1, . . . , n} : ti = d} ,
is non-empty, one may assume without loss of generality that for each i ∈ I there
holds αi = α and

α− 2t = α− 2d = αi − 2ti for all i ∈ I, (5.17)

because otherwise one can replace ti with some suitable t′i < ti = d and argue
as above to obtain the same convergence rate and smoothness requirements on u,
since Hti([0, 1]) ⊂ Ht′i([0, 1]).
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Because for each coordinate direction i ∈ I, i.e. ti = d, there only holds the
weaker one-sided norm estimate (5.8), instead of (5.16) one obtains

22
∑

i∈I tiji

∥∥∥∥⊗
i∈I

Qji ⊗
⊗
i/∈I

id[0,1] v

∥∥∥∥2

. ‖v‖2Hτ (�), (5.18)

with τi := ti if i ∈ I and τi := 0 otherwise. Here id[0,1] denotes the identity on
L2([0, 1]). Employing the stronger norm estimates deduced from (5.6) and (5.7) in
all directions i /∈ I first, one infers exactly as above,

‖u− P̂Ju‖2Hα/2

.
∑
|j|1>J

(1 + 2α1j1 + . . .+ 2αnjn)‖Qj1 ⊗ . . .⊗Qjnu‖2

. max
|j|1>J
ji : i/∈I

{
2αiji−2

∑
k/∈I tkjk

×
∑
jk:k∈I

2maxk{αkjk}
∥∥∥∥⊗

k

Qjk ⊗
⊗
k/∈I

id[0,1] u

∥∥∥∥2

Ht−τ (�)

}

. max
|j|1>J
ji : i/∈I

{
2αiji−2

∑
k/∈I tkjk

∑
jk:k∈I

2αmaxk{jk}2−2d
∑

k jk‖u‖2Ht(�)

}
,

(5.19)

where in the last line (5.17) was employed in conjunction with (5.18). To estimate
the remaining sum one may now proceed as in the proof of [49, Proposition 3.2].
If α > 0, herewith one obtains∑

jk:k∈I

2αmaxk{jk}2−2d
∑

k jk . max
jk:k∈I

{
2(α−2d)

∑
k jk
}
, (5.20)

where the jk run through the set of all indices that are admissible in the last sum
of (5.19). Finalizing the argument one obtains

‖u− P̂Ju‖2Hα/2

. max
|j|1>J

{
2maxi/∈I{αiji}−2

∑
k/∈I tkjk2(α−2d)

∑
k∈I jk

}
‖u‖2Ht(�)

. max
|j|1>J

{
2

∑
k/∈I αkjk−2

∑
k/∈I tkjk2(α−2d)

∑
k∈I jk

}
‖u‖2Ht(�)

. max
|j|1>J

{
2(α−2t)

∑n
k=1 jk

}
‖u‖2Ht(�)

. 2(α−2t)J‖u‖2Ht(�).

In case α = 0, instead of (5.20) one obtains∑
ji:i∈I

2αmax{i}{ji}2−2d
∑

i ji . max
ji:i∈I

{
2(α−2d)

∑
i ji
(∑

i

ji
)n−1

}
. (5.21)
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Then analogous arguments as in the case α > 0 yield the required result. �

Herewith one immediately obtains the desired minimal regularity sparse ten-
sor product convergence result:

Proposition 5.2. For a Lévy copula process with tempered stable margins defined
by (2.5) and α as in (2.6) the solutions u and uJ of (1.1) and (5.1) satisfy

‖u− uJ‖E ∼ ‖u− uJ‖Hα/2(�) . 2−(d−α
2 )J‖u‖Hρ(�), (5.22)

provided u ∈ Hρ(�). The smoothness parameter ρ ∈ Rn>0 is given by

ρi = d− (
α

2
− αi

2
), (5.23)

for each i = 1, . . . , n.

Proof. With this choice of ρ there holds (α− 2ρ) = αi − 2ρi for all i ∈ {1, . . . , n}.
Hence the smoothness requirement on u in each coordinate direction is minimal
and the result follows from Theorem 5.1. �

Remark 5.3. In case αi = α for all i = 1, . . . , n, Proposition 5.2 coincides with the
sparse tensor product convergence result for isotropic operators (cf. [49]).

Appendix A. Proof of Proposition 4.5

The goal of this Section is the proof of

Proposition 4.5. Suppose for any τ ∈ Nn0 the underlying Lévy copula F satisfies

∂τx
(
∂1 . . . ∂nF (x)

)
= ∂1 . . . ∂nF (x) ·

n∏
i=1

1
|xi|τi

· bτ (x), for all x ∈ Rn, (A.1)

where bτ : Rn → R is uniformly bounded. Then for any τ ∈ Nn0 and x ∈ Rn,
|x| ≤ 1, there holds∣∣∂τx(xτ11 . . . xτn

n k
β(x1, . . . , xn)

)∣∣ . k0(x1, . . . , xn). (A.2)

By the quasi self-reproductive structure of the derivatives of F in (A.1), it suffices
to show that for any i = 1, . . . , n there holds∣∣∂τi

xi

(
xτi
i k

β(x1, . . . , xn)
)∣∣ . k0(x1, . . . , xn), |x| ≤ 1.

Without loss of generality we assume i = 1. The proof comprises of the following
lemmas. Throughout, we assume x1 6= 0. Since we are only interested in derivatives
with respect to x1, we simplify some notation and assume that x2, . . . , xn ∈ R are
fixed unless indicated otherwise. With the tail integrals Uβ1

1 , . . . , Uβn
n as in (2.7),

we set

G(x1) := G(x1, . . . , xn) := ∂1 . . . ∂nF (x1, . . . , xn),

H(x1) := H(x1, . . . , xn) := G(Uβ1
1 (x1), . . . , Uβn

n (xn)).
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Furthermore, we denote by G(k), H(k) the k-th derivative of G and H with respect
to x1. In order to estimate the derivatives of

kβ(x1, . . . , xn) = H(x1, . . . , xn)k
β1
1 (x1) . . . kβn

n (xn),

we begin by analyzing the marginal tail integral Uβ1
1 :

Lemma A.1. Let s ∈ N. For any νj ∈ N, pj ∈ N0, j = 1, . . . s, the derivative

∂x1

( s∏
j=1

(∂νjUβ1
1 )pj

)
,

of Uβ1
1 is a linear combination of terms of the form

∏s′

j=1(∂
µjUβ1

1 )πj , with

s′∑
j=1

πj =
s∑
j=1

pj ,
s′∑
j=1

µjπj = 1 +
s∑
j=1

νjpj .

Proof. The claim is proved by induction on s. For s = 1 there holds

∂x1

(
(∂νUβ1

1 )
)µ = µ

(
(∂νUβ1

1 )
)µ−1 · (∂ν+1Uβ1

1 ),

which proves the basis. To show that the validity of the hypothesis for some s ∈ N
implies its validity for s+ 1 one finds

∂x1

( s+1∏
j=1

(∂νjUβ1
1 )pj

)
= ∂x1

( s∏
j=1

(∂νjUβ1
1 )pj

)
(∂νs+1Uβ1

1 )ps+1

+
s∏
j=1

(∂νjUβ1
1 )pj · ps+1(∂νs+1Uβ1

1 )ps+1−1(∂νs+1+1Uβ1
1 ).

(A.3)
Since the hypothesis is valid for s, one obtains that the first summand in (A.3) is
indeed a linear combination of terms of the required form. The sum of its powers
satisfies

s′∑
j=1

πj + ps+1 =
s∑
j=1

pj + ps+1 =
s+1∑
j=1

pj ,

as required. For the weighted sums there holds

s′∑
j=1

µjπj + νs+1ps+1 = 1 +
s∑
j=1

νjpj + νs+1ps+1 = 1 +
s+1∑
j=1

νjpj .

One readily infers that the second summand of (A.3) can be represented as a
suitable product of derivatives of g. The powers of these derivatives satisfy

s∑
j=1

pj + (ps+1 − 1) + 1 =
s+1∑
j=1

pj .
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For the weighted sums one finally obtains
s∑
j=1

νjpj + (ps+1 − 1)νs+1 + (νs+1 + 1) =
s+1∑
j=1

νjpj + 1. �

Lemma A.1 enables us to show

Lemma A.2. For any k ∈ N there holds

H(k)(x1) = ∂kx1
H(x1, . . . , xn) =

k∑
l=1

cl,kG
(l)(Uβ1

1 (x1), . . . , Uβn
n (xn))Jl,k(x1),

where

Jl,k =
∑
m

cl,k,m

s(l,k)∏
j=1

(∂νj,mUβ1
1 )pj,m , (A.4)

with suitable νj,m ∈ N, pj,m ∈ N0 and constants cl,k, cl,k,m ∈ R. Furthermore, for
each m there holds

s(l,k)∑
j=1

pj,m = l,

s(l,k)∑
j=1

νj,mpj,m = k. (A.5)

Proof. We proceed by induction on k. For k = 1, with J1,1 = ∂Uβ1
1 the induction

basis is obvious. Assuming the validity of the hypothesis for some k ∈ N one
obtains its validity for k + 1 as follows:

H(k+1)(x1) =
k∑
l=1

cl,kG
(l+1)(Uβ1

1 (x1), . . . , Uβn
n (xn)) · (∂Uβ1

1 )Jl,k(x1)

+
k∑
l=1

c′l,kG
(l)(Uβ1

1 (x1), . . . , Uβn
n (xn)) · ∂x1 (Jl,k(x1)) ,

(A.6)

where cl,k, c′l,k denote some suitable constants. By the hypothesis, Jl,k is a linear
combination of products as in (A.4). Thus, any “pure” summand (i.e. it does not
contain any further sub-summands) in the first summand of (A.6) is of the form

c ·G(l+1)(Uβ1
1 (x1), . . . , Uβn

n (xn)) · (∂Uβ1
1 )

s∏
j=1

(∂νjUβ1
1 )pj

︸ ︷︷ ︸
=:A

,

where c denotes some constant. Using the validity of the hypothesis for k, the
additional factor A defines Jl+1,k+1 and satisfies (A.5) for k + 1.

For the second summand of (A.6) one needs to show that for each l = 1, . . . , k
the factor ∂x1 (Jl,k(x1)) provides a suitable additive contribution to Jl,k+1. By the
hypothesis, each “pure” summand of Jl,k is of the form

F :=
k∏
j=1

(∂νjUβ1
1 )pj .
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By Lemma A.1, its derivative ∂x1F is a linear combination of terms of the form∏
j(∂

µjUβ1
1 )πj with ∑

j

πj =
k∑
j=1

νj = l,

∑
j

µjπj =
k∑
j=1

νjpj + 1 = k + 1,

where in both equations the induction hypothesis was applied to obtain the last
equality. Thus, ∂x1 (Jl,k(x1)) indeed provides an additional additive term to the
representation of Jl,k+1 that satisfies (A.5). �

The following lemma will finally enable us to give the proof of Proposition 4.5
below.

Lemma A.3. If (A.1) holds then∣∣∂kx1
H(x1, . . . , xn)

∣∣ . 1
|x1|k

H(x1, . . . , xn),

for all (x1, . . . , xn) ∈ Rn, |x1| ≤ 1.

Proof. Denoting by cl,k some suitable constants, Lemma A.2 implies∣∣∂kx1
H(x1, . . . , xn)

∣∣
≤

k∑
l=1

cl,k ·
∣∣∣G(l)(Uβ1

1 (x1), . . . , Uβn
n (xn))

∣∣∣ · |Jl,k(x1)|

≤
k∑
l=1

cl,k ·
∣∣∣G(l)(Uβ1

1 (x1), . . . , Uβn
n (xn))

∣∣∣ · s(l,k)∏
j=1

(∂νjUβ1
1 )pj ,

where the powers pj and the orders of differentiation νj still depend on l and k in
such a way that

∑
j pj = l and

∑
j νjpj = k. Note that

(∂νjUβ1
1 )(x1) =

e−β1x1

|x1|νj+α1
· Pνj

(x1),

where Pνj is some suitable polynomial of degree νj − 1 in x1 that does not vanish
at x1 = 0. One therefore obtains

∣∣∂kx1
H(x1, . . . , xn)

∣∣
≤

k∑
l=1

c′l,k ·
∣∣∣G(l)(Uβ1

1 (x1), . . . , Uβn
n (xn))

∣∣∣ · s(l,k)∏
j=1

1

x
pj(νj+α1)
1

≤
k∑
l=1

c′l,k ·
∣∣∣G(l)(Uβ1

1 (x1), . . . , Uβn
n (xn))

∣∣∣ · 1
|x1|k+lα1

.
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By (A.1) there holds∣∣∣G(l)(Uβ1
1 (x1), . . . , Uβn

n (xn))
∣∣∣ . G(Uβ1

1 (x1), . . . , Uβn
n (xn))

(Uβ1
1 (x1))l

,

for all (x1, . . . , xn) ∈ Rn. Thus, since for each x1 ∈ R with |x1| ≤ 1 there holds
(Uβ1

1 (x1))−l . |x1|lα1 , one obtains∣∣∂kx1
H(x1, . . . , xn)

∣∣ . G(Uβ1
1 (x1), . . . , Uβn

n (xn)) ·
1

|x1|k
, for |x1| ≤ 1. �

Using the above lemmas one can now prove Proposition 4.5:

Proof. Using Leibniz’ rule,∣∣∂τx1

(
xτ1k

β(x1, . . . , xn)
)∣∣ = ∣∣∣∣ τ∑

j=0

cj∂
j
x1

(
kβ(x1, . . . , xn)

)
∂τ−j (xτ1)

∣∣∣∣
=
∣∣∣∣ τ∑
j=0

c′jx
j
1∂
j
x1

(
kβ(x1, . . . , xn)

) ∣∣∣∣.
Since ∂τx1

(kβ1
1 (x1)) . |x1|−(τ+1+α1) for all x1 ∈ R with |x1| ≤ 1, Lemma A.3

implies ∣∣∂τx1

(
xτ1k

β(x1, . . . , xn)
)∣∣

≤
τ∑
j=0

c′j |x1|j
j∑
i=0

ci
|x1|i+1+α1

·
n∏
s=2

1
|xs|1+αs

·
∣∣∂j−ix1

H(x1, . . . , xn)
∣∣

≤
τ∑
j=0

c′j |x1|j
j∑
i=0

ci
|x1|1+α1

·
n∏
s=2

1
|xs|1+αs

·G(Uβ1
1 (x1), . . . , Uβn

n (xn)) ·
1

|x1|j

≤ c · k0(x1, . . . , xn). �
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