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Abstract CDO tranche spreads (and prices of related portfolio-credit derivatives) de-
pend on the market’s perception of the future loss distribution of the underlying credit
portfolio. Applying Sklar’s seminal decomposition to the distribution of the vector
of default times, the portfolio-loss distribution derived thereof is specified through
individual default probabilities and the dependence among obligors’ default times.
Moreover, the loss severity, specified via obligors’ recovery rates, is an additional
determinant. Several (specifically univariate) credit derivatives are primarily driven
by individual default probabilities, allowing investments in (or hedging against) de-
fault risk. However, there is no derivative that allows separately trading (or hedging)
default correlations; all products exposed to correlation risk are contemporaneously
also exposed to default risk. Moreover, the abstract notion of dependence among the
names in a credit portfolio is not directly observable from traded assets. Inverting
the classical Vasicek/Gauss copula model for the correlation parameter allows con-
structing time series of implied (compound and base) correlations. Based on such
time series, it is possible to identify observable variables that describe implied cor-
relations in terms of a regression model. This provides an economic model of the
time evolution of the market’s view of the dependence structure. Different regression
models are developed and investigated for the European CDO market. Applications
and extensions to other markets are discussed.

M. Hofert (�)
Department of Mathematics, ETH Zurich, 8092 Zurich, Switzerland
e-mail: marius.hofert@math.ethz.ch

M. Scherer · R. Zagst
HVB Stiftungsinstitut für Finanzmathematik, Technische Universität München, Parkring 11, 85748
Garching-Hochbrück, Germany

M. Scherer
e-mail: scherer@tum.de

R. Zagst
e-mail: zagst@tum.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159154855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:marius.hofert@math.ethz.ch
mailto:scherer@tum.de
mailto:zagst@tum.de


290 M. Hofert et al.

Keywords CDO · Implied correlation · Gaussian copula model

JEL Classification C 13 · C 52 · G 01 · G 13

1 Introduction

The market for credit derivatives grew steadily from its beginning in the early 1990s,
until the recent financial crisis put an abrupt end to this trend. Yet, it is still one of the
most important markets for derivatives, for several reasons: (a) the search for high-
yield investments in a low-interest rate environment, (b) regulatory issues/rules that
allow banks to control credit risk with derivatives, (c) the use of credit derivatives
for risk management of credit portfolios, and (d) the opportunity to tap the market
for new investments such as correlation risk. The creation of credit indices and a
standardization of, e.g., default events and several credit derivatives, have made the
market more transparent and liquid (for a survey, see, e.g., Brommundt et al. 2006).
Moreover, market quotes for credit default swaps (CDS), collateralized debt obliga-
tions (CDO), and other products are now publicly available.

One type of product that has attracted a great deal of interest from both re-
searchers and practitioners is the CDO. The important feature of a CDO is that
the spread of its tranches depends to a large extent on the correlation structure
among the names in the underlying credit portfolio, thus creating a new type of
risk. The core idea behind a CDO is to pool multiple credits (or other credit-risky
assets) and then partition this portfolio into slices with different risk profile, called
tranches. Creating tranches with different seniority allows for senior debt as well
as more risky investments within the same portfolio. Hence, it is possible to sat-
isfy the risk appetites of a variety of investors. Crucial for pricing and risk man-
agement of CDOs is that dependence among the portfolio constituents affects the
default risk (and, hence, the market price) of each tranche. However, dependence is
not directly observable in the markets. Moreover, a great many models/dependence
structures (typically represented by some copula) have been suggested to explain
dependent defaults. Inspired by structural-default models that link equity to credit
risk, correlation of the respective equity prices is sometimes suggested as an ap-
proximation for default correlation (see, e.g., O’Kane and Livesey 2004). Taking ad-
vantage of the current situation of relatively liquid market prices for CDO tranches,
we can alternatively infer time series of implied correlations by inverting Vasicek’s
model.1 This model (see Vasicek 1987; Li 2000) is often criticized for its sim-
plifying assumptions, and several generalizations (e.g., by Andersen et al. 2003;
Gregory and Laurent 2003, 2004; Hull and White 2004; Andersen and Sidenius 2005;
Albrecher et al. 2007; Burtschell et al. 2007, 2009, and Kalemanova et al. 2007) have
been proposed. Nevertheless, as the model continues to be used for practical appli-
cations, it is applied here to derive time series of compound and base correlations.
Below, we address the question of whether (and, if so, using which variables) it is

1An empirical study based on historical (default) correlations (opposed to implied correlations used in the
present investigation) is presented in Rösch (2003).
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possible to explain implied correlations. To approach this problem, we investigate dif-
ferent regression models for compound and base correlations and test the significance
and explanatory power of the variables used. To validate the models, we compare the
resulting model spreads with a direct regression on tranche spreads.2

The remainder of this paper is organized as follows. After a brief introduction to
CDOs in Sect. 2, the pricing of CDO tranches and the derivation of implied corre-
lations is reviewed. The data for the statistical investigation are presented in Sect. 3.
The results of the empirical study are discussed in Sects. 4 and 5. Possible extensions
and applications are discussed in Sect. 6. Section 7 concludes.

2 Pricing CDOs and computing implied correlations

CDOs allow the originator to sell default risk in tranches, each of which has differ-
ent seniority. Until its complete elimination, the riskiest tranche (the equity tranche)
bears all losses within the credit portfolio. As soon as the equity tranche is eliminated,
the subsequent tranche (the junior mezzanine tranche) is affected. This process con-
tinues up to the most senior tranche. There are two types of CDOs: cash CDOs (in-
vestors buy some tranche and subsequently receive interest payments) and synthetic
CDOs (investors exchange premium payments against potential loss compensation).
We focus on the latter, for which we have market quotes. Here, constructed as a swap
contract, tranche spreads are found by equating the expected discounted premium
and default legs and by solving this relation for the fair spread. Payments of each
tranche’s premium leg are typically made on a quarter-yearly schedule and depend on
the remaining nominal of the corresponding tranche at the respective payment date.
Default payments are due if losses affect the respective tranche. For simplicity, de-
fault payments are deferred to the next premium payment date. The CDO’s tranches
are specified via their lower and upper attachment points, respectively, denoted by
lj and uj , j ∈ {1, . . . , J }. According to the iTraxx Europe convention, the portfolio
under consideration is partitioned into six tranches: [0%,3%], [3%,6%], [6%,9%],
[9%,12%], [12%,22%], and [22%,100%]. Market quotes are available for the first
five of these, indexed by j ∈ {1, . . . ,5}. Denoting the overall (relative) portfolio-loss
process by Lt ∈ [0,1], the loss affecting tranche j is given by

Lt,j = min{Lt ,uj } − min{Lt , lj }, t ∈ [0, T ]. (1)

Other contractual details (e.g., payment conventions, assumptions as to recovery rates
and default events) are set as close as possible to the conventions of the International
Index Company. These specifications will be explained more thoroughly as needed
throughout the paper.

Computing implied correlations, i.e., compound or base correlations, for the
tranches of a CDO is related to computation of implied volatilities from observed
option prices. More precisely, the correlation parameter ρ in Vasicek’s model is cho-
sen such that the model resembles the quoted spread of the considered tranche. To
accomplish this, a pricing formula for CDO tranche spreads is needed. Hence, we
next briefly review computation of model prices.

2A related study, aimed at explaining CDS spreads, is presented in Düllmann and Sosinska (2007).
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2.1 The portfolio-loss distribution in Vasicek’s model

Throughout this investigation, we work on a probability space (Ω, F ,P). The mea-
sure P is a pricing measure that is calibrated to market quotes in a later step. Gen-
erally speaking, the idea behind Vasicek’s model (see Vasicek 1987) is to extend
Merton’s seminal univariate firm-value model (see Merton 1974) to a multivariate
default model. Dependence between the individual default events is introduced via
correlated firm-value processes. After each firm-value process in the multivariate
Merton-type model is centered and scaled to follow a standard normal distribution
at time t (originally, Merton used a geometric Brownian motion), dependence among
the I firms is introduced via a market factor construction. More precisely, the factors
{Xi

t }i=1,...,I are decomposed into Xi
t := √

ρ Mt + √
1 − ρ εi . The random variable

Mt ∼ N (0,1) is interpreted as a market factor affecting all firms. This factor is as-
sumed to be independent of the independent and identically distributed (i.i.d.) random
variables εi ∼ N (0,1) representing the idiosyncratic residual risk of each firm. Fur-
ther simplifying assumptions, necessary for applying stochastic limit theorems at a
later stage, postulate a homogeneous portfolio with respect to default probabilities,
recovery rates, and portfolio weights. The default probability (up to time t) of all
firms is a known input factor, denoted by pt := P(τi ≤ t). The time t default prob-
ability is set via the default threshold D, which is also identical for all firms. The
crucial observation for the derivation of a large portfolio approximation, referred to
as conditional independence, is that all firms are independent given the market factor
Mt , and that

pt (m) := P
(
Xi

t ≤ D |Mt = m
) = Φ

(
D − √

ρ m√
1 − ρ

)
, m ∈ R,

is the conditional default probability (of all firms) up to time t given Mt = m.
The unconditional probability of i ∈ {0, . . . , I } defaults in the portfolio is computed
by integrating out the market factor distribution. Moreover, assuming a sufficiently
large portfolio (the large-portfolio assumption), the following approximation of the
portfolio-loss distribution (with zero recovery), denoted L0

t , can be derived via the
central limit theorem (see Vasicek 1987; Schönbucher 2003),

FL0
t
(x) := P

(
L0

t ≤ x
) ≈ Φ

(√
1 − ρ Φ−1(x) − Φ−1(pt )√

ρ

)
, x ∈ [0,1].

2.2 Pricing the tranches of a CDO

Consider a synthetic CDO, constructed using CDS on I obligors, each contributing
1/I to the unit nominal of the portfolio. The initial maturity (in years) of all swap
contracts is denoted by T , the initial payment schedule by T := {t0 = 0 < t1 < · · · <
tn = T }. Because it is a swap contract, we consider two legs: the premium leg and the
default leg. The former is based on the schedule T , where quarter-yearly payments
are most common. Default payments of the latter leg are deferred to the subsequent
premium payment date after some default. Accrued interest, i.e., the interest accu-
mulated between a default and the last payment date, is approximated by assuming
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that default payments occur in the middle of two payment dates. Pricing the tranches
of a CDO corresponds to equating the present values of expected premium and de-
fault payments and solving for the spread. To simplify computations, it is common to
assume a homogeneous deterministic recovery rate (set to R := 40%), which gives

Lt := 1 − R

I

I∑

i=1

1{τi≤t} = (1 − R)L0
t , t ∈ [0, T ].

Given Lt , the loss affecting tranche j ∈ {1, . . . , J } is found from (1) and denoted
Lt,j . Given the payment schedule T and the discount factors dtk corresponding to
the time points tk , k ∈ {1, . . . , n}, the fair spread of tranche j with maturity T is
computed as

sj = E

[
n∑

k=1

dtk (Ltk,j − Ltk−1,j )

]/
E

[
n∑

k=1

dtk�tk
(
Ntk,j + (Ntk−1,j − Ntk,j )/2

)
]

,

(2)

where �tk := (tk − tk−1) and the remaining nominal at time t in tranche j is computed
as Nt,j := uj − lj −Lt,j . The summands (Ntk−1 −Ntk )/2 account for accrued interest.
An exception to the above pricing formula is made for the first tranche, for which it
is standard market practice to combine a running spread of 500 basis points (one
basis point is 0.0001) with an upfront payment. This upfront payment is quoted as
a percentage of the nominal of the equity tranche. All the above formulas can easily
be solved if discount factors are deterministic and the portfolio-loss distribution is
analytically available. In the present framework it is even possible to explicitly derive
expected tranche losses (see below).

Theorem 2.1 (O’Kane and Livesey 2004) The expected tranche loss of the equity
tranche in Vasicek’s model is

E[Lt,1] = (1 − R)
(
pt − Φ

(−Φ−1(min
{
u1/(1 − R),1

})
,Φ−1(pt ),−

√
1 − ρ

))
.

For more senior tranches j ∈ {2, . . . , J }, the expected tranche loss is given by

E[Lt,j ] = (1 − R)
(
Φ

(−Φ−1(min
{
lj /(1 − R),1

})
,Φ−1(pt ),−

√
1 − ρ

)

− Φ
(−Φ−1(min

{
uj/(1 − R),1

})
,Φ−1(pt ),−

√
1 − ρ

))
,

where Φ(x, y,ρ) denotes the cumulative distribution function of the bivariate stan-
dard normal distribution with correlation coefficient ρ.

The proof can be found in the Appendix to this paper.

2.3 Computing compound and base correlations

As explained above, computing compound correlations corresponds to inverting the
CDO pricing formula, derived from Vasicek’s model of the portfolio-loss distribu-
tion, for the dependence parameter ρ. For this purpose, necessary input variables



294 M. Hofert et al.

are individual default probabilities. In our analysis, these are taken from portfolio
CDS spreads, computed under the assumption of a constant homogeneous default
intensity. However, tranche spreads of mezzanine tranches are not guaranteed to be
monotone in the parameter ρ. Hence, the compound correlation is not necessarily
unique. Therefore, we choose the smallest solution if at least one solution exists and
the minimizing argument of the distance between the model spread and the market
quote if no solution exists.3

Base correlations refer to artificial tranches covering [0%, x%] of the portfolio,
i.e., the lower attachment point is always zero. We observe that the payment streams
of tranche [x%, y%] agree with a long position in tranche [0%, y%] combined with
a short position in tranche [0%, x%]. This observation is used to construct a boot-
strapping procedure that computes the base correlation of tranche j from previously
computed base correlations and the market spread of tranche j . The base correlation
of the equity tranche agrees with the compound correlation of this tranche. A detailed
description of computing base correlations is given in O’Kane and Livesey (2004).
This procedure is analogous to the well-known bootstrapping method for computing
zero rates from swap par yields (see, e.g., Hull 2008, p. 80).

3 An empirical study: data and regression models

Our empirical study is based on the fifth (a calm market prior to the financial crisis)
and ninth (a period during the financial crisis) series of the Markit iTraxx Europe in-
dices. The underlying portfolio consists of CDS on 125 equally weighted European
companies. We focus on CDO tranches and portfolio CDS for contracts maturing
on 2011-06-20 and 2013-06-20, respectively. Moreover, data of individual CDS ma-
turing in five years on all 125 companies are collected. Additionally, we collected
all available asset values of the related companies (excluding privately owned com-
panies and other firms without stock quotations) and risk-free interest rates for the
Eurozone. The periods under consideration cover 2006-03-20 to 2007-03-15 (Series
5) and 2008-04-17 to 2008-08-15 (Series 9). Overall, the data basis is quite solid.
Only a few individual CDS spreads are missing, in which case we use the last avail-
able quote. This investigation focuses on Series 5. Later in the paper, a condensed
version of the results for Series 9 is provided.

3.1 Compound and base correlations

Based on the assumptions of Sect. 2 and the data described above we obtain time
series of compound and base correlations (see Fig. 1).

Compound correlations show the typical correlation smile, i.e., they are increasing
from the junior mezzanine toward the super-senior tranche and the equity tranche’s

3This approach could lead to unrealistic compound correlations during the financial crisis. For mezzanine
tranches, two completely different solutions are found: one solution close to zero, the second close to one.
Given the compound correlations of the other tranches, it could be argued that using the solution close
to one would be more realistic. However, this problem is not persistent in the case of base correlations.
Hence, we focus on base correlations in our empirical study of the credit crisis.
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Fig. 1 Compound (left) and base (right) correlations for Series 5 in the considered period

Table 1 Pairwise correlation (in percent) of the different tranche spreads, compound, and base correla-
tions

Series 5 Quoted spreads Compound correlations Base correlations

2 3 4 5 2 3 4 5 2 3 4 5

1 95.1 95.7 88.7 97.5 66.9 65.8 62.3 60.8 92.4 85.0 78.9 67.6

2 98.9 91.2 95.2 97.7 91.3 90.8 98.5 96.0 89.3

3 92.6 96.5 92.4 93.5 99.3 95.3

4 94.1 95.0 98.2

compound correlation is above that of the junior mezzanine tranche. O’Kane and
Livesey (2004, p. 6) provide a possible explanation for this observation by attribut-
ing the smile to market prices being the result of multiple effects such as “. . . con-
cerns about systemic versus idiosyncratic credit risk, fear of principal versus mark-
to-market losses, liquidity effects, and supply and demand for certain tranches.” Base
correlations are increasing in the tranches’ seniority. The standard deviations (in per-
cent and increasing seniority) for the five time series are 2.0, 1.8, 1.5, 1.6, and 1.2
for the compound, and 2.0, 2.6, 3.1, 3.5, and 4.4 for the base correlations. Compound
correlations have decreasing volatility in the tranches’ seniority, while base correla-
tions have increasing volatility in the tranches’ width. Note that the time series of the
different tranches show quite similar characteristics. The large pairwise correlations
of these time series, especially of tranches close to each other, are reported in Table 1.
As they overlap, it is not surprising that base correlations are more correlated with
each other compared to compound correlations (which refer to disjoint tranches).
Moreover, this explains the increasing correlation of base correlations the greater the
tranches overlap.
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3.2 The regressor variables

One aim of our investigation is to detect variables that can explain implied correla-
tions and tranche spreads in the context of a regression model. Intuitively, implied
correlations represent the market’s view of the dependence among the firms in a
credit portfolio. However, dependence is not directly observable and condensing it
into a single number involves severe oversimplification. Moreover, we believe that
implied correlations could be interpreted as some sort of risk premium for the risk of
dependent defaults. Therefore, it seems reasonable that market participants demand
a larger risk premium for correlation in times of large default probabilities, even if,
theoretically, default probabilities and dependence are different types of risk. Hence,
we include measures of dependence but also measures of default risk in the list of
possible regressors. Inspired by Merton’s firm-value model, we additionally include
information from the equity market.

For each firm i ∈ {1, . . . , I }, I = 125, we first compute daily logarithmic returns
(log returns) of CDS spreads. We then derive the sample variances σ 2

0,i for the first

20 data points of these time series and compute the variances σ 2
t,i for the remaining

time points using the exponentially weighted moving average (EWMA) model with
λ ∈ (0,1):

σ 2
t,i := λσ 2

t−1,i + (1 − λ)r2
t,i , i = 1, . . . , I, (3)

(see, e.g., Alexander 1998, p. 130), where rt,i denotes the log return of the CDS
spread of firm i at time t . Finally, for each time point t , we compute the mean value
taken over all firms i to end up with the regressor “Cσ

t ”. Based on log returns of CDS
spreads, we also derive all I (I − 1)/2 pairwise correlations via

σt,kl := λσt−1,kl + (1 − λ)rt,krt,l ,

ρt,kl := σt,kl/
(
σ 2

t,kσ
2
t,l

)1/2
, k �= l

(4)

(see, e.g., Alexander 1998, p. 130), where the sample covariance σ0,kl between firms
k and l is computed based on the first 20 log returns. After taking the mean over
all firms for each time point as before, we obtain the regressor “Cρ

t .” Precisely the
same procedure is applied to the available stock quotes: the corresponding regressors
are denoted by “Sσ

t ” and “Sρ
t .” Following the same procedure for portfolio CDS

spreads (instead of individual CDS spreads) leads to the regressor “P σ
t ” (with the

slight adjustment that no mean has to be taken). As a measure of (average) default
risk for the overall credit market, we also include the mean of individual CDS spreads
taken over all firms (“Ct ”). Moreover, asset values are linked to default probabilities
via the idea of structural-default models. To account for this observation, we include
a stock index as regressor. This stock index is computed as the mean of the stock
prices taken over all firms in the portfolio, where each stock is normed to unit weight
by its initial value as of 2006-03-20 or 2008-04-17, respectively. This regressor is
denoted by “St .” Finally, we include the portfolio CDS spreads, “Pt ,” as a regressor.
The intercept in all models is denoted “1.”
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3.3 The response variables and different regression models

The first set of response variables consists of market quotes (upfront or spread, re-
spectively) for the five tranches of the CDO. The upfront payment of the equity
tranche is quoted in percent; the spread of all other tranches is quoted in basis points.
Since all quoted CDO tranche spreads s

j
t (and upfront, respectively) are positive, we

use y
1,j
t = f (s

j
t ), with f (x) = logx, as dependent variables. Therefore, our first set

of regression models is given by

y
1,j
t = (

1, S
ρ
t , Sσ

t , St ,C
ρ
t ,Cσ

t ,Ct ,P
σ
t ,Pt

)(
β

1,j

0 , β
1,j

1 , . . . , β
1,j

8

)T + ε
1,j
t ,

j ∈ {1, . . . ,5}.
The second set of response variables consits of compound correlations, denoted

by ρ
c,j
t , for each tranche j ∈ {1, . . . ,5}, with values in [0,1]. We therefore consider

y
2,j
t = f (ρ

c,j
t ), with f (x) = log (x/(1 − x)), as response variables in a second re-

gression model (using the same regressors as above).
The third set of response variables, y

3,j
t , is constructed via the same transforma-

tion f as for the second set, but with ρ
c,j
t being replaced by the respective base

correlation ρ
b,j
t .

It is convenient to assume i.i.d. zero-mean normally distributed residuals with con-
stant variance. However, this assumption is typically violated if time series are used
as response variables. We therefore additionally consider models with residuals fol-
lowing an autoregressive moving average (ARMA) process. Combined, this results in
six regression models for each tranche. Moreover, we investigated a rolling-window
procedure over the preceding 20 trading days for the computation of volatilities and
correlations. This procedure can be considered an alternative to the EWMA approach.
In this procedure, standard sample statistics are used for an estimation of volatilities
and correlations based on the rolling window over the preceding 20 trading days.

4 Series 5: the estimated regression models

In this section, we present the fitted regression models for Series 5. To compute the
EWMA processes, we investigated two smoothing parameters: λ = 0.94 (suggested
by and used in RiskMetrics) and λ = 0.33 (pronouncing current observations). The re-
sults for the rolling-window procedure are very similar to the EWMA approach with
λ = 0.94, and thus we do not present them here. The tables showing the results of the
regressions contain abbreviations of the regressor variables corresponding to signif-
icant coefficients according to individual t-tests with significance level α = 5%. For
models with i.i.d. normally distributed errors, coefficients of determination R2 are re-
ported as a goodness-of-fit measure. For models with ARMA residuals, the square of
the sample correlation coefficients between observed and fitted values is used (“ρ2”).
Furthermore, the number of rejections of the Ljung–Box test (LB) applied to the
model’s residuals (according to the first 10 lags) is reported. This serves as an in-
dicator for independence of the residuals. Other model checks that were conducted
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include visual tests using residual plots, QQ-plots, and plots of the autocorrelation
and partial autocorrelation function of the model residuals.

The AR(1) models

According to the behavior of the partial autocorrelation and autocorrelation function
computed for the empirical residuals of the models with normally distributed errors,
we found AR(1) processes to fit the empirical residuals significantly better than i.i.d.
normally distributed residuals. This observation holds for each tranche and choice of
smoothing parameter λ, especially for regressions involving base correlations.

Due to violation of the model assumption of i.i.d. normally distributed residuals,
the results for the regressions based on the smoothing parameter λ = 0.94, shown in
Table 4, are presented only for AR(1) residuals. As to the different choices of λ, we
find that when past observations (vs. present observations) are emphasized (which
corresponds to using a large value of λ in (3) and (4)), the coefficients measuring
stock and CDS correlation (Sρ

t ) and (Cρ
t ) are no longer significant, which could be

due to a smoothing effect that covers large daily co-movements of stocks and CDS.
A similar result holds for the rolling-window approach.

4.1 Explaining implied correlations

Table 2 sets forth the results of the regression models for the EWMA approaches
with parameter λ = 0.33 for the computation of the regressors and the assumption
of i.i.d. normally distributed residuals. The results for the corresponding models with
residuals following ARMA processes are presented in Table 3. Table 4 presents the
results for the EWMA approach with parameter λ = 0.94 and AR(1) residuals.

Explaining compound correlations

All the regression models for compound correlations have large explanatory power
and many of the suggested coefficients are significant. Measures of default risk as
well as measures of dependence significantly influence compound correlation. Also,
different asset information and most information from the credit market are signifi-
cant.

Table 2 Regression results with λ = 0.33 and i.i.d. normally distributed residuals

Series 5 Compound correlation regression Base correlation regression

Tranche Significant R2 LB Significant R2 LB

1 Cρ,C,Pσ 61.6 10 Cρ,C,Pσ 61.6 10

2 S,Cσ ,C,P 87.8 10 Cρ,C,P 42.9 10

3 1, Sρ,Sσ ,S,Cρ,Cσ ,C,P 88.3 10 Sρ,Cρ,C,P 34.2 10

4 1, Sσ ,Cρ,Cσ ,C,P 81.6 10 Sρ,Cρ,C,P 29.7 10

5 1, Sρ,Sσ ,Cσ ,C,P 83.6 10 Sρ,C,P 23.7 8
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Table 3 Regression results with λ = 0.33 and AR(1) distributed residuals

Series 5 Compound correlation regression Base correlation regression

Tranche Significant ρ2 LB Significant ρ2 LB

1 Cρ,C,Pσ 81.6 0 Cρ,C,Pσ 81.6 0

2 1,C,P σ ,P 98.9 7 Cρ,C,Pσ 67.9 0

3 1,C,P σ ,P 98.4 0 Cρ,C,Pσ ,P 61.2 0

4 1, S,C,P 97.9 9 Cρ,C,Pσ ,P 57.5 0

5 1, S,C,P 97.3 7 Sρ,C,P 51.7 0

Table 4 Regression results with λ = 0.94 and AR(1) distributed residuals

Series 5 Compound correlation regression Base correlation regression

Tranche Significant ρ2 LB Significant ρ2 LB

1 1, S,C 80.8 0 1, S,C 80.8 0

2 1,C,P 98.9 9 C,P 66.2 0

3 1,C,P 98.4 7 C,P 59.2 0

4 1,C,P 97.9 10 C,P 55.2 0

5 1,C,P 97.2 8 C,P 49.1 0

Explaining base correlations

The regression models explaining base correlations have less explanatory power but
most fits are satisfactory. Recall that the volatility of base correlations is increasing in
the tranches’ width. This might explain why models explaining base correlations of
higher tranches have less explanatory power. The measures of dependence (S

ρ
t ) and

(C
ρ
t ) are more pronounced in these models (especially for models with λ = 0.33)

compared to models explaining compound correlations. Moreover, other than asset
return correlations (S

ρ
t ), no information from the asset market is relevant in the base

correlation regression models.

4.2 Explaining CDO tranche spreads

For practical applications, the most important criterion is the accuracy of the model
in terms of the resulting pricing error. Moreover, high correlations between model-
derived prices and market prices indicate model appropriateness. We therefore ex-
amine different methodologies for describing CDO tranche spreads with respect to
these criteria. To this end, we first consider different regression models for directly
describing spreads. The results of this approach are set forth in Tables 5 and 6.

Moreover, we use the regression models of the previous section to explain com-
pound and base correlations. These model-derived correlations are then converted
into CDO tranche spreads via (2). One advantage of using regression models for im-
plied correlations (compared to a direct regression of tranche spreads) is that we can
additionally compute spreads for tranches with non-standard attachment points (be-
spoke CDOs). This is not possible in a regression model for the spread of a specific
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Table 5 Direct regressions on CDO tranche spreads with λ = 0.33

Direct regression, i.i.d. Direct regression, AR(1)

Tranche Significant R2 LB Significant ρ2 LB

1 1, Sσ , S,C,P 96.6 10 Sσ ,C,P 99.3 1

2 1, S,Cσ ,C 95.3 10 C,Pσ ,P 99.3 4

3 1, Sρ,Sσ ,S,Cρ,Cσ ,C,P 95.5 10 C,Pσ ,P 99.1 3

4 Sσ ,Cρ,Cσ ,C,P 87.7 10 C 98.3 9

5 Sσ ,S,Cρ,Cσ ,P 95.0 10 1, Sσ ,C,P 99.1 9

Table 6 Direct regressions on CDO tranche spreads with λ = 0.94

Direct regression, i.i.d. Direct regression, AR(1)

Tranche Significant R2 LB Significant ρ2 LB

1 1, Sρ,Sσ ,S,Cρ,Cσ ,C,P 97.7 10 C,P 99.3 1

2 1, Sσ , S,Cσ ,C,Pσ ,P 96.3 10 C 99.3 5

3 1, Sρ,Sσ ,Cρ,Cσ ,C,P 96.4 10 C,P 99.0 7

4 Sρ,Sσ ,Cρ,Cσ ,C,P 91.6 10 C 98.2 10

5 Sρ,Sσ ,S,Cρ,Cσ ,P 96.8 10 1,C,P 99.1 6

tranche. Also, CDO tranche spreads depend not only on the dependence among the
firms, but also on the future portfolio-loss distribution. Therefore, it is difficult to
detect drivers of correlation using regressions on CDO tranche spreads.

An important observation that supports the latter methodology for describing CDO
tranche spreads is that the different approaches yield comparable results (see Fig. 2
and Table 7). Even though the base-correlation approach yields slightly higher pricing
errors, they are still far below bid–ask spreads. We thus conclude that all approaches
accurately explain CDO tranche spreads.

5 Series 9: the estimated regression models (summary)

In this short discussion of Series 9, we present only the (re-)estimated models that
were most appropriate for Series 5, i.e., models with AR(1) residuals and λ = 0.33.
These models are also the most successful in describing Series 9. When computing
implied correlations for Series 9, we find that the compound correlation of the mez-
zanine tranches is not well defined: one solution is close to zero, another is close to
one. To circumvent this problem, we focus on base correlations.

The standard deviations for the time series of base correlations (in Series 9) are
4.5, 4.6, 4.6, 5.2, and 5.1 (in percent)—again, they are increasing in the tranches’
width. However, they are much higher here than they were for Series 5, revealing
a higher risk for changing default correlation. Considering pairwise correlations of
quoted spreads, we find that for Series 9 the pairwise cross-correlation of spreads is
much smaller than that found for Series 5, especially for the correlation of the equity
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Fig. 2 Market and model-implied spreads for Series 5 for the EWMA approach with λ = 0.33 and AR(1)
distributed residuals

Table 7 The fitting quality of the different methodologies in terms of an average pricing error and ρ2 (in
percent). All regression models use the EWMA approach with λ = 0.33 and AR(1) distributed residuals

Series 5 Direct regression Compound cor. regression Base cor. regression

Tranche ∅ error ρ2
∅ error ρ2

∅ error ρ2

1 0.47 % 98.9 0.37 % 99.3 0.37 % 99.3

2 1.37 ‰ 98.7 1.36 ‰ 98.8 2.43 ‰ 96.7

3 0.46 ‰ 98.2 0.44 ‰ 98.3 0.77 ‰ 96.1

4 0.28 ‰ 96.0 0.27 ‰ 96.1 0.52 ‰ 88.8

5 0.10 ‰ 97.9 0.09 ‰ 98.2 0.17 ‰ 95.0

tranche to all other tranches. In contrast, base correlations of the different tranches
are again highly correlated; their correlation is even higher than it was for Series 5,
indicating a higher default correlation during the financial crisis, implying that losses
in the different tranches are more likely to occur simultaneously. Also, compared
to Series 5, the regression models for the different tranche spreads (and the models
for the base correlations, respectively) now have the same significant coefficients
(except for the intercept), indicating a higher systemic risk during the financial crisis.
This is a convenient situation from a modeler’s perspective, since models with the
same regressor variables can be used to explain all tranches. In a direct regression on
tranche spreads, the intercept, the stock index (S), and the average CDS level (C) are
each significant. When base correlations are modeled, the coefficient of the portfolio
CDS (P ) is also significant. Moreover, the fact that the equity index is now included
in all models might be seen as an indication of market convergence during financial
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Fig. 3 Market and model-implied spreads for Series 9 for the EWMA approach with λ = 0.33 and AR(1)
distributed residuals. Note that the level of spreads is up to a factor of 10 higher than for Series 5

Table 8 Pairwise correlation (in percent) of the different tranche spreads and base correlations

Series 9 Quoted spreads Base correlations

2 3 4 5 2 3 4 5

1 53.0 48.4 46.4 36.9 97.4 95.1 93.8 90.3

2 98.4 92.7 91.8 99.2 98.2 95.6

3 96.8 95.5 99.6 97.9

4 97.3 99.1

distress, meaning that the credit market is now highly sensitive to signals from the
equity market. Note that all significant factors are traded assets, which is important
when the model is used to hedge some tranche of the CDO. We also observe that
the LB test does not reject the models. Figure 3 and Table 10 show that the models
again produce a very small pricing error. The overall spread level (as well as bid–ask
spreads) is up to a factor of 10 higher for Series 9 compared to Series 5.

6 Possible applications of the model

6.1 Pricing fictitious CDOs

Valuation of a synthetic CDO, built from a CDS portfolio, is not easy, especially
when there is insufficient market information to correctly specify the parameters of
the pricing formula. While CDS spreads contain information about the firms’ default
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Table 9 Regression results with λ = 0.33 and AR(1) distributed residuals

Series 9 Direct regression Base correlation regression

Tranche Significant ρ2 LB Significant ρ2 LB

1 1, S,C 85.2 0 S,C,P 94.6 1

2 1, S,C 96.2 0 S,C,P 92.3 0

3 1, S,C 95.8 0 1, S,C,P 91.7 0

4 1, S,C 94.6 0 1, S,C,P 91.3 0

5 1, S,C 95.4 0 1, S,C,P 90.6 0

Table 10 The fitting quality of the different methodologies in terms of an average pricing error and ρ2 (in
percent). Both regression models use the EWMA approach with λ = 0.33 and AR(1) distributed residuals

Series 9 Direct regression Base correlation regression

Tranche ∅ error ρ2
∅ error ρ2

1 0.88 % 72.1 0.95 % 70.9

2 10.61 ‰ 92.8 18.25 ‰ 86.4

3 7.22 ‰ 91.9 6.76 ‰ 92.6

4 5.16 ‰ 89.1 8.83 ‰ 72.5

5 2.73 ‰ 91.0 3.74 ‰ 87.2

probabilities, the CDO pricing formula also requires a correlation number as input.
The presented regression models can be used to asses (or predict) the correlation
from observable quantities such as asset values and CDS spreads. As an example, let
us consider the pricing of fictitious tranches of the Markit iTraxx Asia portfolio.

The Markit iTraxx Asia is a portfolio containing CDS on 50 Asian companies.
However, tranches of this portfolio are not traded. While it is possible to infer the av-
erage default probability from the traded index or from individual CDS, it is difficult
to find a reasonable value for the correlation parameter. The most simple approach
to setting the correlations for the Asian portfolio is to use the values observed in the
European market. However, by comparing the average pairwise correlations of all
CDS and stock returns of the firms in the Asian portfolio, we observe this number
to be significantly smaller than the European analogue, casting some doubt on the
appropriateness of this approach. Alternatively, one could use the regression models
for implied correlations, calibrated to the European CDO market, to compute im-
plied correlations for Asia (given information from the Asian market). The results
of both approaches are presented in Fig. 4. Using regression models for compound
correlations yields spreads that consider smaller empirically observed CDS and stock
correlations compared to the European market.

Please note that the results of the outlined approach are based on the assumption
that the regression models can be transferred from one market to another. However,
this may not be true. Also, it cannot be guaranteed that prices for different tranches
obtained from this approach do not allow for arbitrage.
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Fig. 4 Fictitious tranche spreads for the Markit iTraxx Asia portfolio for the EWMA approach with
λ = 0.33 and AR(1) distributed residuals. The figure to the left is computed with implied correlations for
the Markit iTraxx Europe on the same days; the right-hand side is based on predicted implied correlations
for the Asian market

6.2 Scenario generation for risk management

A dynamic version of Vasicek’s model is a powerful tool for risk management and
portfolio optimization, but it requires an equally dynamic description of the correla-
tion structure among the firms in the portfolio under consideration. We demonstrated
above that appropriate regression models can quite accurately explain the evolution
of observed CDO correlations. The fact that all regression models used in this investi-
gation rely on observable factors (obtained from equity and CDS quotes) is especially
convenient in simulation studies / economic scenario generators, where these factors
are modeled as primary objects. Given the paths of simulated assets and CDS spreads,
one can simulate a path of implied correlations or CDO tranche spreads from one of
our suggested models, whichever is of interest. Then, prices for correlation-sensitive
products can be computed.

7 Conclusion

The aim of this paper was to discover determinants of correlation-sensitive credit
products and a description of implied correlations. For this purpose, we developed
different regression models, which turned out to precisely explain CDO tranche
spreads as well as implied correlations. We found that information from the credit
market has a larger influence on implied correlations compared to information from
the asset market, a result that casts some doubt on the sole use of asset information as
a proxy variable for calibration of a portfolio default model. More precisely, we found
that for Series 5, empirical correlations of CDS returns, their volatilities, and the ab-
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solute level of CDS spreads significantly influence implied correlations. Moreover,
the absolute level and volatility of portfolio CDS spreads also significantly determine
implied correlations. Considering asset information, only empirical correlations and
a stock index were significant in some of the investigated regression models. For the
direct description of CDO tranche spreads, several other factors were statistically sig-
nificant, which is not surprising considering that tranche spreads depend on default
probabilities and the dependence structure. The significant factors in the direct de-
scription of tranche spreads come from both the asset and the credit market. For the
description of Series 9, important factors are a stock index, the average CDS level,
and the portfolio CDS spreads. This shows that systemic factors have a special influ-
ence on the financial market during financial distress. In addition to the formulation
and estimation of different regression models, we discussed their possible application
for risk management and the valuation of CDO tranches in other markets.

This study is a first attempt at explaining the time evolution of the market’s percep-
tion of the dependence structure of a credit portfolio and many interesting questions
remain open for investigation. For instance, we focused on traded assets (and quan-
tities derived thereof) as regressor variables. The current financial crisis was accom-
panied by a massive loss in liquidity. Considering this, it seems reasonable to include
some sort of risk premium for liquidity in an extended regression model. Also, it
would be interesting to have sufficient data to extend the investigation over a longer
time horizon.

Acknowledgements We thank an anonymous referee for helpful comments and suggestions. Any re-
maining errors are our own.

Appendix

Proof of Theorem 2.1 First, we compute I (a, b) := ∫ b

a
FL0

t
(x) dx for 0 ≤ a < b ≤ 1.

This is

∫ b

a

∫ (
√

1−ρΦ−1(x)−Φ−1(pt ))/
√

ρ

−∞
1√
2π

exp

(
−y2

2

)
dy dx.

By substituting x̃ := −Φ−1(x), we obtain

I (a, b) =
∫ −Φ−1(a)

−Φ−1(b)

∫ −(
√

1−ρx̃+Φ−1(pt ))/
√

ρ

−∞
1

2π
exp

(
−1

2

(
x̃2 + y2)

)
dy dx̃.

Substituting ỹ := −(y
√

ρ + √
1 − ρx̃) leads to

I (a, b) =
∫ −Φ−1(a)

−Φ−1(b)

∫ ∞

Φ−1(pt )

1

2π
√

ρ
exp

(
−1

2

x̃2 + 2x̃ỹ
√

1 − ρ + ỹ2

ρ

)
dỹ dx̃.
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Let X and Y follow a bivariate standard normal distribution with correlation
−√

1 − ρ. Then,

I (a, b) = P
(−Φ−1(b) < X ≤ −Φ−1(a), Y > Φ−1(pt )

)

= P
(−Φ−1(b) < X ≤ −Φ−1(a)

)

− P
(−Φ−1(b) < X ≤ −Φ−1(a), Y ≤ Φ−1(pt )

)

= b − a + Φ
(−Φ−1(b),Φ−1(pt ),−

√
1 − ρ

)

− Φ
(−Φ−1(a),Φ−1(pt ),−

√
1 − ρ

)
.

Now, for all j ∈ {1, . . . , J },

E[Lt,j ] =
∫ 1

0

(
min

{
(1 − R)x,uj

}−min
{
(1 − R)x, lj

})
dFL0

t
(x)

= J (uj ) − J (lj ), (5)

where J (z) := ∫ 1
0 min{(1 − R)x, z}dFL0

t
(x), z ∈ [0,1]. If z < 1 − R, splitting up

this integral at z/(1 − R) and using the integration by parts formula leads to J (z) =
z − (1 − R)I (0, z/(1 − R)). For z ≥ 1 − R, the same formula leads to J (z) = (1 −
R) − (1 − R)I (0,1). Therefore, both cases are comprised in the formula

J (z) = min{z,1 − R} − (1 − R)I
(
0,min

{
z/(1 − R),1

})

= (1 − R)
(
min

{
z/(1 − R),1

}−I
(
0,min

{
z/(1 − R),1

}))
.

Thus,

J (z) = (1 − R)
(
pt − Φ

(−Φ−1(min
{
z/(1 − R),1

})
,Φ−1(pt ),−

√
1 − ρ

))
.

Combining this result with (5) directly leads to the result as stated. �
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