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Abstract—The coupled mechanics of fluid-filled granular

media controls the physics of many Earth systems, for example

saturated soils, fault gouge, and landslide shear zones. It is well

established that when the pore fluid pressure rises, the shear

resistance of fluid-filled granular systems decreases, and, as a

result, catastrophic events such as soil liquefaction, earthquakes,

and accelerating landslides may be triggered. Alternatively, when

the pore pressure drops, the shear resistance of these geosystems

increases. Despite the great importance of the coupled mechanics

of grain–fluid systems, the basic physics that controls this coupling

is far from understood. Fundamental questions that must be

addressed include: what are the processes that control pore fluid

pressurization and depressurization in response to deformation of

the granular skeleton? and how do variations of pore pressure affect

the mechanical strength of the grains skeleton? To answer these

questions, a formulation for the pore fluid pressure and flow has

been developed from mass and momentum conservation, and is

coupled with a granular dynamics algorithm that solves the grain

dynamics, to form a fully coupled model. The pore fluid formu-

lation reveals that the evolution of pore pressure obeys viscoelastic

rheology in response to pore space variations. Under undrained

conditions elastic-like behavior dominates and leads to a linear

relationship between pore pressure and overall volumetric strain.

Viscous-like behavior dominates under well-drained conditions and

leads to a linear relationship between pore pressure and volumetric

strain rate. Numerical simulations reveal the possibility of lique-

faction under drained and initially over-compacted conditions,

which were often believed to be resistant to liquefaction. Under

such conditions liquefaction occurs during short compactive phases

that punctuate the overall dilative trend. In addition, the previously

recognized generation of elevated pore pressure under undrained

compactive conditions is observed. Simulations also show that

during liquefaction events stress chains are detached, the external

load becomes completely supported by the pressurized pore fluid,

and shear resistance vanishes.

List of symbols

A Area of a grid cell

Ai Area of grain i

As Weighted area of grains along a grid point

D Diffusion coefficient

Di Internal diffusion coefficient (accounting

only for ki)

De Dimensionless Deborah number

d Characteristic grain diameter

E Grains bulk modulus

Fij Interaction force at the contact between

grain i and grain j

Fij
n Normal component of the interaction

force

Fij
s Shear component of the interaction

force

Ii Moment of inertia of grains i

kb Boundary permeability

kc Permeability prefactor

ki Internal permeability

k0 Permeability scale factor
~kn Nonlinear normal stiffness
~ks Nonlinear tangential stiffness

LP Dimensionless liquefaction potential

l Length scale

lx Horizontal grid spacing

ly Vertical grid spacing

mi Mass of grain i

mij Harmonic mean of the masses of grains i

and j

n̂ij Unit vector normal to the contact between

grains i and j

P Pore fluid pressure

Ri Radius of grain i

Rij Harmonic mean of the radii of grains

i and j

rij Distance between the centers of grains

i and j
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rij Vector connecting the centers of grains i

and j

_rij Relative velocity between grains i and j

ŝij Unit vector tangent to a contact between

grains i and j

s Interpolation (weighting) function

Ds Shear displacement since the formation of

a contact between grains

t Time

t0 Time-scale of deformation

td Time-scale of diffusion

ui Translational velocity vector of grain i

uf Velocity field of the pore fluid

us Smoothed velocity field of the granular

phase

usz Horizontally averaged z component of the

solid velocity

u0 Velocity scale factor

Vi Volume of grain i

Vsh Applied shear velocity

wi Rotational velocity vector of grain i

x Coordinate of a grid point

xi Coordinate of the center of grain i

z Vertical distance from the center of a

granular layer

a Effective stress coefficient

b Adiabatic fluid compressibility

c Damping coefficient

d Thickness of a thin boundary layer (where

kb is the permeability)

� Strain

f Half thickness of a granular layer

g Fluid viscosity

k Statistical factor for liquefaction potential

l Surface friction coefficient

la Apparent friction, s/rn

m Grains Poisson’s ratio

nij Overlap between grains i and j

qf Density of the pore fluid

qs Density of the bulk material of the grains

q0 Fluid density at hydrostatic pressure level

rij Stress tensor

rij
0 Effective stress tensor

rn Normal stress to a shear surface

s Shear stress

U Porosity

hUðz; tÞi Average porosity between the center of

the grains layer and distance z from it

1. Introduction

Fluid-filled granular media are ubiquitous in the

Earth, mostly in the upper crust. Soils, fault gouge,

and landslide shear zones located below the water

table are geosystems that are best described as fluid-

filled granular media. Geometrically, such materials

are composed of a 3D skeleton built out of contacting

grains, whose exact configuration defines pore space

where fluid may reside. The mechanical strength of

such systems is a function of both phases: the pore

fluid and the grains. Already at the beginning of the

twentieth century, TERZAGHI (1943) understood that it

is not the stress that controls the solid–fluid system

strength, but instead a quantity termed the ‘‘effective

stress’’:

r0ij ¼ rij � dijP; ð1Þ

where rij is the applied stress tensor, P is the pressure

experienced by the fluid within the pores of a gran-

ular or porous material, dij is Kronecker’s delta, and

r0ij is the effective stress tensor. Later, the effective

stress was found to depend also on the properties of

the bulk material composing the grains, the properties

of the granular skeleton, and the properties of the

pore fluid. These dependencies were formulated

using an effective stress coefficient, 0 \ a B 1, that

multiplies P, where a was found to be different for

different physical quantities (WANG, 2000; PRIDE,

2005). Still, it was shown that generally a is very

close to unity and when the material composing the

solid matrix is incompressible relative to the pore

fluid, a = 1, and Terzaghi’s formulation is valid (NUR

and BYERLEE, 1971; ROBIN, 1973; WANG, 2000; PRIDE,

2005).

The most important consequence of the law of

effective stress, Eq. 1, is that the shear stress,

s, required to shear the system is not a function of the

normal stress as in Coulomb’s law, but a function of

the effective stress instead:

s ¼ lðrn � PÞ; ð2Þ
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where rn is the total applied stress normal to a shear

surface, l is the surface friction coefficient, and the

cohesion is neglected. It is immediately observed that

if P increases to be equal to rn then the system

completely loses its shear strength, whereas if

P decreases the system has higher resistance to shear.

Therefore, the pore fluid pressure is of critical

importance in the mechanics of fluid-filled granular

(and porous) systems undergoing shear. What is less

clear is:

1. what is the physics behind the pore pressure

control over the shear strength (Eqs. 1 and 2)? and

2. what are the mechanical processes that control the

evolution of pore pressure?

These two questions are at the heart of this work,

and their answer lays the foundations for predicting

the coupled mechanics of grains and pore fluid.

Characterization and understanding of shear

deformation is of particular importance in geosystems

because any differential forcing or gradients in

material properties may lead to shear deformation.

Examples include:

– the passage of seismic shear waves through a soil

column induces shear deformation of the soil;

– tectonic loading accumulated in a fault zone will

eventually lead to shear sliding of the fault; and

– gravitational forces may lead to landslides that

shear along a confined zone at their base.

In these examples, the presence of pore fluid

changes the onset and dynamics of shear deformation

in response to forcing, because the fluid pressure

affects the resistance to shear, in accordance with

Eq. 2. Next, we review in detail the role of pore

pressure in soil liquefaction and in motion along fault

zones and landslide shear zones.

Soil liquefaction. In the process of earthquake-

induced soil liquefaction, the passage of seismic

waves deforms the granular matrix and the fluid in

such a way as to lead to pore pressure rise (DAS,

1993; KRAMER, 1996). The consequent reduction of

shear resistance causes the granular system, which

under normal conditions behaves like a solid that

resists shear, to flow as a fluid. Once liquefied, soils

can no longer support the infrastructure and a

catastrophic collapse of buildings, roads, bridges, and

other structures may take place (e.g., damage during

earthquakes at Niigata, 1964 (KAWAKAMI and ASADA,

1966), or Izmit, 1999 (CETIN et al., 2004)).

The coupled physics controlling soil liquefaction

is not completely understood. The classical approach

suggests that cyclic loading (for example the passage

of shear waves during an earthquake) leads to irre-

versible collapse of initially under-consolidated pore

volume. When drainage is poor, ‘‘the tendency for

volume reduction’’ of the loose granular skeleton may

lead to pore fluid pressurization and to liquefaction

(SAWICKI and MIERCZYNSKI, 2006). This basic under-

standing guides most engineering practices, yet the

classical approach still leaves open questions:

– What is the role of fluid compressibility in the

pressurization process (GARGA and ZHANG, 1997)?

– What are the relevant drainage conditions—can

liquefaction also occur when fluid inflow and

outflow to and from the system are allowed (SEED

et al., 1976; EL SHAMY and ZEGHAL, 2007)? and

– What is the role of the initial packing—can densely

packed layers still liquefy (SOGA, 1998; GABET and

MUDD, 2006)?

The importance of these questions is demon-

strated when comparing two numerical models of

grain–fluid systems that study soil liquefaction.

OKADA and OCHIAI (2007) model an undrained system

(with impermeable boundaries) with a highly com-

pressible pore fluid, forced by a compressive constant

strain rate. The results of OKADA and OCHIAI (2007)

may be interpreted as an example of the conventional

understanding of liquefaction, as they observe pore

fluid pressurization when compacting an initially

loosely packed layer subjected to undrained condi-

tions, a situation that was observed also

experimentally to lead to pore pressure rise and liq-

uefaction (SEED and LEE, 1966; PEACOCK and SEED,

1968; SEED, 1979). Unlike this classical approach,

EL SHAMY and ZEGHAL (2007) model a drained system

(where the fluid is allowed to flow freely across the

top boundary), with completely incompressible pore

fluid, an assumption that follows many engineering

interpretations of experiments (GARGA and ZHANG,

1997; KOZLOV et al., 1998). EL SHAMY and ZEGHAL
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(2007) report on significant pore fluid pressurization

and liquefaction when forcing their system with

periodic shear acceleration at its base. These results

are somewhat unexpected, because the drained

boundary conditions contradict the classical view of

liquefaction, which requires poor drainage.

Fault zones and landslides. In fault zones,

deformation often localizes along a fault plane filled

with fault-gouge. Fault-gouge is a granular layer

formed from fragments that are the product of wear

during shear between the fault-walls. In gouge layers

and in similarly-formed landslide’s shear zones,

pressurization and depressurization may occur as a

result of irreversible rearrangement of the granular

skeleton during continuous shearing. In these cases,

drainage conditions and porosity evolution have been

shown to affect the evolution of pore pressure and the

strength of the shear zone. Porosity within gouge and

shear zones is a function of shearing velocity

(MARONE et al., 1990) and stress conditions (AHARONOV

and SPARKS, 1999; IVERSON et al., 2000). When the

fault is sealed, porosity increase (i.e. dilation) during

shear is often believed to prohibit unstable sliding via

pore pressure reduction leading to strain hardening

following Eq. 2 (SCHOLZ et al., 1973; SCHOLZ, 1978,

2002; RUDNICKI and CHEN, 1988; SEGALL and RICE,

1995; MOORE and IVERSON, 2002; SAMUELSON et al.,

2009), while compaction of under-compacted gouge

has been shown experimentally to lead to extreme

weakening and unstable sliding (BLANPIED et al.,

1992).

However, similarly to soil liquefaction, the

mechanisms that are responsible for pore-pressure

evolution in shear zones and the effect of pore pres-

sure variation on the mechanics of fluid-filled

granular shear zones are not completely clear. A basic

question that is still debated is whether significant

pressurization, and, as a consequence, reduction of

shear strength, can occur in an initially densely

packed shear zone. This is an important question

because, despite our knowledge that natural shear

zones are in most cases initially over-consolidated,

and thus, according to conventional thought, resistant

to liquefaction (IVERSON et al., 2000), ample obser-

vations point to significant pore fluid pressurization

during earthquake and landslides: hydrofractures and

liquefied injection are reported in seismically active

fault zones (BOULLIER et al., 2009; SAGY and

BRODSKY, 2009) and along landslide shear zones

(ANDERS et al., 2000), and transient liquefaction has

been observed in experimental landslides constructed

with initially densely packed grain and rod layers

(IVERSON and LAHUSEN, 1989).

1.1. Overview of Existing Research Approaches

To study the mechanics of pore-pressure evolu-

tion while the granular skeleton deforms, and its

implications for shear strength, there is a need for a

fully coupled theory for the mechanics of fluid-filled

granular systems. Such full coupling should include

two-directional mechanics:

1. the effect of granular matrix deformation on the

pore fluid pressure and flow, and

2. the effect of fluid flow and pressure gradients on

the deformation of the granular matrix.

A continuum theory for the first direction (the

solid effect on the pore fluid) is available, and is

reviewed below. However, the second direction

requires a continuum description for the general

dynamics of a collection of grains. Despite a recent

advance in this field in the form of constitutive

relations for the flow of dry granular material

(POULIQUEN et al., 2006; JOP et al., 2006), it is not

clear if these relations also apply to a friction-

dominated dense suspension of grains in fluid

(RONDON et al., 2011), which is the system that we

study here. Therefore a well-founded continuum

theory for the second direction of our system (the

fluid effect on the grains and the resulting grain

dynamics) is probably still missing. In the absence of

such a theory, alternative approaches are used. One

approach that is adopted in many engineering appli-

cations for the study of the coupled mechanics of

grains and pore fluid is the use of phenomenological

models that are based on continuum mixture theory

formulations (ZIENKIEWICZ et al., 1999), and include

many terms that require calibration.

A second approach combines the continuum

theory for the fluid with a discrete elements numer-

ical method for the dynamics of the solid grains.

Indeed, a common physical method, developed over

the last 30 years for dry granular systems, is to use
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simple interaction laws between individual grains,

with few terms to characterize their interactions

(CUNDALL and STRACK, 1979). The granular rheology

then arises from their collective behavior. The

combination of the continuum and discrete compo-

nent enables solving the first direction of the solid

effects on the fluid with the continuum component,

and the second direction of the fluid effect on the

grain dynamics with the discrete component. Such an

approach was used in the modeling of instabilities in

the flow of granular media and gas fluids (MCNAMARA

et al., 2000; VINNINGLAND et al., 2007a; VINNINGLAND

et al., 2007b; JOHNSEN et al., 2006; JOHNSEN et al.,

2007; JOHNSEN et al., 2008; VINNINGLAND et al., 2010)

and liquids of various compressibilities and viscos-

ities (NIEBLING et al., 2010), for modeling

hydrofractures (FLEKKØY et al., 2002), and for study

of soil liquefaction (EL SHAMY and ZEGHAL, 2007;

OKADA and OCHIAI, 2007). Such an approach is

adopted in this work.

The continuum component is developed in GOREN

et al. (2010) for compressible pore fluid pressuriza-

tion and flow in response to general (reversible and

irreversible) granular matrix deformation (the first

direction of the full coupling). This paper couples this

continuum component for the fluid with a discrete

element granular dynamics algorithm following the

scheme presented in MCNAMARA et al. (2000), to

form a fully coupled model that may be used for

study of any general granular matrix deformation,

and any form of drainage boundary conditions.

The analysis of the continuum component by itself

already supplies interesting results. The equation

describing the evolution of pore pressure in response

to grain matrix deformation is shown here to lead to a

viscoelastic type of behavior in which the pore

pressure (stress) depends on both the pore volume

change (overall volumetric strain) and the rate of

porosity change (volumetric strain rate). Two types of

end-member behavior for the evolution of pore

pressure emerge from the pore-pressure equation.

Viscous-like response, in which the pore pressure is

linearly dependent on the volumetric strain rate,

dominates when the shear zone is well-drained.

Elastic-like response, in which the change of pore

pressure is proportional to the volumetric strain and is

inversely proportional to the fluid compressibility,

dominates when the shear zone is effectively

undrained. This basic recognition of viscoelastic

behavior of the pore pressure was predicted by GOREN

et al. (2010), who assumed the pore fluid responds to

grain rearrangement, but deformation of grains is not

affected by the fluid (infinitely stiff approximation).

An important objective of this current work is to check

whether the two types of end-member behavior also

characterize the fully coupled two-way model.

1.2. Overview of Current Research

The first objective of this current paper is to

develop the full coupling between the pore pressure

model of GOREN et al. (2010) and a granular dynamics

model, and to validate it. Such a coupled model is

presented in the section ‘‘Coupled Grains and Fluid

Model’’, and its validation is presented in the

section ‘‘Model Validation’’. Because pore-pressure

evolution and its two types of end-member behavior

were predicted to control the coupled grain–fluid

response, the section ‘‘Pore-Pressure Evolution

Mechanisms’’ is dedicated to reviewing in detail the

pore-pressure evolution that emerges from the formu-

lation of the pore fluid, and the conditions that control

the pore pressure response to granular deformation.

The rest of the paper is dedicated to simulations

with the fully coupled model, their analysis, and

comparison with theoretical prediction: The simula-

tions (presented in the section ‘‘Simulations of

Shearing Granular Layers’’) investigate deformation

of a closely-packed fluid-filled granular layers, under

constant shear velocity and normal stress. During the

simulations we monitor the evolution of pore

pressure, porosity, and apparent friction, la, (the

shear stress that is required for shearing the layer at

a constant velocity divided by the applied normal

stress). The importance of the apparent friction is a

result of our inability to define a single value of pore

pressure that may be assigned in Eq. 2. Thus, Eq. 2

may be substituted by:

s ¼ larn: ð3Þ

We have performed two types of simulation using

the fully coupled grains and pore fluid model that

differ in their boundary conditions: undrained and

drained. Simulation results agree with the two types
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of end-member behavior predicted by the simple pore

pressure model in the section ‘‘Pore-Pressure Evolu-

tion Mechanisms’’ and in GOREN et al. (2010): when

the boundaries are undrained, the pore pressure

response is elastic-like. Dilation with regard to the

initial configuration causes pore pressure reduction

and system hardening (increase of la). Conversely,

when shear leads to compaction, the elastic-like

behavior causes rapid liquefaction with pore pressure

that becomes equal to the applied normal stress

throughout the system, and to a steady-state loss of

shear resistance. This behavior corresponds to the

classical mechanism of liquefaction.

Less intuitive results arise when simulations are

conducted with well-drained boundary conditions.

Here, viscous-like evolution of pore pressure may

lead to high pore pressure values even if the granular

system is undergoing long term dilation. The pres-

surization occurs during short compactive phases that

always punctuate the dilative trend. In some cases,

instantaneous events of localized high pore pressure

may overcome the applied normal stress and lead to

transient liquefaction with complete loss of shear

resistance, (la B 0). Thus, we predict here that

liquefaction in an initially densely packed system is

possible if drainage is good. This surprising result

agrees with the simplified model of GOREN et al.

(2010), and suggests a new look at liquefaction

potential of natural systems. The section ‘‘Discus-

sion’’ discusses the implications of our model and

simulations for natural systems of grains and fluids.

We show that the two types of end-member behavior

we observe are consistent with previous simulations,

laboratory experiments, and natural systems; how-

ever, the significance of this range of behavior was

not previously fully recognized. In the ‘‘Discussion’’

section we also introduce a new measurable property,

the liquefaction potential, that is derived from our

model and may be used for evaluating the probability

of liquefaction occurring in natural systems with

different scales and boundary conditions.

2. Coupled Grains and Fluid Model

The numerical model for the coupled dynamics of

grains and pore fluid is constructed as a two-phase

two-scale model. The granular phase makes up the

finer scale where each grain is modeled as a discrete

lagrangian element. The fluid phase forms the coarser

scale and is modeled on an eulerian grid that is

superimposed on the granular level. The fluid grid

spacing is approximately the size of two grain diam-

eters. This choice of grid spacing ensures that each

cell is larger than a Darcy representative volume

element. Similar models reported in JOHNSEN et al.

(2006) and VINNINGLAND et al. (2007a) have shown

that simulation results are mostly insensitive to the

exact choice of grid spacing when it is between 2 and

10 grain diameters. The fluid does not see the detailed

pore space geometry imposed by the grains, but

instead an average field of porosity and permeability

as explained below. Furthermore, although the current

model is 2D, the porosity is assumed to be always

connected via the third dimension to enable simulta-

neous percolation of both the grains and the fluid.

2.1. Granular Phase

To simulate the mechanics of a collection of

grains we use a two-dimensional discrete elements

granular dynamics algorithm (CUNDALL and STRACK,

1979). Each individual grain is treated as an inelastic

soft disc. Grain interactions, body forces and the

force induced by the interstitial fluid lead to linear

and rotational acceleration of the grains. Interaction

force between two grains i and j is resolved when the

distance between the centers of the two grains, rij, is

less than the sum of their radii, Ri ? Rj. The grain

overlap is expressed as nij = Ri ? Rj - rij. Interac-

tion force on a contact has a normal component,

Fn, and a shear component, Fs, that are resolved with

Hertz–Mindlin contact model (Fig. 1):

Fn
ijðtÞ ¼ ~knnij � cmijð _rij�n̂ijÞ

� �
n̂ij; ð4Þ

where the first term on the right hand side of Eq. 4 is

a nonlinear repulsive force and the second term is a

damping force that depends on the damping coeffi-

cient, c, the harmonic mean of the grains mass,

mij, and the relative velocity between the grains along

the direction of the contact _rij�n̂ij; where rij is a

vector connecting the grains centers and _rij is the

relative grain velocity. n̂ij ¼ ðrij�x̂; rij�ŷÞ=rij is a unit

vector normal to the contact. The coefficient of the
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normal repulsive force is the nonlinear normal stiff-

ness (SCHÄFER et al., 1996):

~kn ¼
ffiffiffi
2
p

E

3ð1� m2Þ ðRijnijÞ1=2 ð5Þ

where E and m are the grains bulk modulus and

Poisson’s ratio, respectively, and Rij is the harmonic

mean of the grains radii. The shear force is determine

using an elastic/friction law:

Fs
ijðtÞ ¼ � minð~ksDs; lFn

ijÞ
h i

ŝij; ð6Þ

where Ds is the shear displacement since formation of

the contact, l is the surface friction coefficient, and

ŝij ¼ ðrij�ŷ;�rij�x̂Þ=rij is a unit vector tangent to the

contact. The coefficient of the tangent repulsive force

is the nonlinear tangent stiffness:

~ks ¼
2
ffiffiffi
2
p

E

ð2� mÞð1þ mÞ ðRijnÞ1=2: ð7Þ

Equation 6 implies that the shear force opposes the

sense of the relative tangential motion between the

grains. It is important to note that as long as Fs
ij\lFn

ij

no sliding occurs along the contact, but there might still

be relative tangential displacement between the centers

of grains i and j. When Coulomb failure criterion along

the contact is met, i.e. ~ksDs� lFn
ij; the contact slides

with a constant shear force, lFn
ij; (Fig. 1).

The motion of each particle is determined by

monitoring collisions between grains, resolving the

induced contact forces and torques, and using them in

the momentum equations:

mi _ui ¼ migþ
X

j

Fij �
rP � Vi

1� U
; ð8Þ

Ii _wi ¼
X

j

Rin̂ij � Fij; ð9Þ

where ui and wi are the translational and rotational

velocity vectors of grain i (a superposed dot indicates

time derivative). mi is the grain mass, g is the gravi-

tational acceleration, Ii is the grain moment of inertia,

and Fij refers to inter-grain force at the contact

between grain i and grain j. The arm of the force in the

torque balance, Eq. 9, is expressed as Rin̂ij because all

grains are perfect discs. The last term on the right-

hand side of Eq. 8 refers to the force exerted on grain

if by the pressure gradient, rP, of the fluid sur-

rounding it, normalized by the solid fraction, ð1� UÞ;
in its vicinity, where U is the porosity and Vi is the

volume of grain i (MCNAMARA et al., 2000).

2.2. Fluid Phase

The formulation for the physics of the pore fluid is

developed in GOREN et al. (2010). For clarity, we

briefly review it here. First, mass-conservation equa-

tions are written for the grains and for the fluid:

o½ð1� UÞqs�
ot

þr � ½ð1� UÞqsus� ¼ 0; ð10Þ

o½Uqf �
ot
þr � ½Uqf uf � ¼ 0; ð11Þ

where t is time, qs and qf are the densities of the solid

grains and fluid, respectively, and us and uf are the

solid and fluid velocity fields, respectively. These

velocities are defined for mesoscopic volumes con-

taining at least a few grains, where Darcy’s law is

applicable. In that sense us is an average of ui over

spatially close grains.

The full fluid momentum equation includes iner-

tial terms and forcing terms of pressure gradient and

viscous drag. Here we choose to neglect fluid inertia

to enable theoretical analysis of the pore fluid

equation. GOREN et al. (2010) show that for the

deformation field and parameter range that are used

here, fluid inertia is mostly negligible, but it is

kn
γ

Grain i

Grain j

Grain j

Grain i

Normal direction

ks
µFn

Grain i

Grain j

Tangential direction

˜

˜

Figure 1
When two grains come into contact, a repulsive force arises. The

normal component (left) is a function of an elastic normal spring

with constant ~kn; and damping that depends on the relative velocity

of the grains. The tangential component (right) is a function of a

tangential spring with constant ~ks: When the tangential spring is

stressed beyond Coulomb friction criterion, the contact starts

sliding with a constant shear force, lFn. Figure adapted from

EL SHAMY and ZEGHAL (2007)
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important to note that such an approximation is more

suitable when the permeability and grain size are

relatively small. The full fluid momentum equation is

treated by EL SHAMY and ZEGHAL (2007), for example,

and although it is hard to compare the two models,

the overall observed behavior when drainage is good

(the scenario treated in EL SHAMY and ZEGHAL (2007))

is similar. When neglecting inertial terms the fluid

momentum equation is approximated by Darcy’s law:

Uðuf � usÞ ¼ �
k

g
rP; ð12Þ

where k is the permeability, g is the fluid viscosity,

and P is the excess (over hydrostatic) fluid pressure.

In the small system we will consider, we take the

hydrostatic pressure to be uniform throughout the

system. The fluid density is given by the fluid state

equation:

qf ¼ q0ð1þ bPÞ; ð13Þ

where q0 is the fluid density at hydrostatic pressure

level, and b is the adiabatic fluid compressibility. We

assume that the compressibility of a grain is negli-

gible relative to the fluid compressibility, so that qs

can be approximated as constant. We also assume

that bP� 1 (GOREN et al., 2010). Equations 10 to 13

then lead to:

bU
oP

ot
�r � k

g
rP

� �
þr � us þ bUus � rP ¼ 0:

ð14Þ

By further assuming that the length scale of pore

pressure diffusion is always larger than the diameter

of a single grain (GOREN et al., 2010), the last term of

Eq. 14 may be neglected. This assumption is revisited

in the section ‘‘Pore-Pressure Evolution Mecha-

nisms’’ in which non-dimensional analysis of Eq. 14

is presented. As a result, the pore-pressure evolution

equation becomes a three-term equation:

oP

ot
� 1

bUg
r � ½krP� þ 1

bU
r � us ¼ 0: ð15Þ

The first term of Eq. 15 expresses the temporal evo-

lution of pore pressure, the second term expresses

pore pressure diffusion, and the third term is the

forcing to the pore pressure, which arises because

of divergence in the solid velocity. When this

divergence is negative, the pore volume collapses,

and the fluid pressurizes and flows away from the

collapsing pores. When the divergence is positive, the

pore volume expands, and the pore fluid depressur-

izes and flows into the expanding pore volume.

It is sometimes convenient to express the forcing

term as a function of porosity evolution rather than as

a function of the divergence of the solid velocity.

From the grains mass conservation, Eq. 10, it can be

shown that:

ð1� UÞr � us �
oU
ot
� us � rU ¼ 0: ð16Þ

The solid velocity divergence term scales with local

compaction and dilation (local grains rearrangement),

whereas the porosity gradient term describes the

advection of porosity that scales with the imposed

shear velocity over the whole layer thickness.

Because the length scale associated with the former

term is expected to be much smaller than the whole

layer thickness (which is associated with the latter

term), the advection of porosity is neglected, so that:

ð1� UÞr � us � oU=ot: ð17Þ

(A similar conclusion is reached by WALDER and NUR

(1984) and SNIEDER and VAN DER BEUKEL (2004)).

Under this approximation, Eq. 15 may be rewritten

as:

oP

ot
� 1

bUg
r � ½krP� þ 1

bUð1� UÞ
oU
ot
¼ 0: ð18Þ

Equations 15 and 18 were shown in GOREN et al.

(2010) to be a general form of previous formulations

by BIOT (1941); WANG (2000), and BACHRACH et al.

(2001) that assume only elastic deformation of the

grains skeleton, and WALDER and NUR (1984) that

assume a specific law for the evolution of porosity.

Similar formulations also appear in IVERSON (1993),

RUDNICKI and CHEN (1988), MILLER and NUR (2000),

SNIEDER and VAN DER BEUKEL (2004), and SAMUELSON

et al. (2009).

2.3. Coupling Between the Grains and the Fluid

Phases

In the current model, we couple a 2D granular

dynamics algorithm with a continuous solver of the
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pore fluid pressure and flow. To allow the coupling,

information must be transferred between the two

phases of the model. Fluid pressure gradients are

needed in order to solve the grain force balance,

Eq. 8, and the divergence of solid velocity and the

porosity are required for solution of the fluid

pressure, Eq. 15. To achieve this full coupling we

use a 2D linear interpolation scheme between the two

scales of the model. For a grain whose center is

located at position xi and for a fluid grid point located

at position x the interpolation scheme is represented

by the function s:

sðxi� xÞ

¼ 1� jxi�xj
lx

� �
1� jyi�yj

ly

� �
; jxi� xj\lx; jyi� yj\ly

0 otherwise

(

ð19Þ

where lx and ly are the horizontal and vertical grid

spacing. Each grain contributes its s-weighted area

and momentum to the grid points surrounding it. The

porosity at a grid point is calculated as:

UðxÞ ¼ 1� AsðxÞ
A

; ð20Þ

where A is the area of a grid cell, and

AsðxÞ ¼
XN

i¼1

sðxi � xÞAi; ð21Þ

where Ai is the area of grain i, and N is the number of

grains. The solid velocity field is defined as the ratio

of granular momentum to granular mass. For equal

density grains the mass dependency is reduced to an

area dependency, and the solid velocity field may be

evaluated as:

usðxÞ ¼
PN

i¼1 sðxi � xÞAiuiPN
i¼1 sðxi � xÞAi

: ð22Þ

In the simulations presented here, the grain size dis-

tribution is close to being monodispersed and Eq. 22

is reduced to:

usðxÞ ¼
PN

i¼1 sðxi � xÞui
PN

i¼1 sðxi � xÞ
; ð23Þ

where
PN

i¼1 sðxi � xÞ is the on-site mass density

(MCNAMARA et al., 2000). Interpolated granular

velocities are calculated on a staggered grid with

regard to the porosity, so that the velocity divergence

is defined exactly on the porosity grid.

The ratio of pressure gradient to the solid fraction,

rP=ð1� UÞ; that is calculated on the fluid grid by

solving Eq. 15, is interpolated back from the fluid

grid to the grains surrounding this grid by using the

same interpolation function s, Eq. 19.

The permeability is calculated with a Carman–

Kozeny-like relationship. However, the Carman–

Kozeny relationship gives the permeability as a

function of the volume fraction of spheres, whereas

the porosity in our model is computed with the area

fraction of discs. Consequently, we transform the area

fraction in the simulations ð1� UÞð2DÞ
to an equiv-

alent volume fraction in 3D. The simplest map of 2D

to 3D solid fraction, which ensures that the pure fluid

state and the random close-packing state correspond

between the two dimensionalities, is ð1� UÞð3DÞ ¼
ð2=3Þð1� UÞð2DÞ

(MCNAMARA et al., 2000). This

mapping results in the following relationship between

porosity and permeability:

k ¼ kcð1þ 2UÞ3

ð1� UÞ2
: ð24Þ

where kc is a prefactor (units m2) and U is the 2D

porosity.

Stability and accuracy requirements force us to

take a time-step small enough to resolve the evolution

of forces during collision of the grains. In each time

step, Eqs. 8 and 9 are solved to find the new location,

velocity, and acceleration of each grain. The granular

velocity and the porosity are then interpolated from

the granular level to the fluid grid. In the next stage,

an alternating-direction-implicit (ADI) algorithm is

used in the solution of the fluid pressure, Eq. 15, and

the pressure gradients are interpolated back to the

granular level and assigned in the last term of Eq. 8 at

the next time step.

3. Model Validation

To validate the coupled grains-fluid model, we

perform three tests in which we compare simulation

results with analytical predictions.
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Effective stress validation test. The first test

verifies that the model reproduces correctly the law of

effective stress. NUR and BYERLEE (1971) develop an

effective stress law for volumetric strain of fluid-fil-

led porous material: r0ij ¼ rij � adijP; where a, the

effective stress coefficient, is a function of the com-

pressibility of the solid grains and of the matrix. For

the case of incompressible grains a = 1. NUR and

BYERLEE (1971) support their law by means of a series

of experiments showing that there is no correlation

between the applied stress and the resulting measured

volumetric strain, and they find a linear relationship

between the effective stress and the measured volu-

metric strain, with a stress–strain curve similar to dry

samples (NUR and BYERLEE, 1971, their Figure 2). In

our test we reproduce numerically the experimental

series of NUR and BYERLEE (1971). We perform a

series of numerical simulations in which, in each

simulation, a system of grains of variable size is

packed under confining stress. The systems are peri-

odic in direction x so that a normal stress, rn, applied

to the top and bottom walls corresponds to a uniform

confining stress. The upper and lower boundaries are

composed of half grains that are glued together to

form rough walls. In each simulation, a fluid pressure,

P, is introduced and maintained constant and uniform

during the simulation as if the pore fluid in the

granular system is connected to a big reservoir. For

that reason, in this test we do not solve Eq. 15 for the

pore-pressure evolution within the layer. Simulta-

neously with the introduction of pressure, the applied

unidirectional stress is increased by Drn: Thus, each

experiment is characterized by a couple, Drn and P.

We measure the volumetric (vertical, because of

periodicity) strain, D�; that results from the extra

loading, Drn; under constant pore pressure, P. The

setup of the numerical simulations is depicted in

Fig. 2.

Figure 3a, b shows D�; the volumetric strain, as a

function of Drn and Drn � aP; respectively, similarly

to NUR and BYERLEE (1971, Figure 2). A set of dry

simulations, with no pore fluid, serves as a reference

and is depicted by ‘‘x’’. Wet simulations are depicted

by ‘‘o’’. Figure 3a shows that D� and Drn in the

wet simulations are poorly correlated. In contrast,

Fig. 3b shows a linear relationship between D� and

Drn � aP; for a = 1 (as expected for incompressible

solid grains), with the same slope as the dry simula-

tions. Simulation results show that the model

successfully reproduces the effective stress behavior

that is observed experimentally in fluid-filled porous

and granular material.

Because pore pressure is maintained constant

within the system, rP = 0. Therefore, the fluid does

Δσn

measured 
Δε

P = const

+z

+x

W
ra

p-
ar

ou
nd

 B
.C

.

Figure 2
Setup of a numerical experiment designed to verify that the grains–

fluid model reproduces correctly the law of effective stress. In each

experiment, a unidirectional stress, Drn; is applied, and a constant

pore pressure, P, is maintained. The vertical strain, D�; is

measured. The white pore area between the grains is filled with

fluid

Fluid-filled

Dry

α = 

(a) (b)

Δσn [MPa] Δσn - α P[MPa]

Δε Δε

Figure 3
Effective stress validation test. a Volumetric strain, D�; is plotted

against the change of confining stress, Drn; and shows no

correlation for the wet simulations. b Volumetric strain is plotted

against the effective stress and show linear relationship with the

same slope as for dry simulations
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not exert a force on internal grains, and the last term of

Eq. 8 vanishes. However, because the pore pressure

outside the system is assumed to be zero, boundary

grains do feel the effect of fluid pressure because it is

exerted on them only from one side (from the bottom

on the top boundary and from the top on the bottom

boundary). Thus, a pressure gradient force acts on the

boundary grains in the outward normal direction to the

boundaries, and opposes the external force induced by

rn. We note here an important insight regarding the

effective stress: in models, one could be tempted to

apply the effective stress law at each grain contact, but

that would lead to incorrect formulation of the forces,

because only pressure gradients exert a net force on

grains. The effective stress law may therefore be

viewed as the macroscopic manifestation of micro-

scopic gradients of pore pressure.

Sedimentation validation test. The second test

compares the sedimentation velocity under gravity of

grains through fluid, with the theoretical prediction

that assumes that particles fall without acceleration

(following MCNAMARA et al. (2000)). The volume of

grains transported downward must be compensated

by an equal volume of fluid upflow. Thus ð1�
UÞus ¼ �Uuf : Combining this equation with Darcy

law, Eq. 12, results in us ¼ kðUÞrP=g: The pressure

force must balance the weight of the grains, so that

rP ¼ qsgð1� UÞ: Assigning Eq. 24 for kðUÞ; with

kc = r2/540 (MCNAMARA et al., 2000), r being the

average grain radius, leads to:

us

used

¼ �
1� 2

3
ð1� UÞ

� �3

ð1� UÞ ẑ; ð25Þ

where used = r2qsg/20g, and ẑ is a unit vector in the

direction opposite to gravity. Each sedimentation

simulation starts with a different uniform porosity.

Then, every 50,000 time steps we average the

porosity and the granular velocity over the grid

points. To exclude material that has already settled on

the bottom, and the clear region above the settling

grains, we do not include in the average grid points

with granular velocity smaller than 0:5maxðusÞ; and

grid points with ð1� UÞ\0:25: Finally, each simu-

lation is temporally averaged to obtain a space and

time average of us and ð1� UÞ for the simulation.

These couples are depicted by ‘‘o’’ in Fig. 4 and show

good fit to the theoretical prediction of Eq. 25.

Fluidization validation test. The third test is of

fluidization of a granular layer. Initially the grains

rest at the bottom of the system after sedimentation.

A constant fluid pressure gradient is then applied

between the top and the bottom of the system. It is

predicted that when rP ¼ �ðqs � qf Þð1� UÞg; the

force exerted by rP will exactly balance the weight

of the grains that rest at the base of the system

(RICHARDSON, 1971). For larger rP the grains will be

lifted whereas for smaller rP the grains will not

move. Figure 5 shows the granular velocity averaged

in space over the grains and in time over the first

million time steps, �us; plotted versus rP for several

simulations. The grains move only when rP is larger

than the predicted critical value whereas for smaller

values of rP; �us ¼ 0.

4. Pore-Pressure Evolution Mechanisms

After presenting the fully coupled model and

verifying it, we address the two mechanisms respon-

sible for the evolution of pore pressure, and that arise

from the pore fluid formulation presented in the sec-

tion ‘‘Fluid Phase’’. These mechanisms, which are

generic and independent of the specific deformation of

grain dynamics, are discussed at length in GOREN et al.

(2010). The two mechanisms depend on the system

u s/u
se

d

Theory - Equation( )

Figure 4
Sedimentation validation test. Comparison between theory, Eq. 25,

and simulations of the relationship between solid fraction, 1� U;
and sedimentation velocity, us=used
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boundary conditions, and on the relative magnitude of

the different terms in Eqs. 15 and 18. In order to

estimate the magnitude of these terms we perform a

non-dimensional analysis of Eq. 14. The characteris-

tic scales of the variables in the system are defined as:

P ¼ P̂=b; us ¼ ûsu0; k ¼ k̂k0; and t ¼ t̂t0; where the^

notation denotes non-dimensional variables, and

u0, k0, and t0 are the velocity, permeability, and time-

scale factors, respectively. The divergence operators

resulting from grain mass conservation, Eq. 10, rep-

resent grain-scale rearrangements, and are therefore

scaled by d-1, where d is a characteristic grain

diameter. The gradient operators that result from

Darcy law, Eq. 12, and act on the pressure, P, are

scaled by l-1, where l ¼ minðf;Di=u0Þ is a larger

length scale that corresponds to the distance that is

reached by the pore pressure signal. f is the system

half thickness or the maximum distance to a boundary.

Di ¼ ki=bgU is the internal diffusion coefficient of the

system that depends on the internal permeability,

ki, in accordance with Eq. 24 (while ignoring the

boundary permeability), and Di/u0 is the internal dif-

fusion length. Di/u0 may be cast as a (more common)

diffusion length scale of the form
ffiffiffiffiffiffiffiffi
Dit1
p

;with t1 = Di/

u0
2. To understand the meaning of t1 note that when

grains move at velocity u0, the pressure next to where

the motion takes place changes first because of dif-

fusion and later because of advection. t1 is the time at

which the diffusive and advective effects balance.

According to the definition of l, if the system is

relatively small or the internal permeability is rela-

tively large, then f\Di=u0 and a pore pressure signal

will interact with the boundaries because the system

is well connected with diffusion, leading to l ¼ f: If

however f[ Di=u0; then diffusion does not have the

necessary time to level out the pressure changes

advected with the matrix at velocity u0 during shear,

and l = Di/u0. The time-scale factor, t0, is defined as

the time-scale of deformation:

t0 ¼
d

u0

: ð26Þ

The permeability scale factor, k0, requires further

discussion. When f[ Di=u0 and l = Di/u0 the

boundaries are not expected to interact with a pore

pressure signal originating at the system interior, and

therefore, k0 = ki. However, when f\Di=u0 and l ¼
f; k0 should represent the effective permeability that

accounts both for the value of the internal perme-

ability, ki, over a layer of thickness f; and for the

value of the boundary permeability, kb, over a thin

(but finite) boundary layer of thickness d. As the

permeability is proportional to the Darcy velocity, k0

is estimated as harmonic mean:

k0 ¼ fkikb=ðdki þ fkbÞ; ð27Þ

where fþ d � f: The harmonic mean is for perme-

abilities transverse to the boundaries and so it

gives greater weight to the smaller permeability. As a

result

u s(m
/s

)

∇P
[-(ρs - ρf)( -φ)g]

Figure 5
Fluidization validation test. Comparison between theory and

simulations for the minimum pressure gradient, rP, required to

fluidize a layer of grains with porosity U under gravity g: �us is the

average solid velocity. qs and qf are the densities of the solid grains

and of the fluid, respectively

k0 ¼
ki for well-drained systems with ki � kb

fkb=d for poorly-drained systems with ki 	 kb

0 for completely undrained systems with kb ¼ 0:

8
<

:
ð28Þ
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Assigning the non-dimensional variables in

Eq. 14 results in:

oP̂

ot̂
� De�1r̂ � ðk̂r̂P̂Þ þ 1

U
r̂ � ûs þ

d

l
ûs � r̂P̂ ¼ 0:

ð29Þ

The last term of Eq. 29 is negligible compared with

the first and third terms because, for any natural

system, and in particular for our choice of parame-

ters, the diffusion length is significantly larger than

the diameter of a single grain, i.e. d � l (GOREN

et al., 2010). Equation 29 then becomes:

oP̂

ot̂
� De�1r̂ � ðk̂r̂P̂Þ þ 1

U
r̂ � ûs ¼ 0; ð30Þ

which is the non-dimensional form of Eq. 15.

The coefficient of the second term in Eq. 30 is a

function of the Deborah number,

De ¼ td

t0
; ð31Þ

which is defined as the ratio of relaxation time-scale

to a characteristic process time-scale (OSSWALD, 1998,

p. 54). Here, the relaxation time-scale, td = l d/D, is

the time-scale for pore pressure diffusion, where D ¼
k0=bgU is the system diffusion coefficient (note that

D B Di). The characteristic process time-scale, t0, is

simply the time-scale of deformation (Eq. 26). In

terms of the system parameters, De may be expressed

as:

De ¼ lu0

D
¼ lu0bgU

k0

: ð32Þ

Deborah numbers are normally used in the charac-

terization of viscoelastic materials for estimating the

relative importance of the viscous and elastic rheol-

ogies. In the following discussion we show that

viscoelasticity is a good analog for description of the

pore fluid pressure evolution.

4.1. Small System (f\Di=u0)

When the system is relatively small compared

with the diffusion length, then we take l ¼ f in the

definition of De, Eq. 32. If the boundaries are

undrained, k0 is zero and De-1 = 0. As a result, the

diffusion term in Eqs. 15 and 18 should be ignored.

The non-dimensional Eq. 30 then becomes

oP̂

ot̂
þ 1

U
r̂ � ûs ¼ 0: ð33Þ

Under such conditions, the dimensional Eq. 18 can be

solved for small changes of U; and for the spatially

averaged pore pressure �P :

D �P ¼ � DU
bUð1� UÞ ; ð34Þ

where D �P ¼ �Pðt00Þ � �Pðt0Þ; for any t00[ t0; and DU is

defined in a similar manner. Here, changes of average

pore pressure, D �P; are linearly related to the overall

change of porosity, DU; with a proportionality factor

that depends on the fluid bulk modulus, b-1, so that

pore pressure responds ‘‘elastically’’ to pore strain.

Pore fluid that is trapped within a shrinking pore

volume ðDU\0Þ is pressurized, whereas pore fluid

trapped in expanding pore volume ðDU [ 0Þ is

depressurized.

When the boundaries are well-drained (k0 is

approximated as ki), then always (from the definition

of De and from the condition f\Di=u0) De \ 1. If

De � 1, for example when f is small or k0 is large,

then the non-dimensional Eq. 30 reveals that the first

time-dependent term is negligible relative to the

second diffusion term. The reason the forcing term is

not negligible compared with the diffusion term is

that the forcing is the source of pore pressure

variations and is, therefore, regarded as the pivot of

the equation (GOREN et al., 2010). The non-dimen-

sional pore fluid Eq. 30, then takes the form:

De�1r̂ � ðk̂r̂P̂Þ ¼ 1

U
r̂ � ûs: ð35Þ

Appendix 1 presents the solution of the dimensional

Eq. 18 for the pore pressure, while neglecting the

time dependent term. Appendix 1 shows that the pore

pressure within a system that is characterized by De

� 1 may be approximated as:

Pðz; tÞ ¼ � g
2k0

dhUðf; tÞi
dt

f2 � z2
	 


; ð36Þ

where hUðf; tÞi is the average porosity in the zone

between the center of the system and its boundary,

that is located at distance f from the center (Fig. 7).
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In the derivation of Eq. 36 it was assumed that the top

and bottom boundaries are completely drained, i.e.

Pðf; tÞ ¼ Pð�f; tÞ ¼ 0; and that the rate of change of

the average porosity is uniform in space. Note that

because ðf2 � z2Þ� 0; compaction with dhUðf; tÞi=
dt\0 leads to pressurization, whereas dilation with

dhUðf; tÞi=dt [ 0 leads to depressurization. Here, the

evolution of pore pressure is controlled by the strain

rate of porosity dhUðf; tÞi=dt; with a coefficient that

depends on the fluid viscosity, g, and is inversely

proportional to the permeability. Therefore, the pore

pressure responds ‘‘viscously’’ to the deformation of

the matrix.

When De.1; which may occur for larger f or

smaller k0, the diffusion term is not strictly larger

than the time-dependent term, and both terms are

expected to contribute to the evolution of pore

pressure. Still, Eq. 36 should enable approximate

estimation of the pore-pressure evolution.

4.2. Large System (f[ Di=u0)

When the system is large compared with the

diffusion length, then we take l = Di/u0 and k0 = ki

in Eq. 32, which always results in De = 1 (and

td = t0). In this case, the diffusion and time-depen-

dent terms are of the same order. The non-

dimensional Eq. 30 then becomes:

oP̂

ot̂
� r̂ � ðk̂ r̂P̂Þ þ 1

U
r̂ � ûs ¼ 0; ð37Þ

and the dimensional evolution of the pore pressure is

governed by the three terms of Eqs. 15 or 18.

4.3. The Behavior of the Pore-Pressure Evolution

The above analysis shows that the pore pressure

Eqs. 15 or 18 express a viscoelastic-like rheology.

The two end-members of this rheology, elastic and

viscous, lead to two mechanisms that control the

evolution of pore pressure, and operate under differ-

ent drainage conditions. A schematic representation

of the two mechanisms is depicted in Fig. 6. Elastic-

like pore-pressure evolution dominates when the

system is effectively undrained (De	 1). Under such

conditions, pore fluid that cannot escape and is

trapped within a shrinking pore volume is pressurized

(Fig. 6a) whereas pore fluid that is trapped in an

expanding pore volume is depressurized. The evolu-

tion of the average pore pressure will follow Eq. 34,

and the magnitude of pressurization and depressur-

ization depends on the inverse of the fluid

compressibility, b-1, and is controlled by the overall

change of porosity, DU: In that sense, the elastic end-

member holds memory of the initial state of porosity.

Viscous-like pore-pressure evolution dominates

when the system is effectively drained (De� 1), and

is a less intuitive mechanism. Here, because of mass

conservation, convergence (or divergence) of grains

causes the pore fluid that resides between the grains

to flow out of (or into) this region (Fig. 6b). Because

of fluid momentum conservation (Darcy law in this

formulation), pressure gradients must arise between

the location of converging (or diverging) grains and

the surrounding region, to generate these flows. Pore

pressure is governed by Eq. 36, and depends linearly

on the fluid viscosity, g, and inversely on the

permeability, k0. The magnitude of pore pressure is

controlled by the instantaneous strain rate of porosity,

dhUðf; tÞi=dt: Therefore, this mechanism holds no

memory of previous states of porosity. Note that

when De & 1, intermediate behavior is expected

with some short-term memory.

The viscous end-member has normally not been

offered as a mechanism for liquefaction, although it

may lead to significant pressurization. Moreover,

because of its ‘‘lack of memory’’, this mechanism

may lead to generation of high pore pressure even

when an initially dense granular matrix is sheared.

Indeed, upon shearing an over-compacted layer, it

will first dilate (Fig. 6b, left to center), and then

oscillate around its critical porosity (AHARONOV and

SPARKS, 2002; GABET and MUDD, 2006). In the

oscillatory stage, any local period of compaction,

with dhUðf; tÞi=dt\0; will lead to pressurization

despite the fact that the instantaneous porosity may

be significantly larger than the initial porosity

(Fig. 6b, center to right).

It is of interest to note that the viscous-like

rheology arises when De � 1, and the elastic-like

rheology arises when De 	 1. Indeed, a Deborah

number of zero represents a viscous fluid and an

infinite Deborah number represents an elastic solid

(OSSWALD, 1998). In the following section, we present
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our simulation results in light of the pressurization

mechanisms that are reviewed here.

5. Simulations of Shearing Granular Layers

To study the coupled mechanics of granular

matrix deformation and pore fluid pressurization and

flow we perform simulations of a fluid-filled granular

layer sheared at a constant shear velocity. The sim-

ulations are performed in a rectangular system with

approximately 1680 (24 9 70) or 864 (24 9 36)

grains. Grain diameters are drawn randomly from a

Gaussian distribution with an average d, and a stan-

dard deviation d, clipped at plus/minus 0.2d.

Although there is no gravity in the simulations, we

define the vertical and horizontal directions for con-

venience. The top and bottom walls are composed of

half grains of variable size that are glued together

along their center lines to form rigid rough walls. In

the horizontal direction the system is periodic, and

thus analogous to a rotary shear apparatus. Each

simulation is initiated by compacting a system of

loosely packed grains under some normal stress,

rn, until the porosity equilibrates. We then assume

the pore space is filled with fluid at zero excess fluid

pressure. Variations of pore pressure are measured

relative to the initial zero value that corresponds to

hydrostatic conditions. For this reason, rn is inter-

preted as the applied external stress minus hydrostatic

pore pressure, i.e. the initial effective stress. Finally, a

constant shear velocity, Vsh, is applied to the top wall.

During a simulation, rn and Vsh are maintained con-

stant, and we follow the systems’ compaction and

dilation, the shear stress required to shear the top wall

at constant velocity, and the evolution of pore pres-

sure. Dividing the shear stress by rn results in the

apparent friction coefficient, la, Eq. 3. Because the

grains themselves are regarded as incompressible,

compaction and dilation are accommodated by a

(a)

(b)

Figure 6
Two mechanisms control the evolution of pore pressure in Eq. 18. a When the boundaries are undrained (marked by double solid lines)

leading to De 	 1, pore pressure responds elastically to any strain of pore volume. Compaction will lead to pressurization and dilation will

lead to depressurization. The magnitude of pore pressure change depends on the overall porosity change, DU; and on the inverse of fluid

compressibility, b-1. b When the boundaries are drained (marked by dashed lines) and De � 1, pore pressure evolves viscously in response

to instantaneous strain rate of porosity, dU=dt: Upon dilation (left to center) fluid will flow into the system. To facilitate this flow, pressure

gradient must arise with low pressure within the system interior. Upon compaction (center to right), fluid escapes from the system, and an

opposite pore-pressure gradient arises with higher pore pressure in the system interior. In this mechanism the evolving pore pressure depends

linearly on fluid viscosity, g, and inversely on the permeability, k0
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change in pore volume. Figure 7 summarizes the

settings of the simulations.

In the simulations, we take the pore fluid to be

water, with fluid compressibility and viscosity

b = 4.5 9 10-10 Pa-1 and g = 10-3 Pa s, respec-

tively. The granular phase is assumed to be quartz

grains with a bulk modulus, E = 8 9 1010 Pa, Pois-

son’s ratio, m = 0.25, density of 2640 kg/m3, surface

friction coefficient l = 0.5, and damping coefficient

(in Eq. 4), c = 0.8. We further assume that the grains

have an average diameter d = 10-3 m. Because we

are interested in studying the role of permeability in

the evolution of pore pressure, and because the per-

meability varies by orders of magnitude between

different natural terrains (SAAR and MANGA, 2004),

we vary kc in our simulations, where kc is the per-

meability prefactor that appears in Eq. 24. For the

original 2D Carman–Kozeny relationship with aver-

age grain diameter of d = 10-3 m, kc = 4.6 9 10-10

m2, but in these simulations we use a range of kc from

4.6 9 10-10 to 4.6 9 10-15m2. The lower value of

kc may, alternatively, be obtained by choosing a

smaller grain diameter of d & 10-6 m, or by taking a

heterogeneous grain size distribution. We choose to

work with relatively large grains in order to enable

simulations of long temporal duration (0.5 s) of thick

layers (up to *0.07 m), in a reasonable computation

time, but we still desire to study the role of perme-

ability. The applied shear velocity, Vsh, is either 0.76

m/s or 7.6 m/s. We use applied normal stresses of

rn = 24 or 2.4 MPa, corresponding to depths of

approximately 2 km and 200 m, respectively. Two

types of simulation are performed that differ in their

drainage boundary conditions: drained and undrained.

Table 1 summarizes the system variables used in the

simulations: normal stress, rn, half thickness, f;
permeability scale factor, k0, and shear velocity, Vsh.

The dimensionless Deborah number, De, whose sig-

nificance is explained is the section ‘‘Pore-Pressure

Evolution Mechanisms’’, and the dimensionless liq-

uefaction potential, LP, that is based on the section

‘‘Estimating Liquefaction Potential’’, are also pre-

sented in Table 1.

5.1. Drained Systems

Completely drained systems are simulated by

setting the pore pressure to be zero along the top

and bottom walls. All drained simulations start with a

well compacted system that dilates in the initial stages

of shear deformation. After the dilation stage, the

porosity oscillates around some mean critical value.

Figure 8 compares the temporal evolution of three

system-averaged quantities (porosity, average pore

pressure, and apparent friction, la) between simula-

tions D3 and D9 that differ only in their permeability.

Two differences are observed for the average pore

pressure in these simulations: first, the peaks of the

Figure 7
Grains–fluid simulations setup. In each simulation a collection of

grains is packed within a rectangular box with wrap-around

boundary conditions along the horizontal direction. The equation

for the pore pressure, Eq. 15, is solved on a superimposed grid.

Normal stress, rn, and shear velocity, Vsh, are applied and main-

tained constant. The spatial and temporal evolution of porosity, U;
and of pore pressure, P, and the temporal evolution of the apparent

friction la are measured. ki is the internal permeability that is set

by the local porosity in accordance with Eq. 24. kb is the boundary

permeability that expresses the drainage boundary conditions.

When the top and bottom boundaries are drained, P = 0 on the

boundaries as if kb = INF. When the top and bottom boundaries

are undrained, no pressure flux arises across the boundaries as if

kb = 0
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average pore pressure are smaller by an order of

magnitude in the high-permeability simulation D3

(Fig. 8c) than the peaks in the low-permeability

simulation D9 (Fig. 8d). This results from the depen-

dency of the pore pressure on the inverse of the

permeability for drained systems with De � 1.

Indeed, Eq. 36 predicts that when the permeability

is smaller, as is the case for simulation D9, the pore

pressure will be higher. Second, the average pore

pressure is negative during the first half of the low-

permeability simulation D9, whereas for the high-

permeability simulation D3, the average pore pressure

oscillates around zero from the onset of the simula-

tion. This is because of the competition between the

rate of deformation and the rate of pore fluid flow, and

will be discussed further in the section ‘‘The Evolu-

tion of Pore Pressure with Drained Conditions’’.

The different evolution of pore pressure between

simulations D3 and D9 causes their apparent frictions

to differ. The apparent friction starts with a larger

value and has larger peaks in the low-permeability

simulation D9 (Fig. 8f). The higher initial value

results from the initially negative pore pressure that

increases the effective normal stress and the shear

resistance, in accordance with Eq. 2. Similarly, the

larger peaks in the apparent friction result from the

larger magnitudes of the negative values of the pore

pressure.

In the drained simulations D1–D7 (with De � 1)

the average pore pressure, �P; is well correlated with

the temporal derivative of the porosity, dU=dt; but is

not correlated with the actual value of the porosity, U:
An example of these relationships is depicted in

Fig. 9 for drained simulation D7. Indeed, Eq. 36

predicts that when the boundaries are well-drained

and De � 1, the evolution of the pore pressure is

determined by the temporal derivative of the porosity.

Although Eq. 36 was developed solely on the basis of

the pore pressure formulation, the good correlation

depicted in Fig. 9a indicates that viscous-like evolu-

tion of pore pressure also occurs when the grain and

pore fluid are fully coupled.

In the drained simulations D8, D9, and D11 (with

De.1) and in simulation D10 (with De = 1), it is

less clear which of the two correlations ( �P versus

dU=dt and �P versus U) is more dominant. In fact, the

Table 1

Numerical simulations

No.a rn (MPa) f (m)b k0 (m2)c Vsh (m/s) Ded LPe

D1 24 0.035 1.97 9 10-10 0.76 1.21 9 10-5 2.8 9 10-5

D2 24 0.035 1.97 9 10-10 7.6 1.21 9 10-4 2.8 9 10-4

D3 24 0.035 1.97 9 10-11 0.76 1.21 9 10-4 2.8 9 10-4

D4 24 0.035 1.97 9 10-11 7.6 1.21 9 10-3 2.8 9 10-3

D5 24 0.035 1.97 9 10-12 0.76 1.21 9 10-3 2.8 9 10-3

D6 24 0.035 1.97 9 10-12 7.6 1.21 9 10-2 2.8 9 10-2

D7 24 0.035 1.97 9 10-13 0.76 1.21 9 10-2 2.8 9 10-2

D8 24 0.035 1.97 9 10-13 7.6 1.21 9 10-1 2.8 9 10-1

D9 24 0.035 1.97 9 10-14 0.76 1.21 9 10-1 2.8 9 10-1

D10 24 0.035 1.97 9 10-14 7.6 1 9.7 9 10-2

D11 2.4 0.035 1.97 9 10-14 0.76 1.21 9 10-1 2.8

D12 2.4 0.018 1.97 9 10-14 0.76 6.41 9 10-2 1.4

U13 2.4 0.035 0 (1.97 9 10-9) 0.76 INF –

U14f 2.4 0.035 0 (1.97 9 10-9) 0.76 INF 1.7

a In the numbering of the simulations, D stands for drained and U stands for undrained
b We report here the maximum vertical half thickness of the system during a simulation. f fluctuates by as much as 3%
c k0 is defined in Eq. 28. When k0 = ki, Eq. 24 is used with U ¼ 0:2: When k0 = kb = 0, the value of ki is reported in parentheses
d In the calculation of the Deborah number, U ¼ 0:2; and the velocity scale factor, u0, is estimated as Vsh. In simulations D10, l = Di/u0, for

the rest of the simulations l ¼ f
e Liquefaction potential. For simulations D1–D9 and D11–D12 Eq. 40 is used. For simulation D10 Eq. 43 is used. For simulation

D14 Eq. 41 is used
f Simulations U13 and U14 differ in their initial porosity
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average pore pressure seems to be affected both by

the temporal derivative of the porosity, dU=dt; and by

the actual value of the porosity, U; as can be seen in

Fig. 10 for simulation D9. Indeed, according to the

mechanistic analysis presented in the section ‘‘Pore-

Pressure Evolution Mechanisms’’, when De.1 or

De = 1 both dependencies are expected. The drained

simulation D12 (with De = 6.41 9 10-2) shows a

fairly good correlation between �P and dU=dt (which

is slightly less distinct than this correlation for

simulations D1–D7), and also a minor effect of U
on the evolution of �P.

Simulations D1–D10 are conducted under normal

stress of rn = 24 MPa. The average pore pressure in

(a)

(f(e)

(d)(c)

(b)

Figure 8
Time evolution of space-averaged quantities for drained simulations D3 and D9 that differ in their assigned permeability. Evolution of

porosity (a, b), average pore pressure (c, d), and apparent friction (e, f). The simulation parameters are given in Table 1
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Figure 9
Results from drained simulation D7. a dU=dt (blue) and average pore pressure (green) for simulation D7 are plotted as a function of time and

show good correlation, as predicted by Eq. 36. b U (blue) and average pore pressure (green) show no correlation. Note that �P increases

downwards
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these simulations is significantly lower than the

applied normal stress, with peaks that are one or

two orders of magnitude smaller than rn. Still, in runs

D8–D10 that are characterized by small permeabil-

ities and De.1 or De = 1, there were short events in

which P [rn. These events, being also very local-

ized in space, did not seem to affect the system’s

strength. For that reason, we next consider simula-

tions in which the applied normal stress is reduced to

rn = 2.4 MPa. It is observed that although rn does

not enter the formulation of the pore fluid, its

reduction leads to decrease of pore pressure. How-

ever, an order of magnitude reduction in rn did not

cause the pore pressure peaks to decrease by an order

of magnitude, but only by a factor of 2–3. Therefore,

the average pore pressure peaks may become of the

order of the applied stress and lead to a significant

reduction of the system strength. Here, the system

strength is expressed as the apparent friction coeffi-

cient, la, where small la results from small shear

resistance. If the apparent friction becomes zero or

even negative, then the shear resistance of the system

is completely lost, and it is liquefied.

Figure 11 shows the evolution of la and of the

average pore pressure for drained simulation D11. A

brief liquefaction event with a reduction of the

apparent friction below zero (circled) is observed.

This short event is correlated with system average

pore pressure of �P ¼ 1:9 MPa. Although �P\rn; this

liquefaction event is characterized by horizontal

layers that experience high pore pressure of P ^
rn, and a few localized zones with P [ 4 MPa

(Fig. 12e).

Figure 12 shows three snapshots of the grain

system configuration and the corresponding pore

pressure map, before, during, and after the liquefac-

tion event circled in Fig. 11. In frames 12a–12c the

thickness of the lines connecting grain centers

indicates force on grain contacts. Stress chains are

observed as connected force lines that percolate from

the top of the system to its base. The color code of the

grains corresponds to the overall normal stress that a

grain sustains as a result of contact forces, with

warmer colors for higher stress. In each of frames
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Figure 10
Results from drained simulation D9. a dU=dt (blue) and average pore pressure (green). b U (blue) and average pore pressure (green). Both

dU=dt and U show some correlation with the average pore pressure, as expected for De.1: Note that �P increases downwards
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Figure 11
Apparent friction (blue) and average pore pressure (green) for

drained simulation D11 are plotted as functions of time, and show

good correlation. Note that the pore pressure axis increases

downwards. The apparent friction becomes negative (circled) at

time 0.32 s, when the average pore pressure becomes high,
�P
 1.9 MPa, and of the order of magnitude of the applied normal

stress, rn = 2.4 MPa. Negative apparent friction is defined here as

liquefaction. Framed letters mark the times when the snapshots in

Fig. 12 are taken
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Figure 12
Snapshots of the granular configuration (top) and corresponding pore fluid pressure maps (bottom) for drained simulation D11, before, during,

and after the liquefaction event shown in Fig. 11. The times when the snapshots are taken are indicated by the framed letters in Fig. 11. Grains

color code corresponds to the overall contact-induced compressive force they sustain. Warm colors indicate high force and cold colors low

force. Contact forces are depicted by lines that connect contacting grains. The width of a line correlates to the magnitude of the normal force

along the contact
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12a–12c, the grain color code is relative to the frame

itself, where the grain that supports the maximum

load is red and the grains with minimum load are

light blue. Therefore, grains that are connected by

thick lines and participate in the major stress chains

that support the external loading are more reddish. It

is clearly observed that the stress chains that support

the external load before the liquefaction event

(Fig. 12a) disappear during the liquefaction event

(Fig. 12b) and the grains at the top and bottom of the

system become light blue, indicative of minimum

compressive stress on them arising from granular

contacts. Percolating stress chains reappear after the

event (Fig. 12c). The pore pressure before the

liquefaction event in Fig. 12d is mostly negative

(lower than hydrostatic). During the event the pore

pressure at the top and bottom of the system becomes

highly positive (Fig. 12e), and exceeds rn. Zones of

very high pore pressure in Fig. 12e correlate with

zones with no stress chains in Fig. 12b, which

indicates that the high pore pressure replaces the

stress chains in supporting the external load. This

high pore pressure also enables the apparent friction

to become negative. Shear localization is observed

along the highly pressurized layers, but it is not clear

if the localization preceded (and triggered) pressur-

ization or vice versa. Simultaneously with the

reappearance of stress chains in Fig. 12c, the pore

pressure reduces (Fig. 12f), and the system

strengthens.

To study the effect of system size, simulation D12

is conducted with the same values as simulation D11,

but with a layer half as thick. Figure 13 shows a

liquefaction event (circled) during simulation D12

that occurs simultaneously with an increase of

average pore pressure, �P: The average pore pressure

during this event, �P ’ 2:4 MPa, is very close to the

applied normal stress. Figure 14 shows snapshots of

the granular configuration and the corresponding pore

pressure map before, during, and after this liquefac-

tion event. Whereas in simulation D11, high pore

pressure is localized close to the top and bottom

boundaries (Fig. 12e), here, when the layer is thinner,

stress chains disappear and pore pressure rises

throughout the whole system interior, as seen in

Fig. 14b, e. It should be noted that several such

liquefaction events occurred during simulations D11

and D12.

5.2. Undrained Systems

Undrained systems are simulated by assigning

zero fluid flux across the top and bottom boundaries;

as a result, fluid mass is conserved within the grains

layer. In the undrained simulations we assign large

internal permeability that enables rapid fluid flow

within the system interior, and, as a consequence,

rapid homogenization of pore pressure. Two simula-

tions are performed, both with rn = 2.4 MPa and

Vsh = 0.76 m/s, but with different initial porosities.

Simulation U13 starts with the same initial configu-

ration as the drained simulation D11, with an initial

2D porosity of 0.1719. This simulation is referred to

as ‘‘dense’’. In simulation U14, before the onset of

shear, all grains that have no contacting neighbors,

and thus are not participating in stress chains, are

removed, resulting in a high initial 2D porosity of

0.2385. Simulation U14 is referred to as ‘‘loose’’.

Dense simulation, U13, dilates when sheared and

the pore pressure decreases and becomes negative

(i.e., smaller than hydrostatic). Because of the large

P
os

iti
ve

 d
ie

ct
io

n 

Figure 13
Apparent friction (blue) and average pore pressure (green) for the

small drained simulation D12 are plotted as functions of time. Note

that the pore pressure axis increases downwards. A reduction in the

apparent friction below zero is observed (circled), and is correlated

with high average pore pressure, P ^ 2.4 MPa, which is almost

equal to the applied normal stress, rn = 2.4 MPa. Framed letters

mark the times when the snapshots in Fig. 14 are taken
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internal permeability, the pore pressure is uniform

throughout the system, so the average pore pressure is

very close to the pore pressure at any point within the

system. Unlike the drained simulations, here the

evolution of pore pressure is correlated with the

evolution of porosity, U; (Fig. 15b), and not with the

temporal derivative of the porosity, dU=dt;

(Fig. 15a). The dependency between average pore

pressure and porosity when the boundaries are

completely undrained and De = INF is predicted by

Eq. 34. Therefore, although Eq. 34 is developed

solely on the basis of the fluid formulation, simula-

tion results indicate that an elastic-like evolution of

the pore pressure is observed also when the two

phases of the system, pore fluid and grains, are fully

coupled. The apparent friction coefficient, depicted in

Fig. 15c, increases with decreasing pore pressure.

High apparent friction results from high shear

resistance because of increasing effective normal

stress, in accordance with Eqs. 1 and 2. An alterna-

tive view might be that the reduced pore pressure

within the system interior exerts a suction force that

hardens the system. Simulation U13 thus exhibits

‘‘dilatancy hardening’’.

In loose simulation U14 a short transient dilation

phase with pore pressure decrease is observed on

onset of shear, but then compaction occurs very

quickly. Upon compaction, pore pressure increases to

the value of the normal stress, P = 2.4 MPa, and the

system liquefies (Fig. 16a). Here, the liquefaction

event is a steady state and the pore pressure remains

equal to rn until the end of the simulation. During this

long liquefaction event, grains detach, stress chains

disappear, and the external load is completely

(a)

(f)(e)(d)

(c)(b)

Figure 14
Snapshots of the granular configuration (top) and corresponding pore fluid pressure maps (bottom) for drained simulation D12, before, during,

and after the liquefaction event shown by the circle in Fig. 13. The times when the snapshots are taken are indicated by the framed letters in

Fig. 13. For the color code of the grains see the caption of Fig. 12
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balanced by the pore pressure (Fig. 17). With the

exception of very few contacts arising because of

small collisions, the force balance on the grains is

zero and they do not touch. Because grains do not

slide past each other (and because viscous resistance

to sliding is not accounted for in our model), there is

no resistance to shear and the apparent friction drops

to zero, as depicted in Fig. 16b.

6. Discussion

This paper uses a continuum approach, Eqs. 15 or

18, to describe the pore pressure response to granular

media deformation, coupled with a discrete descrip-

tion of the grain dynamics. First in the discussion we

address the pore pressure behavior under any general

deformation of the granular skeleton, because it turns

out that this behavior by itself is very rich (as already

suggested by a simplified model, GOREN et al., 2010).

The section ‘‘Pore-Pressure Evolution Mechanisms’’

reveals that evolution of the pore pressure in response

to granular skeleton deformation obeys viscoelastic-

like rheology. Indeed, Eq. 18 resembles the Maxwell

model of viscoelasticity: d�=dt ¼ g�1rþ bdr=dt;

where the strain rate, d�=dt; is a linear combination of

the stress, r, and of the time derivative of the stress,

dr/dt. In Eq. 18, the time derivative of the porosity,

dU=dt; stands for the strain rate, and the pore pres-

sure, P, stands for the stress. The pore pressure

diffusion term in Eq. 18 acts as the term g-1r in the

Maxwell model (in which the spatial derivative can

be approximated as P/l d). The section ‘‘Pore-Pres-

sure Evolution Mechanisms’’ also shows that the

system parameters, as expressed by the Deborah

number, De, lead to the emergence of two end-

member mechanisms for the evolution of pore pres-

sure that are encapsulated in this rheology—elastic

and viscous.

GOREN et al. (2010) showed that these two end-

member mechanisms describe well the evolution of

pore pressure when the loading is assumed to be

infinitely stiff, i.e., when granular deformation is

externally prescribed and pore-pressure gradients do

not enter the grains momentum balance. Here, our

simulation results show that the two end-member

(a)

(d)

(b)

(c)

Figure 15
Results from undrained initially dense simulation U13. a No correlation is found between dU=dt (blue) and average pore pressure (green).

b Good correlation is found between porosity (blue) and average pore pressure (green). c Correlation is shown between apparent friction

(blue) and average pore pressure (green). d Correlation between �DU and DP in the simulation (circles) is well matched by the linear

relationship predicted by Eq. 34 (red line). Note that in a, b, and c the average pore pressure increases downwards
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mechanisms also apply for the fully coupled system,

i.e., when the skeleton deformation affects the evo-

lution of pore pressure, and pore-pressure gradients

add up to the force balance on the grains and

contribute to the deformation of the skeleton.

Therefore, we claim that a viscoelastic analog for

describing the evolution of pore pressure applies

generally to fluid-filled granular (and porous)

(a)

(b)

(c)

Figure 16
Results from undrained initially loose simulation U14. a Good

correlation is found between porosity (blue) and the average pore

pressure (green). Framed letters corresponds to the times when the

snapshots in Fig. 17 are taken. b Correlation is shown between

apparent friction (blue) and average pore pressure (green).

c Correlation between �DU and DP in the simulation (circles)

are well matched by the linear relationship predicted by Eq. 34

(red line). Note that in a and b the pore pressure increases

downwards

(a)

(d)(c)

(b)

Figure 17
Snapshots of the granular configuration (top) and corresponding

pore fluid pressure maps (bottom) for undrained initially loose

simulation U14, before and during the liquefaction event depicted

in Fig. 16. The times when the snapshots are taken are indicated by

the framed letters in Fig. 16. For the color code of the grains see

the caption of Fig. 12
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systems, and is independent of the exact details of

grain dynamics.

Following these insights, one would like to

understand how to estimate De, because it plays a

crucial role in determining the pore-pressure behavior

in real systems. Some parameter groups are of par-

ticular importance in the estimation of De. For

example, when the system is large relative to the

internal diffusion length, i.e. f[ Di=u0; (where f is

the system half thickness, Di is the internal diffusion

coefficient in the system that ignores the drainage

boundary conditions, and u0 is the rate of deforma-

tion), then pore-pressure signals originating close to

the layer center are unaffected by the boundaries. This

situation leads to De = 1, which means that the pore

pressure responds both to volumetric strain rate and to

overall volumetric strain, resulting in combined vis-

coelastic-like behavior. When the layer is relatively

thin, as is often the case for experimental and natural

granular systems (see for example the cases discussed

in the section ‘‘Field and Experimental Evidence of

Liquefaction Events with Drained Conditions’’), then

f\Di=u0;De 6¼ 1; and the drainage boundary condi-

tions play an important role in the evolution of pore

pressure. These drainage conditions are accounted for

in the permeability scale factor, k0. Here, we have

considered only completely drained and completely

undrained systems. However, our choice to express k0

as the harmonic mean of interior and boundary per-

meabilities is general: it may be used to evaluate De

for relatively complex systems, composed of several

layers with different permeability, and to evaluate the

expected effect of more complex drainage boundary

conditions such as a linear combination of pressure

and pressure gradient leading to an intermediate sit-

uation of partial drainage.

Although the pore-pressure equations, Eqs. 15

and 18, are rich and highly predictive of the classes of

behavior observed in the simulations, there are some

non-linear effects that arise because of the coupled

response with the grain dynamics, which cannot be

predicted analytically. Such an effect is the relation-

ship between the pore pressure and the applied

normal stress, rn. The pore fluid pressure formula-

tion, Eq. 15 and 18, predicts that the evolution of

pore pressure is independent of rn. Yet, it is observed

that when rn decreases, the pore pressure is generally

smaller. This indirect relationship between the

applied stress and the pore pressure arises because of

coupling with grain contact forces that transmit

stresses of the order of rn. In response to grains

convergence, pore fluid pressurization resists the

converging grains by exerting pressure gradients

across them. Grains then rearrange so that the skel-

eton forcing on the fluid is relaxed and so is the pore

pressure. If rn is large, large pressure gradients (and

large pressures) are needed to push the grains aside

and overcome the contact forces. If rn is smaller, then

smaller pressure gradients are sufficient to overcome

the granular contact forces, push aside converging

grains, and relax the skeleton forcing.

6.1. The Evolution of Pore Pressure with Drained

Conditions

Next, we analyze the behavior of the pore fluid

pressure in simulations with drained boundary con-

ditions. Figure 9a shows the good correlation

between the spatially averaged pore pressure and

the temporal derivative of the porosity for a repre-

sentative drained simulation with De � 1, following

the prediction of Eq. 36. In order to further validate

this correlation, we compare the slopes of the graphs

of P versus �dU=dt between the drained simulations

D1–D10 and Eq. 36. For each time step in a

Figure 18
Log–log plot of the slope of the relationship P versus �dU=dt as a

function of the permeability scale factor, k0, for drained simula-

tions. Theoretical prediction according to Eq. 36 appears as a solid

line and simulations as circles
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simulation, we plotted the global extremum of the

pore pressure and the instantaneous �dU=dt: We then

take the slope of the linear regression line of P versus

�dU=dt and plot it as a function of the permeability,

k0, in Fig. 18, as ‘‘o’’. In the figure, the slope

predicted by Eq. 36, gðf2 � z2Þ=2k0; is depicted by a

solid line, where the center of the grains layer is

assigned for z, i.e. z = 0. A good fit is found between

simulation results and the analytical prediction. It is

of interest to note that simulations D8 and D9 that

have De.1; and simulation D10 with De = 1 also

show a good fit to the analytical prediction of Eq. 36

that is developed under the assumption of De � 1.

Although the overall behavior of pore pressure

with drained conditions follows Eq. 36, there are

some differences between the drained simulations

that arise from the different parameters that are used.

To study these differences we again use the value of

the Deborah number. The definition of De in Eq. 32

may also be viewed as a velocity ratio between the

velocity of deformation, u0, and the velocity of

diffusion D/l (SAMUELSON et al., 2009). When De� 1

(e.g. simulation D2), the deformation is slow enough

to allow for a pore pressure front originating at any

depth in the layer to reach the drained boundaries in

the time-scale of deformation. As a result, the pore

pressure everywhere in the system is expected to

follow Eq. 36, resulting in a parabolic profile, as

depicted in Fig. 19a. In contrast, when De approaches

1 (e.g. simulation D8), the deformation is more rapid,

or further away from the boundary, and pore pressure

cannot always diffuse across the whole system during

the time-scale of deformation. For this reason, a non-

parabolic profile is observed along the center of the

layer (far from the boundaries), as depicted in

Fig. 19b. Deviation from the parabolic profile is

probably the result of transient elastic effects arising

from the relationship between P and U when De & 1.

The Deborah number may also be used to explain

the different evolution of the average pore pressure

between the high-permeability simulation D3 (with

De � 1) and the low-permeability simulation D9

(with De.1), which are observed in Fig. 8. At the

onset of the simulations, dilation occurs that increases

pore space. In simulation D3, the small Deborah

number enables immediate compensation of the

newly generated pore space by fluid inflow from

the drained boundaries, because the rate of pore

pressure diffusion across the system is fast relative to

the rate at which pore volume expansion occurs,

because of the high permeability. For this reason, a

transient effect of pore pressure reduction is not

observed (Fig. 8c). In simulation D9, the larger

Deborah number causes a delay in fluid inflow that

compensates for the expanding pore space, leading to

a transient negative pore pressure (Fig. 8d).

An additional result of the drained simulations is

the observed correlation between the average pore

pressure and the apparent friction, as depicted in

Figs. 11 and 13. Such correlation is predicted by

Eq. 2. However, it is important to note that the law of

effective stress, Eq. 1, and the relationship between

pore pressure and shear resistance that appears in

Eq. 2, apply either only locally, or when the pore

pressure is uniform within a granular or porous layer.

Therefore, application of Eqs. 1 and 2 to the meso-

scale implicitly assumes uniform pore pressure, a

situation that only arises under quasi-static and

undrained conditions. In the drained simulations,

the pore pressure is not uniform within the layer, but

it varies dynamically in space and time during shear.

Still, the correlations between the average pore

pressure and the shear resistance in Figs. 11 and 13

are good, indicating that although Eq. 2 may not be

valid quantitatively for drained conditions, the

(a) (b)

Figure 19
Snapshots of horizontally averaged pore pressure as a function of

depth within the grains layer. a Drained simulation D2 with De�
1 showing a parabolic pore pressure profile in accordance with

Eq. 36. b Drained simulation D8 with De.1 showing a non-regular

pore pressure profile along the center of the grains layer because of

elastic-like transient effects
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concept of meso-scale effective stress is still useful

when the boundaries are drained, although it merits

further investigation.

6.1.1 Simulations of Liquefaction Events

with Drained Conditions

After studying the general evolution of pore pressure

and shear resistance in the drained simulations, we

discuss special events that are characterized by high

pore pressure and low shear resistance. In the drained

simulations D11 and D12 the average pore pressure

has peaks that are of the order of magnitude of

rn, with zones that experience pore pressure that

significantly exceeds rn. During such events the

effective stress vanishes, and the shear resistance

becomes negative (Figs. 11 and 13). We define these

events of la B 0 as liquefaction. As long as P \ rn

throughout most of the grains layer, granular stress

chains support the external normal load by transmit-

ting stress from top to bottom (Figs. 12a and 14a).

During liquefaction events, stress chains disappear in

zones that have P [rn (Figs. 12b and 14b), and the

external load can no longer be transmitted through

the granular phase. Instead, it is supported by the

highly pressurized pore fluid (Figs. 12e and 14e).

The localization of high pore pressure close to the

drained boundaries during the liquefaction event in

simulation D11, (Fig. 12b, e), may be explained by

the near-unity De. In this simulation, high pore

pressure is not generated within the center of the

layer, because the De.1 limits the distance of pore

fluid flow during the time-scale of deformation. As a

result, communication by pore pressure diffusion

between the drained boundaries and the layer’s center

is uncommon. In simulation D12, the system half

size, f; is smaller, and, as a result, the Deborah

number is smaller. For this reason the pore pressure is

high throughout the whole layer during the liquefac-

tion event, and is not localized close to the

boundaries (Fig. 14b, e).

Such transient liquefaction events may have

significant implications for natural systems that are

driven by dynamic forcing, for example tectonic

loading. The simulations presented here are driven

kinematically, i.e. a constant shear velocity is

imposed on the top wall, and the systems cannot

accelerate. It is speculated that if the systems had

been driven dynamically, by shear stress boundary

conditions, then the short liquefaction events would

have generated instabilities leading to acceleration.

Following this initial acceleration, the absolute value

of the porosity strain rate is expected to increase,

potentially leading to even larger pressurization and

further acceleration.

Previously, the only mechanism that was sug-

gested to induce liquefaction was compaction of

loosely packed grains under undrained conditions

(SAWICKI and MIERCZYNSKI, 2006), leading to elastic-

like pore-pressure evolution, (as modeled in our

undrained loose simulation, U14). Therefore, the

occurrence of liquefaction events with densely

packed drained conditions, leading to viscous-like

evolution of pore pressure, is a surprising result of

our model (that was also obtained in our approximate

model (GOREN et al., 2010)). Such conditions are

traditionally believed to be unfavorable for liquefac-

tion (SEED et al., 1976) despite field and experimental

evidence that suggests otherwise. Such evidence is

reviewed next.

6.1.2 Field and Experimental Evidence

of Liquefaction Events with Drained

Conditions

Field evidence for liquefaction of initially dense but

well-drained layers comes from the report of GABET

and MUDD (2006) on debris flow mobilization from

dense soils. GABET and MUDD (2006) find correlation

between mobilization and fines/sand ratio, where

soils with a small ratio are mobilized. Assuming that

a small ratio of fines contributes to good drainage,

then the emergence of debris flows may be attributed

to viscous-like pressurization during shear deforma-

tion induced by gravity. In such a case, the short

compactive stages that followed the initial dilative

phase, a scenario that is reviewed in GABET and MUDD

(2006), may have led to pore pressure rise, liquefac-

tion, and mobilization of debris flow. A second

example comes from the famous liquefaction event in

Kobe, Japan, that followed the 1995 Great Hanshin

Earthquake (M = 6.9). SOGA (1998) reviewed the

damage in the port facilities that were built on

reclaimed islands. It was found that soils that were
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vibro-compacted were still liquefied, although they

sustained less deformation. Such soils are expected to

be highly dilative and, according to previous con-

ventional wisdom, liquefaction resistant. We suggest

that the moderate liquefaction observed may be

attributed to viscous-like pore pressure rise during

instantaneous and short compactive phases that

punctuated the overall dilative path of the vibro-

compacted fill material.

More evidence for liquefaction with drained

boundary conditions comes from two sets of exper-

iments conducted by IVERSON and LAHUSEN (1989). In

the first set, a layer of initially compacted uniform

rods immersed in water was sheared at a constant

shear velocity, while fluid was allowed to drain out of

the top boundary. During a significant portion of the

experiment, the ‘‘rods above the slip surface lost

contact with the underlying rods and glided on a

cushion of water’’, i.e. ‘‘the pressure gradients

between the shearing layer and the top boundaries

were high enough to support the rods weight’’

(IVERSON and LAHUSEN, 1989). In the second set of

experiments, natural fluid-filled sand was laid on a

tilted table and slid under gravity. At the onset of

sliding, the pore pressure declined, presumably

because of dilation, but then, when motion became

steady, pore pressure rose and started fluctuating,

with pressure gradients transiently supporting the

grains layer overburden. This description is very

similar to our observation of pore-pressure evolution

during drained simulations D11 and D12 that showed

transient liquefaction events.

6.2. The Evolution of Pore Pressure with Undrained

Conditions

Here we discuss the pore pressure response to

granular skeleton deformation with undrained bound-

ary conditions. Figures 15b and 16a show good

correlations between the evolution of pore pressure

and the evolution of porosity for our undrained

simulations. Indeed, Eq. 34 predicts that with

undrained conditions (when De-1 = 0) pore-pressure

evolution should be elastic-like, with DP that depends

on DU: To further validate this relation, Figs. 15d and

16c compare undrained simulation (U13 and U14)

results and the analytical prediction of Eq. 34, for the

relationship between DP and �DU; and show good fit

when assigning the initial porosity for U in Eq. 34.

6.2.1 Simulations of Liquefaction and Hardening

Events with Undrained Conditions

Our simulations show that when the boundaries are

undrained, the response of shear resistance to shear

deformation depends on the initial packing. When the

system is initially densely packed, dilative shear

causes pore pressure to decrease relative to its initial

value (Fig. 15b). Momentary compaction events will

only slightly increase the pore pressure, but if the

porosity remains higher than its initial value, the pore

pressure cannot increase above its initial value. The

decreasing pore pressure causes the effective normal

stress and shear resistance to rise. Such ‘‘dilatancy

hardening’’ may have important implications for

nucleation of earthquakes along fault gouge (SCHOLZ

et al., 1973; SCHOLZ, 1978, 2002; LOCKNER and

BYERLEE, 1994; SAMUELSON et al., 2009), possibly

retarding the onset of earthquake instability. How-

ever, when the accumulating tectonic load eventually

reaches the system shear resistivity, the slip may

potentially be more rapid. This may occur, for

example, when the initial slip damages the sealed

boundaries, which enables fluid flow into the gouge

layer. As a result, the effective stress will decrease

abruptly, the tectonic shear stress will be far greater

than the system shear resistivity, and runaway

accelerating slip may develop. This is a plausible

mechanism for dynamic weakening by fluid inflow.

When the layer is initially loosely packed, com-

paction occurs with shear, and pore pressure quickly

rises. Equation 34 predicts that for the pore pressure

to increase to the value of the normal stress, a

relatively small change of porosity of DU ¼ �2�
10�4 is required (for pore water). The volumetric

strain in simulation U14 that results from such a

small reduction of porosity is 0.027%. Such a small

strain may not be measurable in the laboratory, and it

may seem that liquefaction occurs without any

volumetric strain. Simulation U14 shows that from

the onset of liquefaction and onward, the pore

pressure remains at a constant value that exactly

balances the external load, P = rn. This steady state

is achieved because a normal force balance on the top
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and bottom walls is achieved, and further volumetric

strain is prevented. In simulation U14, the stress

chains that detach at the onset of liquefaction

(Fig. 17b) do not rejoin. As a result, shear deforma-

tion is completely accommodated within the fluid

phase, and the system loses its shear resistance as

depicted by the zero apparent friction in Fig. 16b.

6.2.2 Experiments on Liquefaction and Hardening

with Undrained Conditions

According to conventional understanding, poor drain-

age is believed to be a favorable condition for

liquefaction. For that reason most engineering studies

of the process of soil liquefaction used undrained

boundary conditions. Empirical studies of both cyclic

loading (simulating the passage of shear waves

during earthquakes) (SEED and LEE, 1966; PEACOCK

and SEED, 1968; FINN et al., 1971), and continuous

loading (simulating mass sliding under gravity)

(CASTRO, 1975) have confirmed that loosely packed

systems are more prone to liquefaction under

undrained conditions. Furthermore, when cyclic

loading was stress-controlled, sand layers showed

an abrupt increase in their strain amplitude at the

point of liquefaction. According to simulation U14,

the increase of strain amplitude may be attributed to

detachment of stress chains during liquefaction,

which transfers support of the external load from

the grains to the pore fluid, which has significantly

smaller resistance to shear.

The mechanism of liquefaction was attributed to

the tendency of loose soil to compact under drained

conditions (SAWICKI and MIERCZYNSKI, 2006), a ten-

dency that was observed in dry and completely

drained experiments (YOUD, 1972). However, to the

best of our knowledge, volume reduction has never

been reported during undrained experiments, and the

relationship between pore volume reduction and pore

fluid pressurization was not acknowledged. The

reason is probably limitations in measuring the tiny

strains associated with compaction under undrained

conditions, which may be as small as one hundredth

of a percent. Unlike experiments, even very small

pore volume change may be easily measured during

simulations. Indeed, pore volume reduction is mea-

sured in our loose undrained simulation U14, and was

shown to lead to liquefaction in accordance with

Eq. 34.

Although undrained conditions have been shown

to cause liquefaction when loading a loose specimen,

they are also believed to cause hardening by pore

volume increase (dilation) and pore pressure decrease

when loading a densely packed layer (RUDNICKI and

CHEN, 1988; SCHOLZ, 2002). MOORE and IVERSON

(2002) performed stress-controlled shear experiments

on dilative saturated granular layers and reported that

shearing of fine-grained sediments produced smaller

deformation velocity than shearing of coarse-grained

sediments, presumably because the fine sediments

contributed to poor drainage leading to pore pressure

reduction and hardening (higher shear resistance)

upon dilation. When SAMUELSON et al. (2009) per-

formed a double direct shear experiment on well-

drained grain layers they observed no hardening upon

dilation, because the good drainage enabled immedi-

ate pore fluid inflow into the newly generated pore

volume, which prevented pore pressure reduction and

layer strengthening. Indeed, simulation U13 confirms

that when an undrained, initially dense system is

sheared, dilation will cause pore pressure reduction

and layer hardening (with increased apparent friction,

Fig. 15c). When an initially dense but drained system

is sheared, hardening may occur transiently (as in the

onset of simulation D9, Fig. 8d, f) if the internal

permeability is relatively low (leading to De.1). If

the internal permeability is high and De � 1, no

hardening will be observed (Fig. 8c, e).

6.3. Estimating Liquefaction Potential

Following the analysis presented so far we may

attempt to estimate the potential for liquefaction with

various boundary conditions and different parame-

ters. A precondition for liquefaction is the occurrence

of compaction. When drainage is poor the overall

compaction matters, and when drainage is good the

rate of compaction matters. Indeed, many engineer-

ing analyses of liquefaction focus on the compaction

potential as a function of the initial packing (CASTRO,

1975) and of the applied cyclic strain (VUCETIC,

1994), where the applied cyclic loading presumably

induces progressive compaction of a loosely or

unevenly packed systems (YOUD, 1972). In the
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current analysis of pore-pressure evolution mecha-

nisms, variables such as compaction potential or

number of loading cycles are not accounted for

explicitly. For that reason, when we estimate the

liquefaction potential in the following discussion we

do not account explicitly for the initial packing and

for the amount of imposed shear strain. We do,

however, introduce a statistical factor that takes into

account the chances of high enough pore pressure

occurring in a large enough zone to completely

detach a layer of stress chains during an applied shear

strain. This statistical factor may be thought of as the

statistical equivalent to empirical measurements such

as the number of shear cycles needed for liquefaction.

When estimating the potential for liquefaction,

one should first calculate the system Deborah number

in order to decide which of the pore-pressure

evolution regimes is dominant. Figure 20 summarizes

the various options. If De � 1 and viscous-like

evolution of pore pressure is expected to dominate, a

first-order approximation of the liquefaction potential

is possible by use of Eq. 36. Equation 36 gives the

expected pore pressure as a function of the temporal

derivative of the porosity and the system variables.

Approximating dhUðf; tÞi=dt during compaction as

�Vsh=f; and accounting for the pore pressure at the

center of the system, z = 0, Eq. 36 becomes:

PdðtÞ �
gVshf
2k0

; ð38Þ

where Pd is the approximated pore pressure for

drained conditions (with De � 1). Dividing Eq. 38

by rn gives a non-dimensional pressure to overburden

ratio:

Pd

rn
¼ gVshf

2k0rn
: ð39Þ

When Pd/rn� 1, liquefaction is not expected,

because the compaction induced pore pressure is

significantly smaller than the applied external stress,

rn. When Pd/rn C 1 liquefaction is possible, because

the evolving pore pressure may reach and even sur-

pass the value of rn. On calculation of the pressure-

to-overburden ratio from Eq. 39 for the simulations,

it is found that in simulations D1–D5 Pd/rn \ 1 and,

indeed, no liquefaction is observed. In simulations D6

and D7, Pd/rn& 1 but the pore pressure maxima are

still observed to be smaller than rn. For simulations

D8–D9, Pd/rn [ 10, and pore pressure maxima

exceed rn. However, these maxima occur in highly

localized zones, a situation that is shown to be

insufficient to cause complete loss of shear strength

and liquefaction. In simulations D11–D12, Pd/

rn [ 100, and the pore pressure is shown to exceed

rn in relatively large zones, and to cause liquefaction

(Figs. 12e and 14e). Note that simulation D10 is not

taken into account here because it has De = 1.

It is concluded that the condition Pd/rn [ 1 is not

sufficient for liquefaction, however it is still expected

that larger ratios will lead to larger chances of

liquefaction. Our simulations show that when Pd/

rn [ 100 liquefaction occurs (simulations D11 and

D12). It is proposed that the threshold of 100 is

suitable for use as a statistical indicator of the chance

of compaction being fast enough in a large enough

area during the course of shear strain application. In

that sense it is possible to rewrite Eq. 39 as

LPd ¼ k
gVshf
2k0rn

; ð40Þ

where LPd is the liquefaction potential for drained

conditions, and k � 1 is an empirically determined

factor, chosen to make LPd = 1 align with the onset

of liquefaction. The value of LPd in accordance with

Eq. 40 with k = 0.01 exactly distinguishes between

simulations that do not generate liquefaction and are

characterized by LPd \ 1, and simulations that gen-

erate liquefaction and are characterized by LPd [ 1

(Table 1). Yet it is not completely clear whether and

how k scales with system size and system

dimensionality.

To estimate the liquefaction potential of field

cases consider, for example, a layer of saturated soil

buried at depth 10 m (this is also the distance to the

boundary, f) of permeability 10-10m2. For liquefac-

tion to occur, the excess pore pressure should reach

the initial effective stress at depth of 10 m, which is

*0.15 MPa. According to Eq. 40 with k = 0.01, for

LPd [ 1, the peak ground velocity (PGV) should be

Vsh [ 0.3 m/s. Indeed, KOSTADINOV and TOWHATA

(2002) estimated that the minimum PGV that may

generate soil liquefaction is 0.1 m/s. This observation
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indeed suggests that in the field, also, k may be

approximated as 10-2.

When De 	 1, evolution of the average pore

pressure in the system is elastic-like and follows

Eq. 34. Here, liquefaction potential may be estimated

by use of the non-dimensional pressure-to-overbur-

den ratio:

LPu ¼ �
DU

bUð1� UÞrn
: ð41Þ

Liquefaction is expected when LPu C 1. For our

undrained initially loose simulation U14, Fig. 16a

shows that a porosity reduction of DU ¼ �2� 10�4

has led to liquefaction. Such a porosity reduction

gives LPuJ1 in Eq. 41. Note that a statistical factor

is not required here, because Eq. 34 is for the average

pore pressure, and because, in simulation U14, the

pore pressure homogenizes rapidly within the system,

LPu C 1, which means that the pore pressure is of the

order of the applied normal stress throughout the

whole system.

To estimate the liquefaction potential of a field

case with De 	 1, consider, for example, a thin

gouge layer within a fault zone that is buried at depth

of 1 km, and is bounded by undrained blocks. It is

still assumed that the initial pore pressure within the

gouge is hydrostatic. For liquefaction of the gouge,

the pore pressure should reach a value of rn = 15

MPa. Assuming the initial porosity of the gouge is

0.1, then, according to Eq. 41, to achieve LPu = 1,

the reduction of porosity should be DU ¼ �6� 10�4:

When De & 1, the evolution of pore pressure is

expected to be determined both by viscous-like

and elastic-like behavior. In accordance with the

approximate model presented by GOREN et al. (2010,

their Appendix B), it is suggested that under such

conditions the pore pressure in these mixed-mode

systems evolves as:

Pðz; tÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gUVshd

pbk0

s

: ð42Þ

For our simulation D10 with De = 1, Eq. 42 predicts

P = 233 MPa. This prediction gives an order of

magnitude approximation under the assumption that

deformation is localized at the system’s center

(GOREN et al., 2010, their Appendix B). In simulation

D10 the deformation zone is more widespread and the

maximum pore pressure that was generated is

80 MPa. To estimate liquefaction potential, Eq. 42 is

divided by rn and the statistical nature of the pore-

pressure evolution is taken into account by use of the

factor k, similarly to Eq. 40:

LPm ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gUVshd

pbk0r2
n

s

: ð43Þ

For simulation D10, and again using k = 0.01,

Eq. 43 gives LPm & 0.1. Indeed, high pore pressure

that surpasses rn is generated, but only in localized

zones, and complete loss of shear strength is not

observed in this simulation.

7. Conclusions

In this work, a fully coupled model for the

mechanics of fluid-filled granular media is developed

from two components: A continuum formulation that

describes the evolution of pore pressure in response

to granular matrix deformation, and a granular

Figure 20
Diagram suggesting paths for estimating liquefaction potential for grains–fluid systems under shear
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dynamics algorithm that solves the grain dynamics.

The resulting fully coupled model is extremely gen-

eral, because it is capable of simulating a variety of

loading scenarios leading to both reversible and

irreversible granular matrix deformation, with a

variety of drainage conditions for the pore fluid.

Furthermore, in the coupled model we do not

explicitly implement the law of effective stress on the

micro (granular) level, but apply to the grains forces

that arise from the pressure gradient in the pore fluid.

Yet, we have validated that the effective stress law

arises macroscopically. To the best of our knowledge

this is the first time that the micro origin of the macro

effective stress law has been demonstrated.

Analysis of the pore-fluid formulation together

with simulation results reveals that evolution of pore

pressure may be described as having two types of

end-member behavior, ‘‘viscous-like’’ and ‘‘elastic-

like’’. These two types of behavior control pore fluid

pressurization and depressurization and the dominant

terms in the pore-pressure equation. The choice of

which mechanism dominates depends on the Deborah

number, De, which determines whether the system is

effectively drained or undrained. When drainage is

good (De � 1), pore-pressure evolution is viscous-

like, because it is a function of the volumetric strain

rate (pore volume strain rate), and it depends on the

fluid viscosity and the inverse of the permeability.

When drainage is poor (De 	 1), pore-pressure

evolution is elastic-like, with pore pressure variations

being a function of the overall volumetric strain (pore

volume strain). Here, the pore pressure is also a

function of fluid compressibility. Depending on the

system variables and the boundary conditions, pore-

pressure evolution may follow one of these end-

members, or be a mixture of the two.

Simulations of fluid-filled granular layers under

constant normal stress and constant shear velocity

reveal that pressurization and liquefaction may occur

in initially densely-packed layers also, as long as the

boundaries are drained. Such conditions were previ-

ously often believed to be resistant to liquefaction

(SEED et al., 1976). Here we show that liquefaction

events can occur under such conditions, because

viscous-like pore-pressure evolution (that arises when

some drainage exists) is a function of the instanta-

neous rate of change of porosity and has ‘‘no

memory’’ of the initial void ratio of the layer. Sim-

ulations with initially densely-packed undrained

boundaries show ‘‘dilatancy hardening’’ with pore

pressure reduction and an increase of the resistance of

the layer to shear. Shear of loose initial-packing

under undrained conditions leads to a steady-state

liquefaction upon very small volumetric strain (which

may not be measurable in the laboratory).

Finally, we conclude the manuscript by address-

ing the two questions that were posed in the

‘‘Introduction’’:

1. what is the physics behind the pore-pressure

control of the shear strength? and

2. what processes alter the pore pressure?

To answer the first question we have seen that when

pore pressure rises to the value of the applied normal

stress, then the force exerted by pressure gradients

across the grains may be large enough to counter-

balance the solid stresses, and thus acts to detach stress

chains and separate previously contacting grains.

When a large enough region experiences this loss of

grain contact, frictional resistance to sliding of the

layer is suppressed and shear is accommodated within

the pressurized fluid phase. The answer to the second

question is that grain compaction causes the pore

pressure to rise and grain divergence causes the pore

pressure to decrease. The magnitude of pore pressure

change depends on both the volumetric strain rate

under well-drained conditions and on the absolute

volumetric strain under undrained conditions.
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Appendix 1: Pore Fluid Pressure Evolution

for De � 1

In this section, the evolution of pore pressure is

studied for drained boundaries with De � 1. Under
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such conditions, the time-dependent term in Eqs. 15

and 18 becomes negligible compared with the diffu-

sion term because De � 1 in the non-dimensional

Eq. 30. Equation 15 then becomes:

r � kðx; tÞrPðx; tÞ½ � ¼ gr � usðx; tÞ: ð44Þ

Formulation similar to Eq. 44 was developed by

IVERSON (1993) for drained conditions. For the 1D

case, after integration, Eq. 44 becomes:

oPðz; tÞ
oz

¼ g
k0

uszðz; tÞ þ CðtÞ; ð45Þ

where C(t) is an integration factor, k(z, t) is approx-

imated as the permeability scale factor, k0, and usz is

the horizontally averaged z component of the solid

velocity. In order to express the pressure as a function

of the temporal derivative of the porosity, oU=ot as in

Eq. 18, we use the 1D form of Eq. 17:

ousz

oz
¼ 1

1� U
oU
ot
: ð46Þ

Integrating Eq. 46 between the center of the layer at

z = 0 and some distance z from the center (Fig. 7)

results in:
Z z

0

ouszðz0; tÞ
oz0

dz0 ¼
Z z

0

1

1� Uðz0; tÞ
oUðz0; tÞ

ot
dz0

¼
Z z

0

� o½lnð1� Uðz0; tÞÞ�
ot

dz0

¼ � o

ot

Z z

0

lnð1� Uðz0; tÞÞdz0

� � o

ot

Z z

0

�Uðz0; tÞ � Uðz0; tÞ2

2

 !

dz0

� � o

ot

Z z

0

�Uðz0; tÞdz0

¼ ohUðz; tÞi
ot

z; ð47Þ

where hUðz; tÞi is the average porosity between the

system’s center and distance z from the center.

Equation 47 then leads to the relationship:

uszðz; tÞ ¼ uszð0; tÞ þ
ohUðz; tÞi

ot
z: ð48Þ

Substituting Eq. 48 in Eq. 45 results in:

oPðz; tÞ
oz

¼ g
k0

ohUðz; tÞi
ot

zþ C1ðtÞ: ð49Þ

Integrating Eq. 49 between the layer’s center and

distance z leads to:

Pðz; tÞ ¼ Pð0; tÞ þ g
k0

dhUðz; tÞi
dt

z2

2
þ C1ðtÞz; ð50Þ

where the rate of change of the average porosity,

dhUðz; tÞi=dt; is approximated as uniform in space.

Requiring complete drainage across the boundaries,

i.e. Pðf; tÞ ¼ Pð�f; tÞ ¼ 0; Eq. 50 leads to:

Pðz; tÞ ¼ � g
2k0

dhUðf; tÞi
dt

f2 � z2
	 


: ð51Þ
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Sedimentation instabilities: Impact of the fluid compressibility

and viscosity. Phys. Rev. E, 82(5), 2010. doi:10.1103/

PhysRevE.82.051302.

A. NUR and J. D. BYERLEE. An exact effective stress law for elastic

deformation of rock with fluids. J. Geophys. Res., 76(26):6414–

6419, 1971.

Y. OKADA and H. OCHIAI. Coupling pore-water pressure with dis-

tinct element method and steady state strengths in numerical

triaxial tests under undrained conditions. Landslides, 4:357–369,

2007. doi:10.1007/s10346-007-0092-1.

T. OSSWALD. Polymer Processing Fundamental. Hanser/Gardner,

Cincinnati, Ohio, 1998.

W. H. PEACOCK and H. B. SEED. Sand liquefaction under cyclic

loading simple shear conditions. J. Soil Mech. Found. Div. Proc.,

94(SM3):689–708, 1968.

O. POULIQUEN, C. CASSAR, P. JOP, Y. FORTERRE, and M. NICOLAS.

Flow of dense granular material: towards simple constitutive

laws. J. Stat. Mech: Theory Exp., JUL 2006. doi:10.1088/

1742-5468/2006/07/P07020.

S. R. PRIDE. Relationships between seismic and hydrological

properties. In Y. RUBIN and S. S. HYBBARD, editors, Hydrogeo-

physics, pages 253–291. Springer, Netherlands, 2005.

J. F. RICHARDSON. Incipient fluidization and particulate system. In J.

F. DAVIDSON and D. HARRISON, editors, Fluidization, pages 25–64.

Academic Press, London, 1971.

P.-Y. F. ROBIN. Note on effective pressure. J. Geophys. Res.,

78(14):2434–2437, 1973.

L. RONDON, O. POULIQUEN, and P. AUSSILLOUS. Granular collapse in

a fluid: role of the initial volume fraction. Physics of Fluids.

2011, accepted

J. W. RUDNICKI and C. H. CHEN. Stabilization of rapid frictional slip

on a weakening fault by dilatant hardening. J. Geophys. Res.,

93(B5):4745–4757, 1988.

M. O. SAAR and M. MANGA. Depth dependence of permeability in

the Oregon Cascades inferred from hydrologic, thermal, seismic

and magnetic modeling constraints. J. Geophys. Res.,

109(B04204), 2004. 10.1029/2003JB002855.

A. SAGY and E. E. BRODSKY. Geometric and rheological asperities

in an exposed fault zone. J. Geophys. Res., 114, 2009. doi:

10.1029/2008JB005701.

J. SAMUELSON, D. ELSWORTH, and C. MARONE. Shear induced

dilatancy of fluid saturated faults: experiment and theory.

J. Geophys. Res., 2009. Submitted.

A. SAWICKI and J. MIERCZYNSKI. Developments in modeling lique-

faction of granular soils, caused by cyclic loads. Appl. Mech.

Rev., 59:91–106, 2006. doi:10.1115/1.2130362.
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