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Abstract In this contribution we present experiments of an
adaptive locomotion controller on a compliant quadruped
robot. The adaptive controller consists of adaptive frequency
oscillators in different configurations and produces dynamic
gaits such as bounding and jumping. We show two main re-
sults: (1) The adaptive controller is able to track the reso-
nant frequency of the robot which is a function of different
body parameters (2) controllers based on dynamical systems
as we present are able to “recognize” mechanically intrinsic
modes of locomotion, adapt to them and enforce them. More
specifically the main results are supported by several experi-
ments, showing first that the adaptive controller is constantly
tracking body properties and readjusting to them. Second,
that important gait parameters are dependent on the geome-
try and movement of the robot and the controller can account
for that. Third, that local control is sufficient and the adap-
tive controller can adapt to the different mechanical modes.
And finally, that key properties of the gaits are not only de-
pending on properties of the body but also the actual mode of
movement that the body is operating in. We show that even
if we specify the gait pattern on the level of the CPG the
chosen gait pattern does not necessarily correspond to the
CPG’s pattern. Furthermore, we present the analytical treat-
ment of adaptive frequency oscillators in closed feedback
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loops, and compare the results to the data from the robot
experiments.
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1 Introduction

The current state of the art in robotic legged locomotion
does not compare in any means to legged locomotion ob-
served in the animal kingdom. The fact that there already
has been a large research effort devoted to robotic locomo-
tion indicates that it is not just a matter of better implement-
ing well-known basic principles. Rather, it points to a more
fundamental problem, namely that the we do not know all
the required basic principles. Hence the way robots are built
and controlled simply do not support fast, efficient, robust
and agile locomotion.

While it has been realized for a while now that (1) com-
pliance might be a key factor, (2) the body-environment sys-
tem is self-organizing so locomotion can not be understood
in isolation, and (3) a high degree of adaptation is required,
systems which implement all these key factors are rare. In
this article, we show experiments including to some extent
all the three principles.

An important concept from neurobiology which has stim-
ulated a lot of research in robotics is the concept of the Cen-
tral Pattern Generator (CPG). It has been realized that in ver-
tebrates the neural centers generating the high-dimensional
coordinated gait patterns are located in a distributed fash-
ion in the spine rather than in higher brain centers (Grillner
1985). The CPG is under modulatory control by the brain.
Subsequently, many researchers have taken up the ideas and
many studies ranging from theoretical (Schöner et al. 1990;
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Collins and Richmond 1994) to experimental (e.g. Tsuchiya
et al. 2002; Kimura et al. 2004; Morimoto et al. 2006; Endo
et al. 2005; Ijspeert 2001; Crespi and Ijspeert 2006; Ijspeert
et al. 2007) about the use and properties of CPGs have been
done. One of the main motivations of preferring CPGs over
other trajectory generation methods is their limit cycle be-
havoir and attractor properties. Yet, most applications of
CPGs are on stiff, fully actuated robots where the trajec-
tories given by the CPG are accurately followed by help of
high-gain control (see e.g. Kimura and Fukuoka 2004 for
an exception). It is very unlikely that CPG work like this
in nature. As observed by Marc Raibert, the central nervous
system does not control the body, it can only make sugges-
tions (Raibert and Hodgins 1993). In this contribution, we
show exactly the application of Raibert’s insight. There have
been difficulties in putting these ideas to realization. We ar-
gue that parts of these are due to an inappropriate method-
ology which is unable to deal with such compliant and self-
organizing systems in a methodological fashion. We propose
to use non-linear systems (oscillators) where we can exploit
the intrinsic self-organizing capability of such systems. The
desired controller dynamics are designed as an attractor state
of the system. The attractor dynamics are determined by the
body-environment system.

The controllers that we use in this article are loosely in-
spired by the CPG concept in that they are dynamical sys-
tems which can show their own coordinated spatio-temporal
patterns. The controller consists of adaptive frequency os-
cillators. We illustrate their novel property of being truly
adaptive, in that the controllers tune key parameters such as
frequencies to match the body properties of the robot.

We show the use of the adaptive controllers on the com-
pliant under-actuated quadruped robot PUPPY II which has
strong body dynamics. As previously shown (Iida et al.
2005), PUPPY II can show many different modes of loco-
motion, dependent of many critical parameters. Such modes
include bounding (alternating) gaits, jump gaits, gaits with
higher periodicity, etc. In the previous studies these parame-
ters where found/tuned manually (Iida et al. 2005) and em-
phasized the need to adapt to the different environments and
body conditions without demonstrating how. In this contri-
bution we show a first attempt at such an adaptive controller,
and we take the concept further and even allow some of the
parameters to be determined by the robot-environment sys-
tem itself, namely phase (i.e. gait pattern) and the frequency.
This means that we exploit the self-organization capabili-
ties of the body-environment system to simplify the control
problem and improve the controller performance.

More precisely, we investigate on the following four main
topics: (1) Robustness—One central feature which makes
attractor dynamics an interesting tool to design controllers
or, in the wider sense, behaviors for a robot is that attrac-
tor dynamics is very robust under noisy conditions and per-
turbations. We show how concepts earlier only presented in

simulations (Buchli and Ijspeert 2004b; Buchli et al. 2005)
are very robust with the noisy signals of real sensors and
therefore the simple systems developed in theory and sim-
ulations can readily be implemented in real world systems.
(2) Self-organization of gait—We show that even if we spec-
ify the gait pattern on the level of the CPG (by full cou-
pling) the chosen gait pattern (measured by the foot-fall pat-
tern) does not necessarily correspond to the CPGs pattern.
There are modes which are preferred due to the mechan-
ics and its coupling to the environment. We show that con-
trollers based on dynamical systems as we present are able
to “recognize” such mechanically intrinsic modes of loco-
motion, adapt to them and enforce them. (3) Tracking of res-
onant frequency—It is well known that a body, of an animal
or robot, has specific resonant frequencies (e.g. from elas-
ticity or pendulum dynamics). Less studied however is how
these frequencies depend not only on the spring coefficients
of the compliant elements, but also on the posture and type
of gait. We will show that they do depend on the posture
and type of gait and we will present an adaptive controller
which can account for this dependence. (4) Theory—Finally,
we show that we have a theory to understand adaptive fre-
quency oscillators in feedback loops. Generally speaking,
this gives us a tool to work with resonant dynamics of any
type of system, and therefore adaptive frequency oscillators
can be used to either find them or avoid them.

This paper is organized as follows. We first briefly re-
view related work. We then introduce the adaptive frequency
oscillator and show the structure of the adaptive controller
(Sect. 2). Then the hardware setup is introduced (Sect. 3),
followed by presentation of the results which is split into two
parts. Firstly we show experimental results of adaptive con-
trollers on a compliant robot, highlighting different impor-
tant aspects and findings (Sect. 4), and secondly, we show
theoretical results about the convergence behavior of such
adaptive controllers (Sect. 5).

Related work Early work on spring dynamics in animal
models can be found in Full and Koditscheck (1999) and
important contributions from the robotics community show-
ing self-stabilization and simple control in robot with ap-
propriate body dynamics can be found in McGeer (1990),
Collins et al. (2005), Kimura and Fukuoka (2004), Cham
et al. (2004), Raibert (1990), Iida et al. (2005).

Recent studies on mammals have shown that many mus-
cle groups in the mammalian legs effectively are anti-gravity
muscles and do not directly contribute to locomotion (Fis-
cher and Blickhan 2006). These studies have sparked quite
some theoretical treatment of locomotion with legs with
spring-like properties (Geyer et al. 2004).

While the idea to “adapt” to resonant body dynamics is
not new, usually the systems employed work more in a reac-
tive fashion than truly adaptive, i.e. their parameters remain
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constant, and especially do not reflect the body parameters
after the adaptation process. See Buchli et al. (2006c) for a
more in-depth discussion of this issue. In the frame of oscil-
lators this typically means that synchronization (i.e. phase
locking) is exploited. However, as we will explain later, the
adaptive frequency property that we exploit in our study is a
fundamental extension of synchronization or phase locking.
An interesting example is Verdaasdonk et al. (2007). While
still not truly adaptive, the remarkable result of this study
is that the locking region is extremely large. In Iwasaki and
Zheng (2006), Futakata and Iwasaki (2008) the authors ana-
lyze oscillators in feedback with linear plants. Although the
employed oscillators are also not adaptive oscillators, it is to
our knowledge the only contributions which systematically
employ linear systems theory to the analysis of oscillators
in feedback with plants. In Reddy et al. (2000) the authors
analyze Hopf oscillators, with feedback. Again the oscilla-
tors are traditional non-frequency adaptive oscillators. The
feedback is either linear, pure time delay and/or non-linear.
Under the limits of a comparison of a pure time shift system
to a minimum phase linear system the results do align with
our analysis.

The use of adaptive frequency oscillator for adapting to
resonant body dynamics has been first presented in Buchli
and Ijspeert (2004b). Further result on a more complex ro-
bot simulation has been presented in Buchli et al. (2005).
In Buchli et al. (2006b) we presented first preliminary re-
sults of the adaptation on a real robot. Here we present more
detailed data for different experiments. The theoretical un-
derstanding of adaptive frequency oscillators has been ad-
vanced in Righetti et al. (2006) by proving its convergence
and first results on the treatment of AFOs in feedback loops
are shown in Buchli et al. (2006b).

2 Adaptive controller

In this section we introduce the dynamical systems and
methods that we use to construct the controllers of the robot.
The controller consists of one or several oscillators mutually
coupled and influenced by sensory information.

The building blocks of our controllers are oscillators.
More specifically, we use the Hopf oscillator (Hopf 1942):

q̇ = FH (qi ) + p =
[(

μ − (q2
1 + q2

2 )
)
q1 + ωq2(

μ − (q2
1 + q2

2 )
)
q2 − ωq1

]
+ p (1)

where, q = [q1, q2] are the state variables,
√

μ is the steady
state amplitude, and ω the intrinsic frequency of the oscilla-
tor. p = [p1,p2] is an additive input to the oscillator. The
nice feature of this oscillator is its harmonic limit cycle,
i.e. we can write the steady state solution of the system (1)
without perturbation (p = 0) by q1(t) = √

μ cos(ωt + φ0),

q2(t) = √
μ sin(ωt +φ0), where φ0 is the angle of the initial

condition q(0). The harmonic limit cycle allows to analyti-
cally determine the phase sensitivity and this allows to deter-
mine the phase relationship to other oscillators for example
(Buchli and Ijspeert 2004a).

The oscillators receive input from the sensors of the ro-
bot. The form of the input is different for different exper-
iments. In general the sensor values are converted into a
zero-mean signal by a high-pass filter and multiplied by a
coupling constant to achieve a suitable input range (typi-
cally values are between −1 and 1). In other words p1 =
Kss(t) + · · · where s is the (filtered) sensor value.

Adaptive frequency oscillators In some experiments the
oscillators will be extended to adaptive frequency oscilla-
tors. Adaptive frequency oscillators have been introduced in
Buchli and Ijspeert (2004b) and generalized and treated in
more detail in Righetti et al. (2006).

The idea behind adaptive frequency oscillators is that we
endow the oscillators with the capability to tune their intrin-
sic frequency to the frequency of a perturbation. This can be
achieved by posing the following general rule as differential
equation for the intrinsic frequency (or a parameter which
tunes the intrinsic frequency):

ω̇ = −τp1
q2√

q2
1 + q2

2

(2)

where τ is an adaptation constant. It is important to real-
ize, that the adaptive frequency property that we exploit in
our study is a fundamental extension of synchronization or
phase locking. (1) The adaptation process changes the intrin-
sic frequency and not only the resulting frequency, (2) the
adaptation generally has an infinite basin of attraction (i.e.
for every initial condition ω(0) it will converge to a fre-
quency nωF as opposed to the limited range in which syn-
chronization can take place, also known as Arnol’d tongues
structure, Arnol’d 1983; Pikovsky et al. 2001), (3) the fre-
quency stays encoded in the system when the input is re-
moved (e.g. set to zero).

Network of oscillators In some experiments, we use small
networks of oscillators. Networks of oscillators can be built
by introducing a functional coupling between oscillators, i.e.
extending p by an additional summand comprised of the sig-
nals of the other oscillators.

p = · · · +
∑
j

λjiPjiRjiqj
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here λij is the strength of coupling from oscillator j to os-
cillator i, P is the, binary, coupling matrix and R is the rota-
tion matrix (examples of the coupling will be given later).

R =
(

cos θji − sin θji

sin θji cos θji

)
(3)

The use of harmonic oscillator makes it possible to design
arbitrary phase relationships into networks of such oscil-
lators. We use the method outlined in Buchli and Ijspeert
(2004a) which is based on the idea that we can rotate the
signal of an oscillator to introduce phase shifts. As shown
in Buchli and Ijspeert (2004a) choosing θ is equivalent in
specifying the phase shift between the oscillators.

So the complete expression reads

q̇i = FH (qi ) +
∑
j

λjiPjiRjiqj

︸ ︷︷ ︸
coupling

+[Kk,isk(t)︸ ︷︷ ︸
sensorinput

,0]T (4)

3 Hardware

PUPPY II is a 8 DOF experimental quadruped robot de-
signed by F. Iida (2005). For the purpose of this article, its
main interesting characteristics are that it is under-actuated
and has spring dynamics in the legs. See Fig. 1 for an il-
lustration of the robot. We describe in turn the important
characteristics of the robot.

Mechanical system Each leg has a rotational “hip” joint
and a knee joint. Only the hip joint is actuated, by attach-
ing the leg directly to a strong RC servo motor. The knee
joint features a spring (cf. Fig. 1 for the geometry of the
leg). Thus, the robot is underactuated, only 4 of the 8 DOF
are actuated and in addition, due to the springs, it has a very
pronounced intrinsic dynamics in form of resonant frequen-
cies. The weight of the robot is roughly 0.7 kg. The robot is
energetically not autonomous, the power is fed to the robot
by a cable.

Sensors and motors The robot is outfitted with 4 different
sensor modalities: Force sensitive resistors on the body of
the robot and under the feet of the robot, 3-axis accelera-
tion sensor, IR-position sensitive detector sensor, and poten-
tiometers to measure the knee angles. In the presented work
we use the knee angle sensors and the inertia sensor. Those
sensors convey a lot of information about the movement of
the robot. The motors of the robot are strong off-the-shelf
RC servo motors which are controlled in position.

Fig. 1 (a) PUPPY II, a robot “dog” with passive dynamics (cf. springs
in the knee joints) and several sensor modalities. (b) Mechanical struc-
ture of PUPPY II and sensor placement: 1, 3: FSR (Force Sensitive
Resistors) 2, 4: Potentiometers of the passive joints 5: 3-axis accelera-
tion sensors 6: PSD (Position Sensitive Detector). Circles with a cross
denote actuated joints, blank circles denote passive joints. (c) Control
structure used in the experiments: One of the sensor channels is used
to perturb a controller consisting of one or several adaptive frequency
Hopf oscillators, the output of the oscillator (a state variable) is used to
send motor commands (position control). Thus, this system constitutes
a nonlinear feedback loop

Control loop The oscillators are integrated with Euler
integration on a off-board computer with a time-step of
ts = 10−3 s. The sensor values are read and calculated set-
points are sent to the robot via the USB bus, with a sam-
pling frequency of 50 Hz, i.e. every 20th integration step the
values are read out and the sensor values are updated. The
faster integration step for the dynamical system is to ensure
the numerical accuracy of the integration scheme.

The signal of the oscillator is converted into a desired
angle for the leg by a linear transform

αt = α1x(t) + α0 (5)

where αt is the desired angle for the leg, α0 is the center
angle, α1 is the amplitude for a signal of amplitude 1. Later
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when presenting the results, we will list α1 and α0 for each
experiment.

There is a low level controller (PD controller in the ser-
vos) which controls the position of the motor. The control
performance of the low-level position control at the frequen-
cies used for our experiments is sufficiently high that we can
assume that the actual angle of the leg corresponds to the
desired angle αt . The delay in the feedback loop is also suf-
ficiently small that it does not pose an issue for the presented
application.

Posture For each experiment we will characterize the setup
of the robot in the following way (1) controller structure,
i.e. number of oscillators, connection to sensors, motors and
mutually (2) posture (cf. Fig. 2) of the robot and amplitude
of movements for a signal of amplitude x(t) = 1 and the
center angle, i.e. the angle the leg assumes for a signal of
amplitude x(t) = 0. It is important to note these angles de-
termine implicitly the posture of the robot, i.e. if the body is
horizontal or more tilted forward or backwards.

Finally, in Fig. 3, we present an illustration of a typical
gait of PUPPY II with the described controller and mechan-
ical features. PUPPY II locomotes most efficiently (in terms

Fig. 2 Parameters describing the posture of the robot: center angle α0,
i.e. angle for zero signal x(t) = 0, angle α1 corresponding to a signal of
amplitude x(t) = 1. αt is the actual position of the leg, α0 is the offset
(compared to a vertical position) of the center position of the leg. Note
that the vertical position denotes α0 = 0, legs titled backwards from
this position have negative angles, and vice versa. This means the larger
this angle, to more tilted forward is the leg. α1 is the amplitude of the
leg for a signal of amplitude 1 (measured against α0)

of forward velocity) with anti-phase (bounding) gaits but
can also locomote with an in-phase (jump) gait.

4 Experimental results

In the following we describe several experiments which
demonstrate some of the interesting features of the adap-
tive controller working together with the compliant robot.
We use the experimental results to illustrate the two main
results: (1) The adaptive controller is able to track the reso-
nant frequency of the robot which is a function of different
body parameters (2) controllers based on dynamical systems
as we present are able to “recognize” mechanically intrin-
sic modes of locomotion, adapt to them and enforce them.
These modes are expressed as phase relationships between
the different limbs.

Further, we show the experimental evidence that the key
properties of the gaits are not only depending on properties
of the body but also the actual mode of movement that the
body is operating in. And we show that even if we specify
the gait pattern on the level of the CPG (by full coupling) the
chosen gait pattern (measured by the foot-fall pattern) does
not necessarily correspond to the CPG’s pattern.

Experiment 1—Change of body properties In this experi-
ment we demonstrate the capability of the dynamical system
to constantly track the resonant properties, i.e. as soon as the
body properties, here the weight, is changed the oscillators
readjust the frequency to the new conditions.

The posture is: front legs α0 = 14.38◦, hind legs: α0 =
3.23◦, the amplitudes for both pairs is α1 = 10.8. The con-
troller setup is illustrated in Fig. 4 (left). It consists of a sin-
gle oscillator which is connected to the output of the z-axis
(vertical axis) of the inertia sensor.

To demonstrate the continuous adaptation capability, af-
ter the adaptation has converged, the weight of the robot is
changed, what changes its resonant frequency. In Fig. 4 the
data of the adaptation experiment is shown. It can be seen
how immediately after the change of the body property the
controller starts to tune to the new frequency. Later in the
article we also present results with changed leg stiffness (cf.
Experiment 5 and Fig. 11).

Fig. 3 Snapshots of a typical
anti-phase gait of PUPPY II
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Fig. 4 Experiment 1 to show the online adaptation of the controller.
On the left an illustration of the sensor-controller structure. The z-value
of the acceleration sensor (A) is used as an input to the oscillator. The
signal of the oscillator is used to set the motor position according to

(5). On the right the intrinsic frequency ω of the oscillator is shown
as it evolves during the experiment. The body weight is changed from
m1 = 0.905 kg to m2 = 0.695 kg. The controller immediately starts to
adapt to the changed body property

Fig. 5 (a) The range of posture
angles used in the experiment
illustrated on the robot. (b) The
average frequency (squares)
found by the adaptive frequency
oscillator vs. posture, i.e. the
angle of the leg. The bars show
the standard deviation

Experiment 2—Posture dependent frequency In this exper-
iment we show that the frequency is not only dependent of
obvious parameters like the weight of the robot but other,
e.g. geometrical parameters, can influence the frequency as
well. Here we show that it is dependent on the posture of the
legs and the adaptive frequency oscillator is able to account
for these different frequencies.

For this experiment the robot is again driven by a single
oscillator and the inertia sensor is used as input to the oscil-
lator (cf. Fig. 4a). While the front leg parameters are kept at
α0 = 14.38◦ and α1 = 10.80◦, in this experiment the angle
of the hind leg is varied from α0 = −13.11◦ to α0 = −3.23◦
while all the other parameters remain the same.

In Fig. 5 we show the average frequency which is as-
sumed by the oscillator vs. the angle of the leg. As can be
seen, the steeper the angle of the leg the higher the frequency
found by the adaptation process.

By varying the posture angle α0 of the leg we vary the
(average) incident angle of the foot which induces a change
in the resonant frequency of the robot. As illustrated in Fig. 6
this makes sense considering the geometry of the leg: The
steeper the leg the less of the force acting on the foot loads
the springs and the larger becomes the force vector push-
ing along the axis of the foot and thus loading the motor.
The force vector acting perpendicular (i.e. in direction of
the free movement) to the lower leg gets smaller, thus there
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is less force loading the spring. The leg feels stiffer. Thus,
the further the leg is tilted back, the stiffer the system be-

Fig. 6 (Color online) Illustration of the effect of the posture angle α0
on the load distribution on the spring and motor respectively. Of the
force acting on the leg (blue), only the part of the force active perpen-
dicular to the foot loads the spring (red), the force acting parallel to
the foot will act on the motor (green). Note that this is illustrative only
for the principles at work, and that the real case is more complicated
(e.g. amongst other things the force vector on the foot is not necessarily
vertical)

comes. Therefore, the frequency increases with decreasing
α0 and vice versa.

Experiment 3—Gait dependent frequency In this experi-
ment the robot is set up to assume two different gait patterns,
by appropriate posture and the different controller setups.

In this experiment the legs are driven by two oscillators
(illustrated in Fig. 7). Two distinct runs are made, one where
the setpoints are given to the robot so that all the legs are in
phase (Controller a, θd = 0) and the second one so that the
hind-legs are in anti-phase with the front legs (Controller b,
θd = π ).

Otherwise all the parameters of the robot are the same,
especially the angles of the legs (i.e. the posture) to avoid
effects on the tuning of the frequency of such parameters (as
seen in the previous experiment).

In order to classify the gait pattern that the robot actually
assumes we need to know when the feet touch the ground. In
PUPPY II, we can infer the different phases (stance/swing)
from the knee angle sensor. Since the springs are very stiff
and the lower legs very light we can neglect dynamic effects
of the rotation of the legs on the knee angle signal and as-
sume that if the knee angle is not zero the leg is loaded, thus
the leg is touching the ground.

As a control that the robot really assumes the gait pat-
tern we want, in Fig. 8a we show the gait pattern for the two
runs. We present the data as it is often presented in the bio-
logical/physiological literature, i.e. stance and swing phase.
It gets clear that for the in-phase pattern the legs are active at
the same time, while for the case when we invert the signal
for the back legs we see a more alternating gait. In Fig. 8b
the results of the two adaptation runs are presented, as can
be seen the frequencies found are very distinct.

In order to investigate the reason for that its worthwhile
looking at the gait pattern that the robot assumes in the
two cases. The reason for the different frequencies stems
from the fact that for the in phase gait, the springs of all
four legs are loaded at more or less the same time, while
for the bounding gait the springs of the front and hind legs
are loaded more in an alternating fashion. This can be ex-
plained by a very simple spring mass model of the overall

Fig. 7 Controller setup with two oscillators. (a) Setup with θd = 0,
i.e. the two oscillator will synchronize in phase, this can also be inter-
preted as excitatory coupling as denoted by the arrow. (b) Setup with

θd = π , i.e. the two oscillator will synchronize in anti-phase. This can
also be interpreted as inhibitory coupling as denoted by the circle
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Fig. 8 Experiment to investigate the influence of the gait pattern on
the resonant frequency. (a) Gait pattern, stance/swing phases, black
is stance phase and white is swing phase, H depicts the hind legs and
F depicts the fore legs, for simplicity only one leg per pair is shown,
the data in each pair looks very similar. Top row for θd = 0, it is well

visible that the front and hind limbs are active at the same time, while
for θd = π , we clearly see a alternating gait. (b) Resulting frequency
of the adaptation process, the mean is at ω = 24.89 rad/s for θd = π

(alternating gait) and at ωd = 20.02 rad/s

robot where we lump the springs of the legs into one single
spring with a spring constant keff . If the springs of the legs
are contracting at same time we have to add up the respective
spring constants. Thus, for gaits where the legs are active at
the same time the system behaves stiffer in average.

Note that the gait pattern does not exactly correspond to
the CPG pattern (e.g. the gait pattern is not perfectly alter-
nating in Fig. 8a bottom row). This will be studied in more
details in the next experiment.

Experiment 4—Self-organization of gait: CPG pattern does
not correspond to gait pattern The aim of this experiment
is to show, that the gait pattern that the robot actually is as-
suming does not necessarily correspond to the gait pattern
commanded by a CPG.

Again we use the same controller setup as before as in
the last experiment with a single oscillator, and the two dif-
ferent phase settings. In this experiment we do not focus on
the adaptation capability of the controller, but hold the fre-
quency fixed at ω = 20 rad s−1. The Posture of the robot is
tilted forward by choosing a steeper angle for the back leg
than for the front leg: hind α0 = −10.44◦, α0 = 10.06◦. The
amplitude is α1 = 10.8◦.

In Fig. 9 we present the gait patterns as estimated from
the knee angles (in the same way as in the last experiment).
First (in Fig. 9a), we present again the gait pattern by show-
ing the stance and swing phases. Then, we present the time
series of the phase difference of the two signals estimated
with the Hilbert transform. We can see that if we specify a
phase difference of π for the CPG, we indeed get the ex-
pected result, a bounding gait where the front and the hind
legs touch the ground with a phase difference of around π .
However, if the phase difference for the CPG is specified as
zero degrees, the robot does not assume a jumping gait in
which both legs touch down in the same time, as one would
expect. But, the phase difference estimated by the Hilbert
transform varies mainly between 0.4π and π , and in the
stance-swing-diagram we can clearly see how the front legs

Fig. 9 (Color online) Gait pattern estimated by the knee angle data,
black is stance and white is swing phase. (a) Coupling θd = 0, the first
panel shows the gait pattern estimated by the knee angle data, the sec-
ond panel shows the phase differences estimated by difference of the
phase of the Hilbert transform of the knee angle data (red horizontal
line indicates average difference). (b) The same information but this
time the angle of the CPG is specified as θd = π

touch down shortly after followed by a longer stance phase
of the hind legs which initiates a flight phase. In other words,
we command two very different patterns, but the body ex-
hibits both times very similar gaits. Furthermore, we see
that the gait pattern for θd = 0 is more irregular and more
pseudo-periodic than the pattern for θd = π , which means
that this gait is less robust.

Also one has to note that the robot can be biased by tilting
forward, i.e. for this experiment the robot posture is biased
towards an anti-phase gait, while in the experiment before
there was a more symmetrical posture which allow in-phase
gaits to be mechanically stable.
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Fig. 10 Controller schema for
Experiment 5. No connection
between the oscillators for the
hind and front leg

Experiment 5—Self-organization of gait pattern: Local
adaptive controllers The aim of this experiment is to show,
that we can exploit the tendency of the body of the ro-
bot to prefer certain gait patterns to use simpler, namely
purely local control structures without direct inter-oscillator
couplings. Motivated by the results of the previous exper-
iment and earlier simulation studies (Buchli et al. 2005),
namely the fact that the robot has modes which are me-
chanically more suitable, in this experiment we constrain
the controllers of the robot less—there is no direct coupling
between the oscillators for the hind and front legs. The only
coupling that is established works through the mechanical
system. As shown in Fig. 10 we use two oscillators, one for
each pair of front and hind legs. The sensor feedback is the
knee angle data from each leg. The oscillators are not di-
rectly coupled. The posture of the robot is as follows: hind
leg α0 = −10.44◦, front leg α0 = 10.06◦ and α1 = 11.88◦
for both pairs. Note that we have changed the stiffness of
all legs, by attaching the spring differently, so that is has
less lever. This makes the leg less stiff, and the frequency
decreases. The reasons for this are twofold. First, to show
yet another resonant frequency by changing the spring stiff-
ness (as opposed to body mass as in Experiment 1). And
secondly, the slower movements facilitate the experiment.

In Fig. 11a we show the frequency of the oscillators
adapting to the body, and readapting after a perturbation. As
can be seen in Fig. 11b, where we show the difference be-
tween the frequencies of the oscillators, despite the fact that
they are not directly coupled, they remain very close. Fur-
thermore, we show the phase difference in Fig. 11c, where it
can be seen that the oscillators remain phase locked over the
whole experiment. So the mechanical influence is enough to
keep the oscillators phase locked and adapting in a coordi-
nated fashion. Furthermore, it can be seen that the oscillators
lock into an anti-phase pattern, what corresponds to the ten-
dency for anti-phase gaits as found in the experiment before.
We see that despite the freedom of the system and the loss of
the specification of the phase difference, the system settles
into a well coordinated movement, which corresponds to the
mechanical “mode” of the robot. It can thus be said that this
controller adapts to the mechanical properties of the body
and current posture. We also see that the phase relationship
is not exactly π (Δφd ≈ 1.05π , σ(Δφd) ≈ 0.05π ), thus we
see that a phase relationship which does not exactly corre-
spond to π seems more suited for the mechanical system in

Fig. 11 Data from the adaptation experiment with local controllers
(Experiment 5). (a) Adaptation of the frequencies, at around 400 s
the frequencies are reset to 6 rad s−1. It is clearly visible that there
exists an attractor for the convergence process are around 11 rad s−1.
(b) The difference between the frequencies for the front and hind leg.
It is clearly visible how closely together the two frequencies evolve.
(c) The phase difference of the two oscillators, as can be seen they
phase lock at a value slightly higher than π (Δφd ≈ (1.05 ± 0.05)π ,
mean indicated by dashed lines, standard deviation dash-dot). And the
phase locking is never lost during the whole experiments, i.e. the legs
are always well coordinated

this setup since it is chosen by letting the body organizing
the phase difference itself.

Thus, from this experiment we can conclude, that for co-
ordinated motion, purely local controllers can be enough,
i.e. mechanical coupling is enough to coordinate the differ-
ent pairs of legs.

We can then ask, what is the need of direct coupling if
local coupling seems to achieve the task. When trying out
the local coupling with other postures than the one used in
this experiment, it turns out the local coupling does not nec-
essarily work for all postures (data not shown). However,
we know from other experiments that they can provide lo-
comotion if the phase difference is explicitely specified by
inter-oscillator coupling. Thus, it turns out that we can make
the gait more robust against this variation of posture, by em-
ploying a direct coupling.

To illustrate this with an example, consider the same ex-
periment (local control) with another posture, a posture that
tilts the body forward (e.g. as in Experiment 4). The two
oscillators will converge to two different frequencies (data
not shown). On the other hand the tilted position is good
for efficient forward locomotion. We can thus imagine, that
the controller learns about the appropriate gait pattern (i.e.
the phase relationship found by local coupling) in a non-
tilted posture. After that the pattern is “fixed” by introduc-
ing a coupling which corresponds to the found mechanical
gait pattern (i.e. by setting θd to the found value). Then, the
body of the robot can be tilted forward to make it locomote
with a gait pattern that efficiently makes use of the resonant
dynamics (i.e. faster forward locomotion than if the robot
would not use this gait pattern).



340 Auton Robot (2008) 25: 331–347

5 Toward a theory for AFOs in feedback loops

So far we have presented empirical results, but it would be
nice to be able to analyze what frequency the controller con-
verges to and get a thorough understanding of the mecha-
nism at work. For this we have to develop an understand-
ing of AFOs in feedback loops. While in Righetti et al.
(2006) the convergence behavior of the open loop case is
analyzed we need to extend those results for the treatment
of the closed loop case. As shown in Buchli et al. (2006a)
for certain sensor modalities there is no convergence, but
the frequency diverges. We need to develop an understand-
ing for those cases. Thus, here we will show that we can
understand the convergence behavior with the help of linear
systems theory. In the following we will show the conver-
gence analysis given a few assumptions hold.

For the following treatment it is convenient to write the
Hopf oscillator, i.e. system (1), in the polar form, which is
done by a straight forward transformation by substituting
φ = ωt and r = √

q1 + q2. We furthermore assume (without
loss of generality) that the perturbation is p = [p1,0]. The
system in the polar form reads

ṙ = (μ − r2)r + cosφ p1 (6)

φ̇ = ω − 1

r
sinφ p1 (7)

ω̇ = − 1

τ
sinφ p1 (8)

5.1 Adaptive Hopf oscillator with linear feedback loop

In order to begin with the analysis of the system, the plant
(i.e. the robot) will be modeled by a linear time-invariant
system. This is a simplification (i.e. neglecting nonlinearities
from the springs, kinematics of the body etc.), but, as we will
see in the remainder of this article, this simplification yields
already significant understanding of the mechanism of the
adaptation process.

Thus, in the following we treat the “body” as a linear sys-
tem. Therefore, let us assume the following systems: First,
a linear n-th order SISO1 system (the “robot”, i.e. the mo-
tor commands are all lumped into one variable and only one
sensor channel is modeled) of the form

ẋ = Ax + Bu (9)

y = Cx + Du (10)

A is a n × n, B a n × 1, C a 1 × n matrix, and D a scalar.
u is the (scalar) input to the linear system and y the (scalar)
output. Here, we can interpret y as the sensory feedback and
u as the motor command.

1SISO: single-input-single-output.

Fig. 12 Illustration of the feedback loop of the adaptive frequency os-
cillator with the linear system and the conventions used. The adaptive
frequency oscillator (AFO) is connected to the plant, which is mod-
eled as a linear system H(s) through u (the motor commands) and the
sensory feedback from the robot to the AFO is modeled by y

Second, the adaptive frequency Hopf oscillator as de-
scribed by (6)–(8). We set u = r cosφ and p1 = y. Hence,
the Hopf oscillator and the linear systems are connected in
a feedback structure through their inputs y (from the linear
system to the Hopf oscillator) and u (from Hopf to the lin-
ear system). See Fig. 12 for an illustration of the feedback
structure.

As can be shown by linear systems theory, the linear sys-
tem can not generate other frequencies than already present
in the input u, it can however modify phase and amplitude
of the signal. Therefore, we can write:

y = Mr cos(φ + α) (11)

where M = |H(s)| and α = arg(H(s)) (H(s) is the transfer
function of the linear system).

We begin the analysis of the oscillator by writing the
phase of the Hopf oscillator perturbed by a signal y

φ̇ = ω − 1

r
sinφy (12)

As outlined above we write y(t) to be the state of the Hopf
oscillator amplified by M and rotated by α

y(t) = Mr cos(φ + α) (13)

thus

φ̇ = ω − sinφM cos(φ + α) (14)

Using trigonometric transformations we can write this ex-
pression as

�⇒ φ̇ = ω + 1

2
M[sinα − sin(2φ + α)] (15)

The results in Righetti et al. (2006) show that the systems
shows a separation of timescale, i.e. the frequency adapta-
tion process works on a timescale much slower than the con-
vergence to the limit cycle with given frequency and radius.
Thus, we assume ω = const and investigate what the ob-
served frequency of the closed loops system will be. If this
frequency is different from the intrinsic frequency, it should
drive the slower adaptation process. ω = const also implies
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that M and α are constants (s = jω). We evaluate the aver-
age effective frequency Ω with the given assumptions:

Ω = 1

2π

∫ 2π

0
ω + 1

2
[M sinα − sin(2φ + α)]dφ (16)

Since by assumption ω is a constant and therefore α, M

are constant, it follows that the first two summands are con-
stants. The last summand is a 2π -periodic mean-free func-
tion, thus we get

Ω = ω + 1

2
Mr sinα (17)

Let us define Δω = Ω − ω, which is a useful notation to
discuss convergence:

Δω = Ω − ω = 1

2
Mr sinα (18)

As shown in Righetti et al. (2006), the slow variation of ω is
as follows

�⇒ ω̇ ≈ 1

2
M2 ω

ω2
F − ω2

(19)

where ωF is the frequency of the rhythmic signal applied to
the AFO. We can use this result to reason about the stabil-
ity of the adaptation process. We use the fact that with the
feedback loop ωF = Ω and as we shown above this can be
written as

ωF = ω + Δω

Plugging this expression into (19) and assuming ω,ωF > 0
this means if Δω > 0, ω increases, otherwise it decreases.
If Δω has a zero crossing with a negative slope ( ∂Δ

∂ω
< 0),

there is an attractive region around Δω ≈ 0. Therefore, we
expect the adaptation of the frequency to have a stable fixed
point in this region. Hence, Δω gives us information on the
convergence of the system.

The magnitude of the linear system M = |H(s)| can
not be the determinant for convergence since it is positive,
thus we have to focus on the phase of the linear system
α = argH(s). We see that the term sinα determines the ze-
ros and the sign of Δω, conclusively the phase of the linear
system α = argH(s) is the determinant for convergence of
the adaptation process. In the following we illustrate the re-
sult with a simple linear system for two different “sensory
channels”.

5.2 Stable at resonance

Let us assume the following linear system:

A =
[

0 1

− k
m

−d

]

B =
[

2

0

]

C = [1,0]
D = 0

This is 2nd order (e.g. spring mass) system, which pos-

sesses a clear resonant frequency at ωr =
√

k
m

. The values
of the constants are largely irrelevant for the general result.
For the presented data we have chosen k = 272, m = 1 and
d = 0.1. (Note that we use unit-less constants as their phys-
ical interpretation can vary.)

In Fig. 13, we present the Bode diagrams for the linear
systems, and the result of the adaptation of oscillator. As
discussed above, the bode plot already gives us a hint for
stability of the adaptation process. More precisely we need
to look at function Δω, but since this is a second order sys-
tem, we know that the phase shift is maximum 2π , thus the
phase can only have a single zero crossing. Since sinus is
an odd function we also know that the sign does not change,
thus we can read the stability of the adaptation directly out of
the bode plot. In this example we see a negative zero cross-
ing at the resonant frequency, thus we expect the adaptation
process to converge to the resonant frequency.

In cases where we have a higher order linear system, and
also for getting an idea about the quantitative behavior of
the convergence, i.e. convergence rates, it is indeed helpful
to look at the function Δω which we obtain in a straight
forward manner from the data in the bode plot and inserting
into (17).

Thus, in this example, according to the peak in the con-
vergence rate in Fig. 13c the convergence rate should in-
crease and come to a sudden stop. This is indeed the case as
can be seen in Fig. 13d, where we show the integration of
the full system (6)–(10).

5.3 Unstable at resonance

Now, let us assume the same system as above but we change
the coupling from the linear system to the Hopf oscillator
(i.e. “change the sensor modality”), by setting

C = [0,0.1]
i.e. the second state variable of the linear system is now used
as input to the Hopf oscillator. Changing only the coupling
means, the system has the same resonant frequency as be-
fore. Nevertheless, as we will see the adaptation does not
converge to this frequency. Again, in Fig. 14, we present the
Bode diagram. As before by looking at the phase of the lin-
ear system we already gain insight into the expected conver-
gence properties of the frequency adaptation. This time there
is no zero crossing, and the rate is positive. Thus, we expect
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Fig. 13 A linear system for which the convergence is stable at reso-
nance. (a), (b) Bode plot for H(s), the dashed line indicates the reso-
nant frequency. Note that the phase has a negative 0 crossing at the res-
onant frequency, this means the adaptation process has a attractor at the
resonant frequency. (c) The function Δω = sin(H(s)). Strictly speak-
ing we need to look at this function to determine stability. (d) Time
series of the integration of the full system showing the adaptation of
the oscillator frequency ω. It is clearly visible how the oscillator fre-
quency adapts to the resonant frequency of the linear system (dashed
line), what corresponds to the prediction from the Bode plot and Δω

the adaptation process to diverge. Looking at the function
Δω, we can see that the convergence rate should be very
low, but increases to a peak around the resonant frequency.
And indeed, looking at Fig. 14c this prediction is confirmed.
Instead of convergence, this means that ω crosses the reso-
nant frequency with increased rate (Fig. 14d).

5.4 Comparison with real world data

In Fig. 15, we present data from the real robot for the two
cases (convergence/divergence) and compare it with a fit-
ted model of the basic system used before. The convergent

Fig. 14 A linear system for which there is no convergence at reso-
nance. (a), (b) Bode plot for H(s), note that the phase has no negative
0 crossing at the resonant frequency, this means the adaptation process
has no attractor at the resonant frequency, and especially Δω (c), is
always positive with a distinct peak at the resonant frequency. This
means divergence of the oscillator frequency ω with an increased rate
to be expected around the resonant frequency. (d) Time series of ω.
The prediction is confirmed by the data obtained by the integration of
the full system

behavior is observed by using the acceleration sensor, the
divergent behavior can be observed by using the knee angle
sensor instead. For the stable behavior (Fig. 15a) the data
is k = 25.52, C = [0.45,0] and for the unstable behavior
k = 282, C = [0,0.12] (Fig. 15b), all the other parameters
are as above. As can be seen in the figures the linear systems
reproduce qualitatively the data from the real robot. We are
thus confident, that the linear treatment we presented con-
veys well the basic convergence properties of AFOs in feed-
back loops.

As we can see for the divergent case the match seems less
good, however, already in the converging case we see the
fact that the linear model predicts a higher convergence rate
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Fig. 15 Comparison of data from the real robot with the linear model.
Left: sensor (acceleration) that leads to convergence. Right: sensor
(knee angle) that does not lead to convergence. While the basic prop-
erties of the real world data are reproduced by the LTI model there

is some differences between the real data and the prediction of the LTI
model. The dashed line indicates the estimated resonant frequency. See
text for further discussion

for regions close to the target frequency. This same effect
leads to the mismatch between the linear model and reality
in both cases only in the divergent case the effects become
much more visible, since there is no fixed point behavior to
which both solutions converge.

It is natural that the model can not fully predict the be-
havior close to the target frequency, since it was based on
results which investigate the convergence behavior only for
frequencies which are further away (cf. Righetti et al. 2006).

5.5 From theory to design

The developed theoretical insight can be used in the design
of the robot or an experiment. If we understand the phase
shift of the different sensory channels (either based on a
model or on data) we can chose the sensor which will work
best. Furthermore, if no sensor has the appropriate phase
shift, then we can use filters to induce additional phase shifts
and thus make convergence possible nevertheless.

6 Conclusions and discussion

We have shown five experiments from which several lessons
can be learned and that help us to elucidate certain points
which we deem very important for agile legged locomotion.
They are the proof of concept of adaptive controllers which
can track resonant frequencies of a body. The experiments
give support to earlier proposed theoretical and simulation
based work and the therein made assumptions by showing
the application on a real robot. Also they highlight a few
interesting facts about resonant frequencies in legged under-
actuated robots and the application of the CPG concept to
such robots as we will describe in turn.

First, we have shown, that controllers based on adap-
tive frequency oscillators are able to track the resonant fre-
quency of the robot. Different parameters can influence the
frequency, such as mechanical parameters (weight, lengths,

spring stiffness etc., cf. Experiments 1 and 5), but also geo-
metrical “gait” parameters such as the angles of the legs as
shown in Experiment 2.

Further, in Experiment 3 we have shown that the resonant
frequency is different for different gaits: in-phase (jump)
gaits have a lower frequency than out-of-phase gaits. While
the explanation for this is rather simple, i.e. the co-activation
of different numbers of springs for different gaits, this sim-
ple fact is not usually addressed in the discussion of resonant
dynamics of legged locomotion and adaptive controllers.

Given all these many aspects (there are probably many
more) that influence the resonant frequency, and given the
fact that working in resonance is very important for efficient
locomotion, it becomes clear that an adaptive controller is
crucial. As we showed AFOs are a very suitable choice for
finding resonance and we backed this findings up with the
theoretical treatment.

In Experiment 4 we have shown that in a compliant ro-
bot, such as the presented one, the gait pattern (as measured
by phase differences) exhibited by the mechanical system
is not necessarily the same as the CPG pattern. This is a
fact which is often overseen in the discussion of CPGs ap-
plied to robots (and animals). This is in contrast to design
methodologies which are aimed at high-gain fully actuated
non-compliant robots, where it is made sure that the com-
manded trajectories are accurately followed and influences
from body dynamics are not desired. In the case of an under-
actuated compliant robot as presented here, the physics of
the body has to be accounted for, including the fact that we
have distinct flight and stance phases in which the under-
actuated system reacts differently etc. We can exploit this or-
ganizational capability of the robot for certain situations, i.e.
to achieve efficient self-organized locomotion with a mini-
mum of control effort.

Consequently, in Experiment 5 we show that controllers
built with well suited dynamical system which are adap-
tive and not over-specified can adapt to the body’s “pre-
ferred” locomotion modes. With this experiment we also
showed, that the inter-controller communication is not al-
ways mandatory, but mechanical coupling can be enough
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(see also Cruse et al. 1994; Kuniyoshi and Suzuki 2004).
This fact could be interesting in the framework of modular
or ad-hoc robots.

In Buchli and Santini (2005) it has been proposed to give
the systems freedom to self-organize on certain variables of
the system (i.e. the phase in our case), i.e. pull out control
(in the appropriate way). Here we do exactly that: normally
the oscillators are coupled, we removed this coupling and
show that the system nevertheless finds good locomotion, in
this sense the presented system is an application example of
the proposed concepts and the results a proof of concept.

While there are many reports that biological motor sys-
tems are self-organizing (Kelso and Jeka 1992; Haken et al.
1985; Kelso et al. 1979; Schöner et al. 1990; Schöner and
Kelso 1988) we have no methodology at hand for synthe-
sizing such a system or its controller. Ideally we would like
the system to be able to recognize, learn and adapt to differ-
ent possibly co-existing modes. For this, traditional control
theory is not of big help as it deals mostly with linear (or
linearized) systems, in which no self-organization can take
place. To develop such adaptive controllers which can find
and switch between modes, the normal control engineering
approach does not work because it usually involves a lin-
earizing step after modeling. By this step we remove all the
other attractors in the system, thus a controller which is de-
veloped based on this model can evidently not exploit dif-
ferent modes.

Arriving with such controllers would mean that we could
build systems which are less frustrated (i.e. where the acti-
vation works in step with the body dynamics instead of forc-
ing “artifical” patterns on the body). Non-frustrated systems
mean also less energy consumption, higher efficiency (cf.
Buchli et al. 2005) less mechanical stress, wear and tear etc.
In Experiment 3 (Fig. 8) and Experiment 4 (Fig. 9) we note
that if the system is specified against its “natural”/intrinsic
modes, the gaits are less regular and less robust. Thus, it is
important that the controller works with the body.

In a second part of the article we have laid out the theo-
retical treatment of AFOs in feedback loops and have com-
pared the results of a simple linear model with data from
the real robot. This comparison shows that even the simplest
spring mass model can account quite well for the conver-
gence effects that are observed. The theoretical treatment
of AFO in feedback loops together with a more complete
model of the robot (i.e. where the posture angles show up
as parameters) will allow to understand most of the effects
seen in the experiment in a straight forward manner.

The theoretical treatment shows that the convergence
property is determined by a very fundamental property
found in dynamical systems, namely the phase shift. Thus,
AFOs are very generally applicable to work with resonant
properties of systems: adaptive frequency oscillators in feed-
back loops can be used to either tune to or avoid to reso-

nant frequency of a system irrespective of the implementa-
tion details of the system. Elsewhere we reported the use
of feedback coupled AFOs for frequency analysis of sig-
nals (Buchli et al. 2008) and learning of structurally sta-
ble limit cycles (Righetti and Ijspeert 2006). As for the fre-
quency adaptation mechanism itself, we exploit such a ba-
sic and fundamental dynamic mechanism in oscillators that
it would be a surprise that this is not a mechanism which
is of more generic use (and is exploited in natural systems),
yet the mechanism is rather novel and more examples of its
use and applicability have to be found. The second mecha-
nism we exploited namely phase synchronization is also a
very general property of oscillators. The interesting result is
that phase synchronization can be established via the me-
chanical coupling alone and that the established phase shift
corresponds to a forward gait.

Future work We can conclude from such experiments that
compliant robots offer both opportunities and challenges
for control. There are two main areas where we lack sup-
port for usable, agile robotic legged locomotion. First in
the area of actuators, and second in the control methodol-
ogy. While compliance offers us nice body modalities and
easy to achieve robust locomotion, such a robot as presented
here definitely lacks certain controllability which severely
restricts its practical use. It is a fundamental theoretical fact,
that elastic modes decrease the controllability of the plant.
In other words, as an example, we can not achieve exact foot
placement with this robot. Actuators with controllable stiff-
ness, as we see implemented in animals, would allow us to
use the advantages of both high accurate control and com-
pliant mechanics. In the beginning it would already be in-
teresting just to experiment with actuators which can switch
from passive to active mode. Stiffness control would allow
precise control for some tasks while allowing self-organized
movements for other tasks. Such actuators are not a nice-
to-have feature but an absolute must if we ever want to
achieve the flexibility and agility with our robot as observed
in their natural counterparts. The theoretical aspects of stiff-
ness control, or more general impedance control is already
being investigated for robotic tasks which involve contact
with the environment (Hogan 1985; Valency and Zacksen-
house 2003) and recently also for legged robots with elastic
actuators (Pratt et al. 2004). It will be interesting to bring
together those results with adaptive controllers as presented
here.

Then, as for the methodology to develop such adaptive
controllers and the applied concepts, it sums up to the chal-
lenges for controller design for self-organizing systems, i.e.
controllers which can make use of the self-organizing ca-
pabilities of the system to be controlled (Buchli and San-
tini 2005). Ideally we would like to have a controller which
is able to learn about the system to be controlled. A con-
troller which can learn about the intrinsic modes, i.e. that
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feels the intrinsic patterns formed by the underlying system,
can modulate, enforce, stabilize or destabilize those modes
depending on specified goals. In the here presented system,
one of these modes is for example the coordination between
front and hind legs, i.e. the phase relationship, another one
the resonant frequency.

One has to realize that locomotion is always about cyclic
movement and coordination (i.e. determining the phase dif-
ference) of different degrees of freedom. In fact the discus-
sion can be cast in very formal language by methods based
on Differential Geometry (cf. Marsden and Ostrowski 1998;
Shammas et al. 2007a, 2007b). While the application of this
framework to the here presented result is clearly out of the
scope of this article, future work will have to address mod-
eling of our system with these methods in order to achieve a
fundamental understanding of the complete system.

In summary, to achieve agile legged robotic locomotion
we need

– An appropriate body: suitable mechanics, compliant, with
stiffness controlled actuators.

– An appropriate controller which can coordinate with the
body and other controllers. The controller needs to be able
to adapt to body and environment.

– Appropriate sensors. In order that the controller can get
information about the body and its state the robot has
to be equipped with appropriate sensors. Interestingly, it
turns out that many sensor convey information about the
intrinsic modes. It will however be interesting to explore
to what extent redundant sensory information can be ex-
ploited to extract more meaningful information.

We showed one building block for such controllers with
interesting results and a way how to approach the problem
but a lot of work needs to be done before we reach our goal.

Thus in future, the presented research needs to be put for-
ward on the identified two main axes, mechanics and con-
trol.

(1) Mechanics—Develop and test systems where we can
switch from one control mode to the other, i.e. from high
gain to compliant.

(2) Theory of control—We have laid out the theoretical
fundament for the understanding of adaptive frequency os-
cillators in feedback loops. The next large step for the theo-
retical treatment is a generalization of the understanding to
multiple-input-multiple-output (MIMO) systems. Further-
more, to advance the theoretical understanding in a next step
a comprehensive model of the robot should be developed
and the theory applied to this model. More generally we
have to put forward a theory of control for self-organizing
systems as discussed above.

As a more concrete example, it will be interesting to in-
vestigate how such controllers can be combined with the
control of speed and direction, and how to resolve possibly

conflicting goals within the controller architecture. Prelimi-
nary studies indicate that control of speed and direction can
be achieved in a very straight forward manner by modulat-
ing the amplitudes or phase shifts on one side of the robot.

In addition to the presented ones we have observed many
more interesting phenomena, such as higher periods in gaits
and bistability amongst other dynamic effects, which will be
the focus of future experiments. However, the description of
phenomena will take more data gathering, amongst others
with a motion tracking system.
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