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Abstract. Given the structure of the genetic code,
synonymous codons differ in their capacity to
minimize the effects of errors due to mutation or
mistranslation. I suggest that this may lead, in pro-
tein-coding genes, to a preference for codons that
minimize the impact of errors at the protein level. I
develop a theoretical measure of error minimization
for each codon, based on amino acid similarity. This
measure is used to calculate the degree of error min-
imization for 82 genes ofDrosophila melanogaster and
432 rodent genes and to study its relationship with CG
content, the degree of codon usage bias, and the rate
of nucleotide substitution. I show that (i) Drosophila
and rodent genes tend to prefer codons that minimize
errors; (ii) this cannot be merely the effect of mutation
bias; (iii) the degree of error minimization is corre-
lated with the degree of codon usage bias; (iv) the
amino acids that contribute more to codon usage bias
are the ones for which synonymous codons differ
more in the capacity to minimize errors; and (v) the
degree of error minimization is correlated with the
rate of nonsynonymous substitution. These results
suggest that natural selection for error minimization
at the protein level plays a role in the evolution of
coding sequences in Drosophila and rodents.
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Introduction

Studies on the origin of the genetic code have shown
that the code is arranged in a way that reduces errors
due to mutation or mistranslation; that is, amino
acids with similar chemical properties are coded by
similar codons (Woese 1965; Epstein 1966). Therefore
it is possible (Haig and Hurst 1991; Freeland and
Hurst 1998; Knight et al. 1999; Freeland et al. 2000)
that the main force that shaped the genetic code is
selection for minimization of the chemical distances
between amino acids, that is, error minimization at
the protein level (though this theory is still debated
[see Di Giulio 2000a, 2000b; Archetti 2004]).
Since the genetic code is degenerate (there are 64

codons coding for only 20 amino acids and a termi-
nation signal), most amino acids are encoded by sev-
eral synonymous codons, and as Grantham et al.
(1980) first demonstrated, and as further data from a
number of organisms eventually corroborated, codon
usage is not random: some synonymous codons are
more used than others. The theory of error minimi-
zation for the evolution of the genetic codes postulates
that the codons are arranged in the code in a way that
reduces errors. The scope of this paper is to test
whether error minimization at the protein level plays a
role also in the evolution of codon usage in protein-
coding genes. The hypothesis is that the preferred
codons are the ones that, after mutation or mis-
translation, keep on coding for the same amino acid
or for amino acids with similar chemical properties.
Following the same logic used to measure the

optimization of the genetic code, it is possible to
calculate a measure of the capacity to minimize errors
due to mutation or mistranslation for each codon.
This measure can then be used to calculate the degree
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of error minimization for individual genes or ge-
nomes.
If the hypothesis of error minimization for codon

usage bias is correct, then not only should the pre-
ferred codons be the ones that minimize errors, but
also it is expected that there is a correlation between
the degree of error minimization and the rate of
nonsynonymous nucleotide substitution; that is,
highly conserved genes should prefer synonymous
codons that minimize the effect of errors. Moreover,
the degree of codon usage bias should be correlated
with the degree of error minimization, and the amino
acids that contribute more to codon usage bias
should be the ones whose synonymous codons have a
greater variance in the capacity to minimize errors.
I first develop a theoretical, quantitative measure

of error minimization for synonymous codons, based
on similarities between amino acids; then I use this
measure to calculate the degree of error minimization
for 82 genes of Drosophila melanogaster and for 432
rodent genes; finally, these values are used to study
the relationship of error minimization with the degree
of codon usage bias, with the CG content, and with
the rates of nucleotide substitution.

Methods

I developed a computer program that measures the
capacity of each codon to minimize the deleterious
effects of errors due to mutation or mistranslation.
The basic concept is to calculate the mean dissimi-
larity between the amino acid coded by the original
codon and the amino acids coded by its possible
mutants; this measure depends only on the structure
of the genetic code and on the similarities between
amino acids. For the synonymous codons of each
amino acid, then, these values of error minimization
are correlated with codon usage. The mean value of
the correlations is taken as a measure of error mini-
mization for the gene. The method is described in
detail in the following sections.

Amino Acid Similarity

The impact of mutation or mistranslation can be
deduced from amino acid similarity matrices. In a
similarity scoring matrix, higher values are assigned
to more similar pairs of amino acids (George et al.
1990). Throughout this paper I use McLachlan’s
(1971) classical matrix based on chemical properties,
but at the end I compare the results obtained with
other matrices.
For each pair of amino acids, I derive the measure

DAA/AA* = xAA/AA ) xAA/AA* from the matrix,
where xAA/AA is the similarity of amino acid AA to

itself (this value is usually the same for all amino acids,
but not in all matrices: in McLachlan’s it is either 8 or
9) and xAA/AA* is the similarity of AA to the mutant
amino acid AA* obtained after an error at one of the
three positions of the original codon. Hence, DAA/AA*
is the distance (dissimilarity) between the original
(AA) and the mutant (AA*) amino acid.
Similarities between amino acids and termination

signals (xAA/STOP) have, of course, no meaning and
are not tabulated in similarity scoring matrices;
however, a measure of the damage produced by
mutations to termination codons must be considered.
I use diverse scores for this that are less than or equal
to the lowest similarity score of the matrix (0 in
McLachlan’s matrix).

Error Minimization of Synonymous Codons: The MD
Value

Since xAA/AA�xAA/AA* for every amino acid, DAA/
AA* is always positive, and the measures of DAA/AA*
for the possible mutant codons arising by point mu-
tation are positive. Their mean value is taken as a
measure of distance (dissimilarity) between the orig-
inal codon and its possible mutants. I call this
measure MD (mean distance). Optimal codons are
predicted to have small MD values.
The same procedure can be used tomeasure theMD

between one codon and the possible codons that arise
by point mutation after n mutation events. This is im-
portant because some synonymous codons have the
same MD value after one mutation (Fig. 1). These in-
clude most twofold degenerate amino acids and some
others such as Pro, because its similarity score withHis
and Gln is the same (in McLachlan’s matrix). In these
cases selection foroptimal codonswill not operate after
one mutation but after successive mutation events.
Actually, this process can be seen as a differential sur-
vival of lineages originating from genomes with dif-
ferent codon usage patterns. For example, consider the
part of the progeny that inherited Gly instead of Glu
after the first mutation. In the first generation, there is
no differential selection between the two lineages with
Gly–GGA and Gly–GGG. These two lineages will,
however, produce some mutant progeny with the ter-
mination signal and Trp, respectively.
I use the following procedure to take into account

the importance of each mutation event. I measure
MD for each codon and variance of MD for synon-
ymous codons of each amino acid, for every mutation
event. For example, the variance after one mutation
for Pro is zero, while there is a high variance for the
six codons of Leu (Fig. 2). In general, the higher the
variance, the higher the intensity of selection. The
intensity of selection (r) for each amino acid (AA) for
each mutation event (n) is
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rAAðnÞ ¼
mAAðnÞP10
m¼1 mAAðmÞ

where mAA(n) is the variance of MD values for syn-
onymous codons coding for amino acid AA after the
nth mutation. I consider mutations up to the 10th:
although this is an arbitrary limit, MD values clearly
converge to the same value, for all codons, as n grows
(Fig. 2) because there are 9n possible mutants but
only 64 codons; therefore after many mutation events
the differences of MD values for different codons
become negligible.
The importance of mutations also depends on the

order. Further mutations are likely to be less impor-
tant if selection had already occurred in previous
generations. I use the following simple method (a
decision on how to weight successive mutations is
likely to be arbitrary; however, different methods gave
very similar results): for each amino acid (AA), the
weight (X) of the first mutation is equal to its intensity
of selection [XAA(1) = rAA(1)], while for the successive
mutations, at the nth mutation, the weight is

XAAðnÞ ¼ 1�
Xn

2
rAAðn�1Þ

h i
rAAðnÞ

Imagine, for example, that rAA(1) = 0.2, rAA(2) =0.7,
rAA(3) = 0.1, and rAA(n)= 0 for all n > 3. The
corresponding weights will be XAA(1) = 0.2,
XAA(2) = 0.56, and XAA(3) = 0.01. The correspond-
ingMDvalues aremultiplied by theseweights and then
summed (up to the 10th mutation, unless otherwise
stated in the text).

Mutation Bias

The values taken from the matrix can be weighted
also by the probability that such mutations occur.

Transitions (CMT, AMG) and transversions
(C,TMA,G) are not equally likely to occur (Topal
and Fresco 1976). Moreover, it is also possible that
accuracy varies during translation according to base
position within a codon (Woese 1965), since the
translation machinery acts upon mRNA in a specific
reading frame, reading bases in triplets. Therefore,
before calculating MD, DAA/AA* can be multiplied by
the probability of a change from the original base to
the mutant one (allowing for a consideration of
whether it is a transition or a transversion) and by the
probability of mistranslation based on its position on
the codon (1st, 2nd, or 3rd).
I have followed the same assumptions used by

Freeland and Hurst (1998) to test the optimization of
the genetic code, namely, that mistranslation of the
second position is much less frequent than mistrans-
lation of the first or third position; that mistransla-
tion of the first position is less frequent than
mistranslation of the third codon position; that mis-
translations at the second position are almost exclu-
sively transitional; that mistranslation at the first
position is biased towards transitional errors; and
that there is very little transition bias at the third
position. The precise values used to weight each
mutation are summarized in Table 1.
As with translation, different rates for transition

and transversion must be considered for mutation but
in this case there is no reason to assume that these
rates vary depending upon base position (see Table 1).
Moreover, I consider the possibility of different

mutation rates for CG and AT, because C and G,
which have three hydrogen bonds, may be more
stable than A or T.

Error Minimization for Individual Genes

Since MD is a measure of dissimilarity, lower values
of MD correspond to optimal codons (codons that

Fig. 1. The standard genetic code. The codons in light gray are
the mutant codons originated from the original codon (in dark
gray) after one point mutation.

Fig. 2. MD values for the codons of Leu and Pro after further
mutation events (no transition/transversion bias; CG/AT mutation
ratio = 1; xAA/STOP = )10).
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minimize the effects of errors). MD measures can be
compared only within each synonymous family
(amino acid) and not between different amino acids,
because each position in the sequence of a protein
must be occupied by a certain amino acid, and co-
dons for that amino acid can be chosen only among
synonymous codons. The sample size is too small
(n = 2 to 6) to yield a significant correlation within
each amino acid, but the importance of error mini-
mization can be measured by the sum of the corre-
lations between MD and synonymous codon
frequencies for all the 18 degenerate amino acids.
This measure (R) ranges between ) N and +N,
where N is the number of amino acids on which the
correlations are measured (for the standard genetic
code, usually N = 18, but N< 18 if for some amino
acid there is no variance in the MD values or in the
frequency of its synonymous codons). A normalized
version of R (RN: from )1 to +1) can be obtained by
dividing R by N; both measures can be transformed
weighting the correlation of each amino acid by its
frequency (wR and wRN). R and wR values close
to ) N (or RN and wRN values close to )1) will mean
a strong tendency to minimize the effects of errors.

Genes and Other Measures Used in the Analysis

Codon usage and the degree of codon usage bias for
individual genes are calculated from the coding se-
quences of 82 D. melanogaster genes and 432 mouse–
rat homologs. Codon usage for the entire genome of
D. melanogaster is taken from the Codon Usage
Database (www://kazusa.or.jp/codon; described by
Nakamura et al. 2000). The measure used for the
degree of codon usage bias is the effective number of
codons (ENC; Wright 1990); ENC values range from
20 (high bias—only one codon per amino acid is
used) to 61 (low bias—all codons are used equally).
For Drosophila, the genes are the same used by

Moriyama and Powell (1997), while the substitution
rates are taken from Akashi (1994) for a limited set of
genes. Genes and substitution rates for rodents are
the ones used in Smith and Hurst (1997). Ka and Ks
are the rates of synonymous and nonsynonymous

substitution, K4 is the rate of nonsynonymous sub-
stitution at fourfold sites (K4 is more reliable than Ks
because it does not have to combine rates of sites with
different degeneracies).

Random Sequences

To study the importance of CG content, I also use
random sequences (82 for Drosophila, 432 for ro-
dents) with the same length and the same CG content
as the real genes (for rodents I use the CG content of
the mouse genes). I also use random sequences with
the same CG content (as the real genes) at each of the
three positions. Both these kinds of sequences main-
tain the same CG content, but not the same degree of
codon usage bias (ENC).
As a null model in the study of the degree of codon

usage bias I use, instead, sequences (82 for Dro-
sophila, 432 for rodents) with the same length and the
same ENC values as the real genes, produced by
switching at random the frequencies of synonymous
codons. These sequences maintain the same ENC of
the real genes but not the same CG content.

Results

MD Values

Table 2 shows MD values obtained with different
values of the parameters. With no transition/trans-
version bias and with the same mutation rate for CG
and AT, some amino acids show an ambiguity about
which codons have the lowest MD value. This reflects
the arrangement of the codons in the code (Fig. 1): in
the standard code with no bias, for example, all
twofold degenerate amino acids except Glu, Lys, and
Gln have no variance in MD values for their synon-
ymous codons because each couple of codons can
mutate only to new couples of codons that are syn-
onymous as well (and if only the first mutation event
is considered, only codons for Lys have different MD
values because one of them can mutate to Met and
the other one to Ile—but, incidentally, in McLach-

Table 1. Relative frequencies of mutation and mistranslation used in the model

Mistranslation

Frequencya T/T ratiob

Mutation

(all bases) T/T ratio1st 2nd 3rd 1st 2nd 3rd

A 0.5 0.1 1 2 5 1 —

B — — — — — — 1.5

C 0.5 0.1 1 2 5 1 1.5

aFrequency of mistranslation for the first, second, or third base of the codon.
bTransition/transversion ratio (relative to a transversion rate = 1) for the first, second, or third base of the codon.
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Table 2. MD values

No bias,a 1 mutation only No bias

Aa

(v = 0.9)

Ba

(v = 0.9)

Ca

(v = 0.9)vb = 0.9 v = 1 v = 0.9 v = 1

Arg

CGA 2.775 3.083 1.947 2.351 1.117 7.356 2.814

CGC 2.250 2.500 1.552 1.898 1.002 6.477 2.429

CGG 1.800 2.000 1.411 1.662 0.754 6.450 2.339

CGT 2.250 2.500 1.601 1.898 1.009 7.105 2.584

AGA 3.708 3.833 2.422 2.781 2.076 8.520 3.603

AGG 2.558 2.750 1.805 2.099 1.258 7.423 2.885

Leu

CTA 1.950 2.000 1.567 1.696 0.684 5.938 2.522

CTC 2.258 2.333 1.524 1.719 0.762 5.319 2.343

CTG 1.875 1.917 1.438 1.609 0.631 5.326 2.291

CTT 2.258 2.333 1.577 1.719 0.770 5.789 2.459

TTA 4.500 4.500 3.023 3.172 1.745 8.271 5.124

TTG 3.283 3.333 2.445 2.652 1.315 7.177 4.067

Ser

TCA 4.150 4.500 2.799 3.172 1.816 7.929 4.464

TCC 2.275 2.417 1.745 1.989 1.045 6.565 2.744

TCG 3.175 3.417 2.243 2.578 1.414 6.899 3.491

TCT 2.275 2.417 1.798 1.989 1.048 7.173 2.889

AGC 2.750 2.917 1.881 2.119 1.660 6.424 2.681

AGT 2.817 2.917 1.957 2.119 1.717 7.019 2.823

Thr

ACA 2.208 2.333 1.705 1.998 0.717 10.290 3.565

ACC 2.058 2.167 1.457 1.785 0.607 9.154 3.044

ACG 2.208 2.333 1.535 1.911 0.651 9.209 3.158

ACT 2.058 2.167 1.566 1.785 0.635 10.107 3.314

Pro

CCA 2.325 2.583 1.558 2.071 0.518 9.459 3.306

CCC 2.325 2.583 1.337 1.866 0.451 8.432 2.887

CCG 2.325 2.583 1.391 1.958 0.465 8.469 2.941

CCT 2.325 2.583 1.444 1.866 0.481 9.316 3.162

Ala

GCA 2.025 2.250 1.552 2.035 0.631 9.339 3.287

GCC 2.100 2.333 1.335 1.838 0.531 8.312 2.829

GCG 2.025 2.250 1.391 1.934 0.563 8.357 2.911

GCT 2.100 2.333 1.439 1.838 0.559 9.178 3.084

Gly

GGA 3.300 3.667 2.153 2.637 1.737 7.989 3.226

GGC 2.475 2.750 1.654 2.043 1.137 6.976 2.610

GGG 2.475 2.750 1.677 2.068 1.134 6.993 2.611

GGT 2.475 2.750 1.711 2.043 1.145 7.659 2.775

Val

GTA 2.092 2.167 1.686 1.928 0.756 10.467 3.684

GTC 2.325 2.417 1.493 1.856 0.849 9.329 3.212

GTG 2.167 2.250 1.526 1.878 0.761 9.370 3.272

GTT 2.325 2.417 1.607 1.856 0.856 10.302 3.502

Ile

ATA 2.583 2.583 1.941 2.167 0.809 11.176 4.041

ATC 2.642 2.667 1.674 1.990 0.783 9.941 3.465

ATT 2.667 2.667 1.809 1.990 0.816 10.972 3.773

Lys

AAA 4.083 4.083 2.220 2.671 1.247 11.913 4.478

AAG 4.017 4.083 2.005 2.626 1.176 10.676 3.999

Asn

AAC 2.933 3.000 1.841 2.250 1.009 11.314 4.045

AAT 3.000 3.000 2.007 2.250 1.082 12.510 4.451

Gln

CAA 3.625 3.833 1.992 2.632 1.003 10.693 3.906

CAG 3.558 3.833 1.800 2.562 0.947 9.585 3.497

His

CAC 2.667 2.833 1.650 2.203 0.826 10.144 3.560

CAT 2.733 2.833 1.798 2.203 0.880 11.217 3.918

continued
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lan’s matrix xLys/Ile = xLys/Met, so even Lys has no
variance for MD after one mutation). Introducing a
bias in the mutation rate for CG versus AT, or in the
transition/transversion ratio, produces a higher vari-
ability in the MD values.
The measures of MD also depend on the ‘‘simi-

larity’’ with the termination signal (xAA/STOP). The
relative differences of MD values for synonymous
codons depend slightly on xAA/STOP (Fig. 3). There-
fore, in the analysis I use xAA/STOP values ranging
from 0 to )50 (0 is the lowest value in McLachlan’s
matrix, in which scores range from 0 to 9).

Error Minimization

It can already be noted (Table 2, Fig. 4) that in the
genome of D. melanogster, in most cases the optimal
codons (the ones with the lowest MD values) corre-
spond to the most used codons and the worst codons
(the ones with the highest MD values) correspond to
the less used codons. The main exception is apparently
Ser, forwhichAGC is themost frequent codon, but the
MD value for AGC is not the lowest (it is the lowest,
however, if the transition/transversion bias is consid-
ered). Also, the preferred codons for Arg and Val do
not correspond to the lowest MD values, the less used
codons inGly andPro donot correspond to the highest
MD values, and the values are inverted in Asp.
Codon usage frequencies (obtained from the Co-

don Usage Database) are quite rough measures of
codon preference in the whole genome. Moriyama
and Powell (1997) use, as a measure of codon pref-
erence in Drosophila, the correlation between the

degree of bias for more than 1000 genes and the
frequency of T-, C-, A-, or G-ending codons within
each gene (positive values indicate codons that are
increasingly used as the codon usage bias for that
amino acid increase). Moreover, to avoid stochastic
fluctuations, Moriyama and Powell (1997) examine
only genes longer than 200 bp. These values should
therefore give more reliable information about the
preference of synonymous codons than mere usage
percentages. When these measures are used there is a
difference with Ser: in this case the preferred codon is
TCC, which indeed corresponds to the lowest MD
value with no transition/transversion bias, while the
lowest value in Moriyama and Powell is for TCA,
which corresponds to the highest MD value. There
are also minor differences between codon frequency
(from the Codon Usage Database) and Moriyama
and Powell measures for Arg and Gly.
The pattern for rodents is quite similar. For a

quantitative measure of error minimization from now
on I use mainly the wRN values (described in the
Methods section), but results obtained with RN are
quite similar. If error minimization based on the simi-
larity between amino acids plays no role in the evolu-
tion of the genes analyzed, then wRN (or RN) values
shouldhave aGaussiandistribution centered in zero.A
deviation fromthis distributionwill indicate a tendency
toward error minimization (if wRN values are more
frequent toward )1) or maximization (toward +1).
Figure 5 shows that there is a strong prevalence of

low wRN values, that is, the genes analyzed prefer
codons that reduce the impact of errors at the protein
level, both for Drosophila and for rodents. A very

Table 2. Continued

No bias,a 1 mutation only No bias

Aa

(v = 0.9)

Ba

(v = 0.9)

Ca

(v = 0.9)vb = 0.9 v = 1 v = 0.9 v = 1

Glu

GAA 3.625 3.833 2.001 2.639 1.082 10.715 4.025

GAG 3.575 3.833 1.807 2.584 1.016 9.602 3.595

Asp

GAC 2.917 3.083 1.666 2.244 0.884 10.196 3.650

GAT 2.967 3.083 1.816 2.244 0.948 11.273 4.015

Tyr

TAC 5.933 6.250 2.755 3.087 2.885 11.133 4.440

TAT 6.250 6.250 2.975 3.087 3.091 12.295 4.860

Cys

TGC 5.667 6.083 2.366 2.969 2.320 10.066 3.935

TGT 5.883 6.083 2.552 2.969 2.464 11.119 4.310

Phe

TTC 3.517 3.583 1.956 2.415 0.968 11.368 4.290

TTT 3.583 3.583 2.130 2.415 1.027 12.567 4.715

Note. The most used codons for Drosophila melanogaster are in boldface; the less used codons are underlined. MD values are typed in

boldface/underlined when they correspond to the most/less used codon and in italics when the case is ambiguous. xAA/STOP = )10.
aA, mistranslation only; B, mutation only; C, mutation and mistraslation (parameters as in Table 1).
bv = CG/AT mutation ratio.
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similar pattern is obtained with RN values (not shown;
see Appendix for Drosophila wRN values; values for
rodents are available on request). Note that even if the
frequency of very low wRN values (close to )1) is not
high, this does not necessarily mean that error mini-
mization is weak; the comparison must be done with
the expected random distribution or, better, with the
distribution obtained with random sequences with the
same CG content (see next section).
These results do not change much when a bias in

the transition/transversion rate is considered for
mutation, mistranslation, or both or different values
of the similarity score with the termination signal
(xAA/STOP), ranging between 0 and )50, are used.
The CG/AT mutation ratio also does not seem to
have a strong influence, especially for rodents
(Fig. 6). Finally, when only one mutation event is
considered, the distribution of wRN values is less bi-
ased toward error minimization (Fig. 6). This might
mean that multiple mutation events, that is, selection
on mutations rather than on mistranslation, are im-
portant in error minimization at the protein level.
In general, it seems that both Drosophila and ro-

dent genes prefer codons that reduce the impact of
errors.

Error Minimization and CG Content

It is possible, in principle, that wRN (or RN) values are
correlated with CG content, and a bias in their values
might simply be the by-product of a mutational bias.
To investigate this possibility, I produce random se-
quences (82 for Drosophila,432 for rodents), 300 co-
dons long, with exactly the sameCGcontent as the real
genes analyzed here (for rodents I use the CG content
of the mouse genes, but results are virtually identical
for rat genes). If CG content, irrespective of the specific
codons used, was the main cause of the pattern ob-
served, then the distribution of wRN (orRN) values for
these random sequences would be similar to the dis-
tribution of wRN (or RN) values for the real genes.
Figure 5 shows that wRN values for sequences with

‘‘random’’ codons are almost Gaussian, not biased
and very different from the wRN values of the real
genes. A similar result is obtained when using posi-
tion-specific CG content.
Moreover, CG content is not correlated with wRN

in the real genes (see Table 3). These results do not
change much with a bias in the transition/transver-
sion or CG/AT mutation rate or with different values
of the similarity score with the termination signal
(xAA/STOP), ranging between 0 and )50 (Table 3).
Since wRN values are obtained weighting the fre-

quencies of amino acids, this may lead to an under-
estimation of the importance of some amino acids
and an overestimation of some others; it may be
thought, therefore, that these results depend on
amino acid frequencies, and that the random se-
quences fail to show error minimization because they
have a deficit in some amino acid. However, though I
have discussed mainly results obtained with wRN

Fig. 3. MD values for the codons of Leu, Ser, Gly, and Val, for
different values of xAA/STOP (no transition/transversion bias; CG/
AT mutation ratio = 0.9).

Fig. 4. The standard genetic code with MD values (xAA/STOP
= )10; CG/AT mutation ratio = 0.9; no transition/transversion
bias). Values at the right in each cell are the MD values for the
corresponding codon. Codons in boldface/italics are the most/less
used in Drosophila melanogaster. Cases where the lowest/higest
MD values correspond to the most/less used codons are marked in
dark/light gray.
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values, the results obtained with RN values are very
similar. RN values do not depend on the frequency of
amino acids, as all amino acids are weighted the
same. The use of RN may also be questionable,
however, because the more frequent an amino acid,
the more likely it is to influence selection on that
protein. In any case, the results obtained using wRN
and RN are very similar.
Therefore, it seems that it is the specific choice of

codons, and not solely CG content on amino acid
composition, that determines error minimization.
That is, errorminimization is not due tomutation bias.

Error Minimization and Codon Usage Bias

If codon usage bias is influenced by the degree of
error minimization, then it should be possible to find

a correlation between the variance of MD values for
synonymous codons and the contribution of each
individual amino acid to the overall codon usage bias.
Moreover, it should be possible to find a correlation
between the degree of error minimization and the
degree of codon usage bias for individual genes. I
analyze these two aspects in turn.

Variance of MD and Contribution to the
Bias. Moriyama and Powell (1997) report the
contribution to the bias of each amino acid for
Drosophila. A correlation between the variance of
MD values for synonymous codons (the measure
developed here) and the contribution of the corre-
sponding amino acid to codon usage bias (taken from
Moriyama and Powell 1997) is expected because
natural selection for error minimization, if it actually

Fig. 5. Distribution of the wRN values for the real genes (gray) and for random sequences with the same CG content (white).

Fig. 6. Distribution of the wRN values for the real genes obtained with different CG/AT mutation ratios (A; white = 0.9, gray = 1) or
with a different number of mutation events (B; white = 10, black = 2, gray = 1) (xAA/STOP=)10; no transition/transversion bias; CG/AT
mutation ratio = 0.9).
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plays a role in the evolution of coding sequences, will
be stronger for amino acids whose codons have a
high variance in the capacity to minimize errors.
Table 4 shows that there is a positive correlation

between the variance of MD values and the contri-
bution of each amino acid to the overall codon usage
bias. There is a weak, but significant, correlation if
one considers all the 18 degenerate amino acids; the
correlation is stronger if one does not consider two-
fold degenerate amino acids. The transition/trans-
version ratio and the xAA/STOP value do not seem to
affect the results significantly. A higher mutation rate
for AT versus CG is necessary for a significant cor-
relation if one considers all 18 degenerate amino acids.
The reason why the correlation is more significant
when we do not consider twofold degenerate amino
acids is probably because variance for twofold de-
generate amino acids is usually very low or zero.

Degree of Error Minimization and Degree of Codon
Usage Bias. If codon usage is influenced by se-
lection for error minimization at the protein level,

then a positive correlation is expected between the
degree of codon usage bias and the degree of error
minimization. That is, genes with a highly biased
codon usage should be those with a strong preference
for codons that minimize the effect of errors.
For ‘‘random’’ sequences with the same CG con-

tent as the 82 Drosophila genes, the degree of error
minimization is not correlated with the degree of
codon usage bias (ENC values) (r = )0.07,
p = 0.70, for wRN values; r = 0.09, p = 0.62, for
RN values) (xAA/STOP = )10; CG/AT mutation bi-
as = 0.9; no transition/transversion bias). On the
other hand, there is a positive correlation (Fig. 7,
Table 3a) between wRN (or RN) values and the degree
of codon usage bias (ENC) for the real 82 Drosophila
genes considered.
A correlation between the degree of codon usage

bias (ENC) and wRN is also not found in 432 random
sequences with the same CG content as the rodent
genes (r = 0.01, p = 0.79) (xAA/STOP = )10; CG/
AT mutation bias = 0.9; no transition/transversion
bias). For the real 432 mouse (or rat) genes, there is
instead a positive correlation (Fig. 7, Table 3b) be-

Table 3a. Correlation between wRN and CG content, ENC, Ka, and Ks for Drosophila

Correlation of wRN with
a

Parametersb %CG4 ENC Ks Ka

xAA/STOP = 0 )0.02 0.51**** 0.44** 0.54***

xAA/STOP = )10 )0.11 0.60**** 0.56*** 0.43*

xAA/STOP = )20 )0.18 0.61**** 0.58**** 0.38*

xAA/STOP = )50 )0.21 0.60**** 0.57**** 0.33*

Bias = Ac )0.12 0.56**** 0.51*** 0.35*

Bias = Bc )0.02 0.51**** 0.54*** 0.45**

Bias = Cc )0.06 0.56**** 0.50** 0.47**

v = 1 )0.21 0.48**** 0.55*** 0.44**

1 mutation 0.21 0.32* 0.24 0.44**

2 mutations )0.14 0.51**** 0.53*** 0.40*

Table 3b. Correlation between wRN and CG content, ENC, Ka, and Ks, for the 432 rodent genes

Correlation of wRN with
a

Parametersb %CG5 ENC Ks Ka

xAA/STOP = 0 0.04 0.33**** )0.02 0.19****

xAA/STOP = )10 )0.03 0.32**** )0.01 0.20****

xAA/STOP = )20 )0.06 0.29**** )0.01 0.20****

xAA/STOP = )50 )0.08 0.28**** 0.00 0.20****

Bias = Ac )0.04 0.34**** 0.00 0.21****

Bias = Bc 0.04 0.34**** )0.01 0.19****

Bias = Cc )0.03 0.32**** )0.01 0.20****

v = 1 ) 0.18*** 0.24**** )0.00 0.23****

1 mutation 0.04 0.31**** 0.01 0.10*

2 mutations )0.05 0.32**** 0.01 0.21****

Note. The correlation with %CG and with ENC for Drosophila is calculated for all 82 genes; the correlation with Ks, and Ka, only for a

subset of 38 genes (see Appendix). Significant correlations are in boldface (*p < 0.05; **p < 0.005; ***p < 0.001; ****p < 0.0001).
a%CG, CG content; ENC, effective number of codons; Ks and Ka, rate of synonymous and nonsynonymous substitution.
bUnless otherwise stated, xAA/STOP = )10; v (=CG/AT mutation ratio) = 0.9; no bias in the transition/transversion ratio; MD values

calculated up to the 10th mutation event.
cParameters as in Table 1.
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tween the degree of codon usage bias (ENC) and wRN
(or RN).
The result does not change drastically when

‘‘random’’ sequences with the position-specific CG
content are used or when different values of xAA/STOP
or for the transition /transversion ratio are consid-
ered. When only one or two mutation events are
considered, the correlation with ENC still holds
(Table 3).
The existence of a positive correlation between

ENC and wRN means that as codon usage bias in-
creases, the preference for optimal codons increases
too. This suggests that codon usage bias is due, at
least in part, to selection for error minimization at the
protein level.
It may be thought that the difference between the

random sequences and the real sequences is that the
random sequences have no codon usage bias, and that
error minimization is intrinsic in codon usage bias. To
investigate this possibility, I also analyze sequences
(82 for Drosophila, 432 for rodents—I use the mouse
sequences, but results are virtually identical for rat) in
which the frequency of synonymous codons is
switched at random. In this case ENC values are ex-
actly the same as in the real genes, but the relative
frequencies of synonymous codons is modified.
If ENC was intrinsic in the measure of wRN (that is,

if biased wRN values were simply due to biased codon
usage), then the distribution of wRN (orRN) values for
these sequences would be similar to the distribution of
wRN (or RN) values of the real genes. On the contrary,
the distribution of wRN values for these sequences
with rearranged codon frequencies is not biased to-
ward error minimization (it is similar to a Gaussian
distribution; not shown), and ENC is not correlated
with the degree of error minimization (Drosophila:
r = 0.03, p = 0.75, for wRN; r = )0.01, p = 0.95,
for RN; mouse: r = )0.04, p = 0.42, for wRN;
r = 0.01, p = 0.84, for RN).

Error Minimization and Rates of Nucleotide
Substitution

If error minimization plays a role in the evolution of
coding sequences, then the rate of nonsynonymous
substitutions (Ka) could be correlated with the degree
of error minimization (wRN or RN), while this would
not necessarily be the case for the rate of synonymous
substitution (Ks), because selection for error minimi-
zation at the protein level would occur only in the
event of a nonsynonymous substitution. This means,
in other words, that highly conserved genes are ex-
pected to prefer strongly codons that minimize the
impact of errors due to mutation or mistranslation,
while poorly conserved genes are expected to have
more relaxed preferences.
I analyzed 38 of the Drosophila genes used for the

previous analysis (the ones for which Ka and Ks
measures were available—see Appendix) and found
a positive correlation between RN or wRN values
(Fig. 8) and the rates of nucleotide substitution,
both synonymous and nonsynonymous. Changing
the parameters does not change the results drasti-
cally (Table 3a). However, when only one mutation
event is considered, the correlation with Ks disap-
pears. Note that ENC is correlated with Ks
(r = 0.69, p < 0.0001) but not with Ka (r = 0.10,
p = 0.55) and that Ka and Ks are not correlated
(r = 0.19, p = 0.24).
The observed correlation with Ks in Drosophila is

rather unexpected. In rodents, however, for the 432
real genes analyzed here, Ka and wRN are correlated
but Ks and wRN are not (for both mouse and rat; see
Fig. 9 and Table 3b); even when K4 is used instead of
Ks there is no correlation with wRN (for both mouse
and rat, r = )0.01, p = 0.91). Different values for
the transition/transversion bias or for the xAA/STOP
score have negligible effects on the results (Table 3b).
When only one or two mutation events are consid-

Table 4. Correlation between variance of MD values for each amino acid and its contribution to codon usage bias

Twofold degenerate amino acids included Twofold degenerate amino acids excluded

Biasa xAA/STOP vb = 0.9 v = 1 v = 0.9 v = 1

No

0 0.42 0.47 0.81** 0.86***

)10 0.47* 0.46 0.83*** 0.78*

)50 0.53* 0.41 0.85*** 0.71*

C

0 0.52* 0.43 0.81** 0.79**

)10 0.47* 0.41 0.83*** 0.72*

)50 0.51* 0.40 0.84*** 0.68*

Note. Only degenerate amino acids are included. *p < 0.05; **p < 0.01; ***p < 0.005 (the p values differ because the number of amino

acids on which the correlation is calculated is different).
aBias in the transition/transversion ratio: parameters as in Table 1.
bv = CG/AT mutation ratio.
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ered, the correlation with Ka still holds, though with
only one mutation it is weaker (Table 3b).
These results suggest that error minimization at

the protein level plays a role in the evolution of
coding sequences. An analysis of the single genes re-
veals that, for example, actin genes (known to be
among the most conserved genes because of their
fundamental role in the cytoskeleton and in the
processes of muscle motility) have some of the lowest
wRN values (for example, wRN = )0.79 for the
mouse a1-actin);1 the highest wRN value in mouse,
on the contrary, is scored by the ST2 gene
(wRN = +0.58), which has a high similarity to the
interleukin-1 receptor, known to be among the most
variable genes.

Importance of Amino Acid Similarity Matrices

For all the previous analyses I have used an amino
acid similarity matrix based on chemical properties
(McLachlan 1971). However, using different matrices
may lead to very different results when analyzing the
level of error minimization of the genetic code (Haig

and Hurst 1991; Archetti 2004). Therefore, I have
checked the robustness of the results obtained here
with McLachlan’s matrix, by using different similar-
ity matrices under different sets of parameters.
The main results do not change (Table 5); the two

main differences are a weak correlation between wRN
and CG content when a matrix based on hydro-
phobicity is used and a slightly weaker correlation
between wRN and Ka when the PAM 74-100 matrix is
used. All in all it seems that using different matrices
does not affect the main results.

Fig. 8. wRN plotted against Ka and Ks for the 38 Drosophila genes
analyzed. The linear regression line is shown. xAA/STOP = )10; no
transition/transversion bias; CG/AT mutation ratio = 0.9.

Fig. 9. wRN against Ka for the 432 mouse genes analyzed. The
linear regression line is shown. xAA/STOP = )10; no transition/
transversion bias; CG/AT mutation ratio = 0.9.

Fig. 7. wRN plotted against ENC for the 82 Drosophila and for
the 432 mouse genes analyzed. The linear regression line is shown.
xAA/STOP = )10; no transition/transversion bias; CG/AT muta-
tion ratio = 0.9.
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Discussion

The hypothesis presented here is based on the concept
of error minimization at the protein level, a concept
that has already been used to study the evolution of
the genetic code. The idea discussed in this paper does
not deal with the evolution of the genetic code itself
but predicts that, given the genetic code (in which
codons are arranged to minimize errors), within each
synonymous family, the most used codons are the
ones that, after mutation or mistranslation, keep on
coding for the same amino acid or for amino acids
with similar properties; that is, that codons are used
in a way that minimizes errors.
To my knowledge this is the first time this hy-

pothesis has been tested, though some hints in this
direction have been put forward by Modiano et al.
(1980) and McPherson (1988). McPherson (1988)
suggested that codon preference may reflect mis-
translational constraints, while Modiano et al. (1980)
observed that codons that can mutate to termination
codons (‘‘pretermination’’ codons)2 by point mutation
are avoided in human a and b-globin genes and
suggested that it be so to avoid mutations with drastic
effects. This hypothesis, however, has not received
much attention. In his book on the neutral theory of
natural selection, Kimura (1983) mentions it only to
dismiss it in few words: ‘‘It seems to me that the
selective advantage coming from such strategy
[avoiding pre-termination codons] is too small (pre-
sumably the order of the mutation rate) to be effec-
tive in the actual course of evolution.’’ However, the
work eventually done on codon usage evolution has
shown that selection is in fact able to operate at a
very fine scale; as Duret (2002) puts it, selection is
able to act on codon usage even if it leads to a syn-
onymous substitution on a single gene in a whole
genome. Moreover, if selection shaped the genetic

code, it is not inconceivable that it also shaped codon
usage, though selection for codon usage may have
occurred after a genetic code had been fixed (or
perhaps coevolved).
I have developed a theoretical measure of the ca-

pacity of each codon to minimize the effects of errors
due to mutation and mistranslation. I have then used
these values to measure the degree of error minimi-
zation for individual genes of Drosophila melanogas-
ter and rodents.
The main result is (i) that the distribution of these

values is not random: both Drosophila melanogaster
and rodents prefer codons that lead to the minimi-
zation of errors at the protein level, that is, codons
that, after mutation or mistranslation, keep on cod-
ing for the same amino acid or for amino acids with
similar properties. Therefore, error minimization at
the protein level may affect not only the evolution of
the genetic code itself, as has long been discussed, but
also the frequency of synonymous codons.
I have also shown (ii) that it is possible to exclude

that GC content is solely responsible for the pattern
observed, as the degree of error minimization is not
correlated with CG content, and random sequences
with the same CG content do not lead to error min-
imization. This suggests that selection, and not mu-
tation bias, is responsible for the observed pattern of
error minimization.
I have then shown (iii) that the higher the bias in

codon usage, the stronger the tendency to use codons
that minimize errors, and that (iv) the higher the
contribution of an amino acid to codon usage bias,
the higher the variance of the capacity to minimize
errors for its synonymous codons. This suggests that
codon usage bias can be explained by the preferential
usage of codons that minimize errors. Other evidence
(McVean and Vieira 2001) suggests that Leu (the
amino acid shown here to have the highest variance

Table 5. Correlation between wRN and CG content, ENC, Ka and Ks for the 432 mouse genes when different similarity matrices are used

Correlation of wRN with
b

Matrixa %CG ENC Ks Ka

DAYM780301 ()20) )0.08 0.29**** 0.00 0.20****

BENS940103 ()1) 0.03 0.33**** )0.02 0.15**

OVEJ920101 ()20) )0.04 0.31**** 0.00 0.20****

RIER950101 ()100) )0.01 0.32**** 0.00 0.19****

RISJ880101 ()8) 0.02 0.32**** 0.00 0.18****

GEOD900101 ()10) )0.12* 0.27**** 0.00 0.20****

Note. Significant correlations are in boldface (*p < 0.05; *p < 0.005; ****p < 0.0001).
aThe label corresponds to the AAindex accession number (http://www.genome.ad.jp/dbget/AAindex/list_of_matrices), followed (in

parentheses) by the value of the similarity score with the stop codon (xAA/STOP) used here. DAYM780301: log-odds matrix for 250 PAMs
(Dayhoff et al. 1978); BENS940103: log-odds scoring matrix collected in 74-100 PAM (Benner et al. 1994); OVEJ920101: STR matrix from

structure-based alignments (Overington et al. 1992); RIER950101: hydrophobicity scoring matrix (Riek et al. 1995); RISJ880101: scoring

matrix (Risler et al. 1988); GEOD900101: hydrophobicity scoring matrix (George et al. 1990).
b%CG, CG content; ENC, effective number of codons; Ks and Ka, rates of synonymous and nonsynonymous substitution. CG/AT mutation

ratio = 0.9; no bias in the transition/transversion ratio; MD values calculated up to the 10th mutation event.
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for MD values) is the amino acid on which the in-
fluence of selection is strongest.
Classically, two models have been proposed to ex-

plain codon usage bias: the selective model, which
postulates that there is a coadaptation of codon usage
and tRNA abundance; and the neutral model, which
postulates that the bias results from biases in the mu-
tational process (see recent review by Duret 2002). In
unicellular organisms, codon usage bias is usually
thought to be due to selection for translation efficiency:
there is preferential usage of codons that bind more
efficiently to the corresponding tRNA or that are rec-
ognized by a more abundant tRNA (Post et al. 1979;
Ikemura 1981, 1982, 1985, 1992). In this way proteins
are produced more rapidly and with fewer errors. In
mammals codon usage may be related to isochores,
segments several kilobases long of similar CG content
but with substantial differences in CG content between
them (Bernardi et al. 1985). In Drosophila it has been
suggested that codon usage bias is caused by selection
on synonymous sites for translational accuracy (Aka-
shi 1994; Powell and Moriyama 1997), but there is
evidence that other factors, for example, recombina-
tion and compositional bias, influence codon usage in
Drosophila (Marais et al. 2001; Hey andKliman 2002).
In general, therefore, it is thought that codon usage
reflects a combination of different forces. The results
presented here show that it is possible that selection on
error minimization plays a role also in the evolution of
codon usage bias.
The results seem rather robust, not depending

drastically on the transition/transversion ratio or on
the CG/AT mutation ratio. I have also shown that
they do not depend on the amino acid similarity
matrix used. Matrices based on observed substitu-
tions are usually considered better than chemical
similarity matrices, but they are derived from se-
quences that include themselves codon usage bias; for
this reason these matrices may not provide a fair
measure (though it is not demonstrated that this is
the case) to study the relationship between error
minimization and codon usage bias. Di Giulio (2001)
used a similar argument to critique the use of the
PAM 74-100 matrix in studies of the genetic code
origin. Note, however, that there is a difference: in the
study of the origin of the genetic code, the similarity
matrix used must be independent from the structure
of the genetic code, otherwise the analysis would be
tautologous (genetic code structure explained with a
matrix that depends on the genetic code structure). In
this case, instead, even if the similarity matrix de-
pended on the genetic code structure, this would not
affect the analysis; indeed the hypothesis I want to
test is that codon usage depends on the similarity
matrix and on the arrangement of codons in the ge-
netic code (codon usage bias explained with a matrix
that may depend on the genetic code structure).

Error minimization seems to be weaker when only
one mutation is considered instead of multiple muta-
tion events. This might suggest that mutation is more
important than mistranslation in natural selection for
the minimization of errors at the protein level. If se-
lection duringmistranslation is important, there might
be a correlation between error minimization and gene
length or gene expression. Studies on the evolution of
the genetic code have been rather vague as to whether
the main mechanism of selection for error minimiza-
tion acts during translation or mutation. The analysis
presented here also does not lead to a conclusive an-
swer concerning the relative importance of mutation
and mistranslation for error minimization due to co-
don usage. The observation that error minimization is
stronger with multiple mutation events and other
preliminary results of mine (M.A., unpublished) sug-
gest that mutation rather than mistranslation is the
driving force of error minimization at the protein level.
If mistranslation is important in selection for error
minimization, then gene expression levels should be
correlated with the degree of error minimization, as
highly expressed genes should be the ones under
stronger selective pressure to reduce errors. This is a
point that would be worth investigating.
Finally I have shown (v) that the degree of error

minimization varies according to the rate of evolution
of the gene. That is, genes with a low rate of evolution
tend to use more codons that minimize the effect of
errors. There is, however, a difference between ro-
dents and Drosophila. In rodents only the rate of
nonsynonymous substitution is correlated with the
degree of error minimization, while in Drosophila the
rate of synonymous substitution is also correlated
with the degree of error minimization. Possibly this
difference is due to the different methods used to
calculate the substitution rates. For the 432 rodent
genes used here, Ka and Ks have been obtained by
Smith and Hurst (1997) by a maximum-likelihood
approach (ML), while for the Drosophila genes Ka
and Ks had been obtained by Akashi (1994) using the
approximate method of Nei and Gojobori (1986)
(NG). It has been shown (Yang and Nielsen 1998,
2000; Bielawski et al. 2000) that ML methods are
superior to approximate methods and that the NG
method may lead to biased estimates of substitution
rates. It is possible that the correlation between wRN
and Ks observed in Drosophila is due to the usage of
approximate methods in the calculation of the sub-
stitution rates. It seems that it cannot be just an ar-
tifact of a correlation of Ks with Ka, because in that
case (Akashi 1994) Ks and Ka are not correlated. The
alternative possibility is that wRN and Ks are corre-
lated in Drosophila but not in mammals. To decide
about these two alternatives a reexamination of
Drosophila genes, with Ks and Ka, derived by ML
methods would be useful.
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What can we deduce from this correlation?
Highly conserved genes are expected to have a high
degree of error minimization if the minimization of
errors at the protein level is important, because any
change in these genes would result in a change in the
function of the protein and, as a consequence, if the
change is deleterious, a reduction in fitness. Less
conserved genes, instead, can have more relaxed
preferences on codon usage because changes at the
protein level will not have a drastic impact on fit-
ness. On the other hand, it could be possible to
argue that genes evolving faster should show error
minimization even more clearly, because they are
more likely to have evolved to their current state by
means of small mutations. This is a basic question in
molecular evolution. Amino acid replacement
changes should be expected to have greater influence
on genes whose structure and function is ‘‘impor-
tant.’’ Unfortunately, as Kreitman (1996) points out,
the problem is not so simple: constraining selection
alone cannot explain protein evolution because the
observed differences in proteins must, by definition,
be ones that have escaped constraining selection.

The study presented here does not help under-
standing this problem, but further studies on error
minimization might provide some useful insights.
The method itself could be used to detect selection
from single DNA sequences.
The degree of error minimization could also depend

on gene function. Genes of parasitic organisms that
code for proteins involved in host–parasite interac-
tions, for example, in some cases prefer codons that
increase the effect of errors to escape the host defenses
more easily (M.A., upublished). This might lead to
different optimal codons for different species, accord-
ing to their life history.
Indeed, the explanation of codon usage bias pre-

sented here, based on the structure of the genetic
code, should predict a unique set of optimal codons
for all the species that use the same code. I have
shown here that results for Drosophila are consistent
with those for rodents. A comprehensive analysis of
many more species will be presented in another
paper, with a more precise method to detect selection
from codon usage analysis of single nucleotide se-
quences (M.A., unpublished).

Table AI. wRN values for different values of the parameters for 82 Drosophila melanogaster genes

Gene wRN-0 wRN-10 wRN-20 wRN-50 wRN-10(A) wRN-10(B) wRN-10(C)

*ade3 )0.42 )0.43 )0.46 )0.43 )0.38 )0.51 )0.49
*Adh )0.67 )0.74 )0.73 )0.70 )0.61 )0.70 )0.72
*Adhr )0.24 )0.27 )0.25 )0.21 )0.09 )0.27 )0.27
*Amy)d )0.73 )0.73 )0.69 )0.65 )0.62 )0.78 )0.73
*Antp )0.76 )0.72 )0.68 )0.64 )0.62 )0.81 )0.75
*Aprt )0.55 )0.64 )0.62 )0.60 )0.49 )0.63 )0.63
*bcd )0.73 )0.60 )0.54 )0.49 )0.56 )0.74 )0.65
*boss )0.42 )0.43 )0.41 )0.38 )0.37 )0.43 )0.43
bw )0.80 )0.76 )0.70 )0.65 )0.68 )0.86 )0.78
cdc37 )0.77 )0.79 )0.77 )0.74 )0.72 )0.81 )0.79
*Cp15 )0.37 )0.57 )0.60 )0.61 )0.43 )0.49 )0.54
*Cp16 )0.44 )0.53 )0.55 )0.55 )0.47 )0.46 )0.50
*Cp18 )0.38 )0.50 )0.51 )0.50 )0.44 )0.43 )0.46
*Cp19 )0.49 )0.65 )0.66 )0.65 )0.55 )0.60 )0.63
*Cp36 )0.58 )0.63 )0.60 )0.56 )0.56 )0.63 )0.63
csw )0.77 )0.63 )0.62 )0.57 )0.60 )0.82 )0.66
cybt-b5 )0.48 )0.66 )0.50 )0.48 )0.51 )0.54 )0.53
Ddx1 )0.74 )0.77 )0.74 )0.71 )0.65 )0.79 )0.77
dpp )0.76 )0.70 )0.63 )0.56 )0.58 )0.83 )0.74
e(r) )0.57 )0.59 )0.56 )0.53 )0.51 )0.63 )0.61
*elav )0.75 )0.65 )0.57 )0.50 )0.57 )0.77 )0.68
*en )0.60 )0.62 )0.59 )0.55 )0.53 )0.70 )0.64
esc )0.61 )0.59 )0.55 )0.52 )0.51 )0.67 )0.61
*Est-6 0.01 )0.02 )0.02 0.00 0.05 )0.04 )0.03
exu )0.50 )0.49 )0.46 )0.43 )0.46 )0.51 )0.48
Fbp2 )0.75 )0.80 )0.78 )0.75 )0.62 )0.82 )0.80
*Fmrf )0.55 )0.53 )0.50 )0.47 )0.51 )0.59 )0.55
fu )0.79 )0.73 )0.68 )0.63 )0.67 )0.82 )0.75
fz )0.72 )0.67 )0.62 )0.57 )0.52 )0.74 )0.69
gl )0.65 )0.65 )0.60 )0.56 )0.54 )0.75 )0.67
*Gld )0.62 )0.62 )0.58 )0.53 )0.54 )0.65 )0.63
*Gpdh )0.66 )0.66 )0.63 )0.60 )0.58 )0.67 )0.66
*h )0.58 )0.60 )0.58 )0.55 )0.51 )0.66 )0.61

continued

Appendix
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*Hsp83 )0.76 )0.77 )0.80 )0.66 )0.74 )0.78 )0.79
janA )0.31 )0.22 )0.19 )0.15 )0.15 )0.30 )0.24
janB 0.05 )0.07 )0.11 )0.14 0.03 0.01 )0.04
kni )0.65 )0.65 )0.61 )0.57 )0.59 )0.73 )0.67
Kr )0.36 )0.35 )0.35 )0.34 )0.34 )0.37 )0.35
ksr )0.67 )0.67 )0.57 )0.58 )0.58 )0.77 )0.70
l(2)gl 0.69 0.61 0.49 0.50 0.61 0.69 0.62

l(2)not )0.78 )0.72 )0.67 )0.63 )0.68 )0.81 )0.74
l(2)tid )0.76 )0.67 )0.60 )0.55 )0.58 )0.79 )0.70
lama )0.47 )0.49 )0.46 )0.43 )0.44 )0.50 )0.49
* mam )0.43 )0.67 )0.63 )0.59 )0.61 )0.71 )0.69
Mlc1 )0.46 )0.53 )0.54 )0.53 )0.42 )0.50 )0.51
neur )0.55 )0.58 )0.56 )0.53 )0.52 )0.55 )0.58
ninaE )0.75 )0.70 )0.65 )0.61 )0.62 )0.77 )0.71
nos )0.63 )0.56 )0.50 )0.45 )0.48 )0.67 )0.61
osk )0.48 )0.43 )0.37 )0.32 )0.40 )0.54 )0.47
para )0.41 )0.34 )0.29 )0.23 )0.31 )0.43 )0.37
* Pcp )0.47 )0.40 )0.36 )0.31 )0.37 )0.47 )0.43
pdm2 )0.59 )0.56 )0.51 )0.46 )0.44 )0.71 )0.62
* per )0.76 )0.66 )0.58 )0.52 )0.52 )0.83 )0.71
Rh2 )0.59 )0.58 )0.55 )0.51 )0.49 )0.61 )0.59
Rh3 )0.68 )0.57 )0.50 )0.43 )0.56 )0.65 )0.59
* Rh4 )0.62 )0.50 )0.44 )0.40 )0.46 )0.60 )0.52
*ro )0.68 )0.67 )0.62 )0.58 )0.55 )0.77 )0.70
run )0.67 )0.59 )0.52 )0.46 )0.51 )0.73 )0.63
* ry )0.57 )0.57 )0.54 )0.50 )0.52 )0.55 )0.57
salm )0.63 )0.61 )0.57 )0.52 )0.57 )0.67 )0.63
*sev )0.51 )0.52 )0.48 )0.41 )0.42 )0.53 )0.55
* sina )0.78 )0.67 )0.60 )0.55 )0.61 )0.77 )0.68
* slbo )0.79 )0.74 )0.69 )0.65 )0.64 )0.85 )0.77
Sod )0.60 )0.72 )0.72 )0.70 )0.48 )0.70 )0.72
sry-a )0.56 )0.60 )0.58 )0.56 )0.50 )0.61 )0.60
sry-b )0.86 )0.80 )0.75 )0.71 )0.77 )0.88 )0.82
sry-d )0.87 )0.82 )0.77 )0.73 )0.78 )0.88 )0.82
* su(Hw) )0.68 )0.70 )0.69 )0.67 )0.66 )0.72 )0.70
su(s) )0.60 )0.56 )0.54 )0.52 )0.50 )0.64 )0.59
su(var) )0.44 )0.39 )0.36 )0.33 )0.37 )0.45 )0.40
Tgfb-60A )0.77 )0.66 )0.69 )0.65 )0.66 )0.82 )0.76
Tl )0.55 )0.49 )0.44 )0.38 )0.45 )0.58 )0.52
* tll )0.65 )0.61 )0.58 )0.55 )0.59 )0.66 )0.61
* tra 0.15 0.17 0.20 0.22 0.29 0.02 0.09

trx )0.12 )0.13 )0.12 )0.11 )0.13 )0.05 )0.11
* tub )0.37 )0.37 )0.35 )0.33 )0.30 )0.43 )0.40
* Ubx )0.51 )0.46 )0.40 )0.34 )0.36 )0.57 )0.50
* Uro )0.65 )0.62 )0.59 )0.55 )0.52 )0.67 )0.63
Yp1 )0.64 )0.75 )0.75 )0.74 )0.62 )0.64 )0.74
* z )0.70 )0.70 )0.67 )0.63 )0.63 )0.75 )0.71

Note. wRN-X(Y) is the wRN value calculated with xAA/STOP = X and with values of the transition/transversion ratio corresponding to Y (see

Table 1). Accession numbers for all the genes are given by Moriyama and Powell (1997). An asterisk precedes genes used in the analysis of

correlation with Ks and Ka (taken from Akashi 1994).
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