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Abstract Analyzing non-smooth mechanical systems requires often the solution of inclusion problems of nor-
mal cone type. These problems arise for example in the event-driven or time-stepping simulation approaches.
Such inclusion problems can be written as non-linear equations, which can be solved iteratively. In this paper
we discuss three different methods to derive the non-linear equations representing the inclusions arising in the
event-driven simulation approach. First, we formulate inclusions describing the individual non-smooth con-
straints and solve them successively. Secondly, we interpret the non-linear equations as the conditions for the
saddle point of the augmented Lagrangian function. As a third possibility we discuss the exact regularization
of set-valued force laws. All three methods lead to the same numerical scheme, but give different insight into
the problem. Especially the factor r occurring in the non-linear equations is discussed. Two iterative methods
for solving the non-linear equations are presented together with some remarks on convergence.

Keywords non-smooth dynamics · augmented Lagrangian · exact regularization · contact problems ·
inclusions

1 Introduction

A non-smooth mechanical system with unilateral contacts and friction can be treated either by event-driven
methods [6] or time-stepping methods [8,11,13]. In both cases, inclusions have to be solved: in the case of
the event-driven methods to determine the future contact behaviour and to evaluate impacts, in the case of
the time-stepping algorithms to solve the time-stepping inclusions. We refer in this paper to the event-driven
inclusions, which describe the contact behaviour on acceleration level. These inclusions are often solved by
setting up linear or non-linear complementarity problems [6,8], or by turning them into non-linear equations
which can be solved by iterative methods [1,9,13]. We discuss three different methods to obtain these non-lin-
ear equations. First, we merge the equations of motion and the set-valued force laws to obtain inclusions that
represent the different non-smooth constraints. Based on the solution of a single inclusion which describes one
individual non-smooth constraint, a successive solution technique can be found, which corresponds to a Jacobi
or Gauss–Seidel like iterative method. Secondly, we derive the non-linear equations from the conditions for
the saddle point of the augmented Lagrangian function, which replaces a constrained optimization problem by
an unconstrained [2,9,10]. A third possibility to derive these non-linear equations is exact regularization [9],
for which the set-valued force laws are regularized in a manner that both, the solution of the original and the
regularized problem coincide with each other.
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The aim of this paper is to widen the reader’s view on the subject by discussing how the different solution
concepts are interconnected. In particular, various interpretations of the parameter r occurring in the non-linear
equations are discussed.

2 The contact problem on acceleration level

The purpose of this paper is to show how inclusions originating from set-valued force laws can be written
as non-linear equations for finite-dimensional second order dynamical systems. To demonstrate the different
methods, we have exemplarily chosen the dynamical take-off and stick-slip transition of frictional contacts
within the event-driven approach. Impacts as well as contacts in pure sliding regime are intentionally left out
for conciseness, but can be treated in a similar way. From the viewpoint of dynamics, we aim at determining
the right accelerations of the system, i.e. the right derivatives u̇(t) of the generalized velocities u(t) for a given
post-impact state (q(t), u(t)) at a fixed time t . The positions of the system at time t are addressed by the
generalized coordinates q(t) with q̇(t) = u(t) almost everywhere. Our approach to impose frictional contact
constraints on the system is lead by the following philosophy [6–8]: Contact forces λ are taken into account in
the equations of motion by Lagrangian multipliers. Contact laws are expressed as set-valued constitutive laws
in local contact coordinates on acceleration level, −λ ∈ D(γ̇ ). Kinematic transformations u̇ → γ̇ are used to
finally state the whole problem in contact entities, γ̇ = Gλ + c, and to solve this equation together with the
set-valued force laws.

2.1 Set-valued force laws

Non-smooth constraints can be described by set-valued force laws [7]. They are often expressed in the frame-
work of convex analysis, which gives a very compact view on the subject. In this paper we try to avoid using
convex analysis to make it accessible also for readers not so familiar with this subject. We call a constraint
which prevents bodies to penetrate each other a unilateral constraint. A force law modeling frictional behaviour
is called a frictional constraint. We denote the i-th constraint by the index i which can either be a unilateral
constraint or a frictional constraint. A unilateral constraint is characterized by the normal contact force λi and
the (normal) gap function gi (q) with admissible values gi ≥ 0. The relative velocity in normal direction is
denoted by γi (t) = ġi (t), and the associated accelerations by γ̇i (t) with

γ̇i = w�
i u̇ + ζi . (1)

It can be shown that wi coincides with the generalized force direction of λi , if gi measures the Euclidean
contact distance and λi acts in the same direction as the one specified by gi . To model the take-off transition
on acceleration level, we introduce the set of unilateral contacts which are active on velocity level at time t ,
PN (t) = {i | gi (q) = 0, γi (q, u) = 0}, and impose for every i ∈ PN a constitutive law of the form

−λi ∈ Upr(γ̇i ) ⇔
{

γ̇i > 0 ⇒ λi = 0
γ̇i = 0 ⇒ λi ≥ 0 (2)

with inverse

−γ̇i ∈ Upr−1(λi ) = Upr(λi ) ⇔
{

λi > 0 ⇒ γ̇i = 0
λi = 0 ⇒ γ̇i ≥ 0 .

(3)

Spatial friction requires the definition of a tangent contact plane, which shall be spanned by two orthon-
ormalized vectors (t1, t2). The coordinates of the tangential contact force and the tangential contact relative
velocity with respect to this basis are denoted by λi and γi (q, u), respectively. The tangential contact relative
acceleration γ̇i may be expressed in the form

γ̇i = W�
i u̇ + ζ i , (4)

in which the two columns of Wi correspond to the two generalized force directions associated with λi . To
model the stick-slip transition on acceleration level, we introduce the set PT 3 = {i |γi (q, u) = 0} of active
stick constraints on velocity level and impose, for every i ∈ PT 3, the spatial law of dry friction

−λi ∈ ai SgnSp(γ̇i ) ⇔
{ ||γ̇i || > 0 ⇒ λi = −ai

γ̇i
||γ̇i ||

γ̇i = 0 ⇒ ||λi || ≤ ai .
(5)
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Note that ai is the maximum friction force of the i-th friction constraint. If the friction constraint i belongs
to the unilateral contact j ∈ PN , then ai = µλ j . The inverse set-valued force law for a spatial friction constraint
i is

−γ̇i ∈ SgnSp−1
(

λi

ai

)
⇔

{ ||λi || = ai ⇒ γ̇i ∈ −R
+
0

λi||λi ||||λi || < ai ⇒ γ̇i = 0.
(6)

2.2 Equations of motion

We first consider a finite-dimensional second order dynamical system for the case that no contact forces are
present. We denote by q the generalized coordinates of this system and by u = q̇ the associated generalized
velocities. Lagrange’s equations of second kind yield the equations of motion, which we write in the form
Mu̇ − h = 0 with M = M(q) being the symmetric and positive definite mass matrix and h = h(q, u) the
vector of all external and gyroscopic forces acting on the system. Additional contact forces are taken into
account by Lagrangian multipliers,

Mu̇ − h −
n∑

i=1

Wiλi = 0. (7)

by which the set-valued constitutive laws from the last section are now connected to the system.

2.3 Contact inclusions on acceleration level

In this section we transform the entire problem to contact coordinates and state it as an inclusion likewise in
terms of the unknown contact forces λ or contact accelerations γ̇ . By defining global vectors and matrices

γ̇ =



γ̇1
...

γ̇n


 , λ =




λ1
...

λn


 , W = (

W1 · · · Wn
)
, ζ =




ζ 1
...

ζ n


 , (8)

the equations of motion (7) are solved for γ̇ and put into the kinematic transformations (1) and (4), which
yields

γ̇ = W�M−1Wλ + W�M−1h + ζ =: Gλ + c. (9)

Note that the matrix G is positive definite if the force directions Wi are independent, otherwise positive
semidefinite. Due to the positive definite mass matrix M, all diagonal entries Gii of G are greater than zero.
Equation (9) forms a linear system, in which the rows represent the non-smooth constraints; a unilateral contact
is represented by one row, a spatial friction constraint by two rows. Together with the associated set-valued
force laws, we arrive at n inclusions describing the n non-smooth constraints. If the constraint i is a unilateral
contact (i ∈ PN ), then the inclusion resulting from (2) and (9) is

n∑
j=1

(G−1)i j γ̇ j + Upr(γ̇i ) � (G−1c)i , (10)

or, by using the inverse representation (3) of (2),

n∑
j=1

Gi jλ j + Upr(λi ) � −ci . (11)

If the constraint i is a spatial friction constraint (i ∈ PT 3), then the resulting inclusion is by (5) and (9)

n∑
j=1

(G−1)i j γ̇ j + ai SgnSp(γ̇i ) � (G−1c)i , (12)
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or, by using the inverse (6),

n∑
j=1

Gi jλ j + SgnSp−1
(

λi

ai

)
� −ci . (13)

By setting up these inclusions for all non-smooth constraints, the contact behaviour of the non-smooth
mechanical system is completely determined. The inclusions (10) and (12) describe the contact behaviour in
terms of the relative contact accelerations γ̇i . We call them γ̇ -inclusions. The inclusions (11) and (13) describe
the contact behaviour in terms of the constraint forces λi and are therefore called λ-inclusions.

2.4 Example

In this example we show how a system with one unilateral and one spatial friction constraint has to be treated.
For this case, Eq. (9) together with the contact laws (3) and (6) reads

(
γ̇1
γ̇2

)
=
(

G11 G12
G21 G22

)(
λ1
λ2

)
+
(

c1
c2

)
(14)

−γ̇1 ∈ Upr(λ1) (15)

−γ̇2 ∈ SgnSp−1
(

λ2

a2

)
(16)

Please note that both, the relative contact acceleration γ̇1 and the contact force λ1 of the unilateral contact
are one-dimensional scalars. On the other hand, the relative contact acceleration γ̇2 and the contact force λ2
of the spatial friction constraint are two-dimensional vectors. The vector γ̇ = (γ̇1 γ̇2)

� of all relative contact
accelerations and the vector λ = (λ1 λ2)

� of all contact forces are thus three-dimensional vectors. The matrix
G has dimensions 3 × 3, and the partial matrices Gi j are

G11 ∈ R
1×1, G12 ∈ R

1×2, G21 ∈ R
2×1, G22 ∈ R

2×2. (17)

Elimination of γ̇1 and γ̇2 from (14), (15), (16) yields the two λ-inclusions

2∑
j=1

G1 jλ j + Upr(λ1) � −c1, (18)

2∑
j=1

G2 jλ j + SgnSp−1
(

λ2

a2

)
� −c2, (19)

which completely determine the problem.

3 Analysis of one single non-smooth constraint

In this section we introduce the functions proxC and the κC . Both functions are continuous and monotone, and
will later be used to rewrite inclusions (10), (11), (12), (13) as equivalent equations. The index C denotes the
convex set on which the functions proxC and κC act. We use the set C = R

+
0 for unilateral contacts and the

set S

S = {ξ ∈ R
2| ||ξ ||2 ≤ a} (20)
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for the spatial friction constraints. The function proxC performs a projection onto the set C , that is the point
x = proxC (ξ) is the nearest point to ξ in the set C (proximal point). The functions proxC for the selected sets
C are

C = R
+
0 ⇒ prox R

+
0 (ξ) =

{
ξ if ξ ≥ 0
0 if ξ < 0

(21)

C = S ⇒ proxS(ξ) =
{

ξ if ξ ∈ S
ξ

||ξ ||2 a if ξ /∈ S.
(22)

The function κC for the set S is defined as

C = S ⇒ κS(ξ , r) =
{

ξ − r a ξ
||ξ ||2 if 1

r ξ /∈ S

0 if 1
r ξ ∈ S .

(23)

With the help of the functions proxC and κC we may now rewrite the inclusions (10), (11), (12), (13) needed
in the contact problem as equations. In particular, for r > 0 it holds true that

xi + r Upr(xi ) � bi ⇔ xi = prox
R

+
0
(bi ), (24)

xi + r ai SgnSp(xi ) � bi ⇔ xi = κS(bi , r), (25)

xi + r SgnSp−1(
xi

ai
) � bi ⇔ xi = proxS(bi ). (26)

The associated proofs are performed within the framework of convex analysis and are presented in appen-
dix. Most important to note is that non-smooth constraints may now be formulated as equations, which we
explicitly show by the examples of a unilaterally constrained particle and a particle with friction.

3.1 Unilateral contact

An active unilateral contact between a point mass and a surface (Fig. 1) is described by the λ-inclusion

mu̇ = λ − F
−u̇ ∈ Upr(λ)

}
⇔ λ + mUpr(λ) � F (27)

in which F is the external forcing and ẋ = u the velocity of the particle. With the help of (24), the λ-inclusion
in (27) may be replaced by a prox condition and solved according to (21),

λ = prox R
+
0 (F) ⇔

{
λ = F if F ∈ R

+
0

λ = 0 if F /∈ R
+
0 .

(28)

Note that the set-valued force laws are formulated on acceleration level and that we have assumed an active
contact on velocity level (x = 0, u = 0).

3.2 Spatial friction constraint

For an active spatial friction constraint (u = 0) between a point mass and a surface (Fig. 2), the γ̇ -inclusion is

mu̇ = λ + F
−λ ∈ aSgnSp(u̇)

}
⇔ u̇ + 1

m
a SgnSp(u̇) ∈ F

m
. (29)

By taking into account (25), we obtain

u̇ = κS

(
F
m

,
1

m

)
⇔

{
u̇ = 0 if F ∈ S
u̇ = F

m − a
m

F
||F|| 2

if F /∈ S.
(30)
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Fig. 1 Unilateral constraint: the position of a point mass is described by the coordinate x . In addition to the load F , a contact
force λ is introduced

Fig. 2 Spatial friction constraint: point mass lying on a surface, with external force F and friction force λ. The two forces are
described in a tangential coordinate system (t1, t2)

The inverse problem of (29) leads to the λ-inclusion

mu̇ = λ + F
−u̇ ∈ SgnSp−1

(
λ
a

)} ⇔ λ + m SgnSp−1
(

λ

a

)
∈ −F , (31)

which can be solved by (26) to give

λ = proxS(−F) ⇔
{

λ = −F if − F ∈ S
λ = −a F

||F||2 if − F /∈ S.
(32)

Note that the set-valued force laws are formulated on acceleration level and that we have assumed that
stick is active on velocity level (u = 0).

4 Representing contact inclusions by non-linear equations

With the help of (24), (25), (26) the inclusions (10), (11), (12), (13) describing the contact behaviour can now
be written as equations. The λ-inclusion (11) for a unilateral constraint i ∈ PN becomes

−
n∑

j=1
j 	=i

Gi j λ j − ci ∈ Giiλi + Upr(λi ). (33)

Since Gii > 0 is a scalar, we obtain together with (24)

λi = prox
R

+
0


−

n∑
j=1
j 	=i

Gi j

Gii
λ j − ci

Gii


 . (34)

The force λi of the i-th non-smooth constraint appears only on the left hand side of (34). Thus it can
be directly computed if all other forces λ j are known. The quotient Gi j/Gii shows the influence of the j-th
contact on the i-th contact. A non-linear equation in which the unknowns are the accelerations γ̇ follows from
the γ̇ -inclusion (10),

γ̇i = prox
R

+
0


−

n∑
j=1
j 	=i

(G−1)i j

(G−1)i i
γ̇ j + (G−1c)i

(G−1)i i


 , (35)
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in which (G−1)i i > 0 is a scalar.
The λ-inclusion (13) characterizing a spatial friction constraint i ∈ PT 3 can be reformulated as

−
n∑

j=1
j 	=1

Gi j λ j − ci ∈ Gi iλi + SgnSp−1(
λi

ai
). (36)

In this case, Gi i is no longer a scalar, but a 2 × 2 matrix. By splitting it up according to

Gi i = αi I + Bi i (37)

with I the identity matrix, αi > 0, and Bi i the remaining part, one obtains

−
n∑

j=1
j 	=1

Gi j λ j − ci − Bi iλi ∈ αiλi + SgnSp−1
(

λi

ai

)
. (38)

This yields, together with (26), the non-linear equation

λi = proxS


−

n∑
j=1
j 	=i

Gi j

αi
λ j − ci

αi
− Bi i

αi
λi


 . (39)

Note that the force λi of the i-th non-smooth constraint cannot be determined straightforward as function
of λ j because it appears on both sides of the equation due to the remainder matrix Bi i . This remainder matrix
Bi i depends on the choice of the the tangential unit vectors t1 and t2 of the spatial friction constraint, which can
sometimes be chosen such that Bi i becomes zero. Note that Bi i = 0 is quite handy but not required to solve
the problem. The non-linear equation describing the spatial friction constraint in terms of the accelerations γ̇
follows from the γ̇ -inclusion (12),

γ̇i = κS


−

n∑
j=1
j 	=i

G−1
i j

αi
γ̇ j + (G−1c)i

αi
− Bi i

αi
γ̇i ,

1

αi


 . (40)

A more general formulation of the non-linear equations (34) and (39) can be found by first rearranging the
λ-inclusions (11) and (13) in the form

−
n∑

j=1

Gi j λ j − ci + λi

ri
∈ λi

ri
+ Upr(λi ) i ∈ PN , (41)

−
n∑

j=1

Gi j λ j − ci + λi

ri
∈ λi

ri
+ SgnSp−1(

λi

ai
) i ∈ PT 3. (42)

Those inclusions are then multiplied by ri , and relations (24) and (26) are used to obtain the non-linear
equations

λi = prox
R

+
0

(
λi − ri

(
n∑

j=1
Gi j λ j + ci

))
i ∈ PN , (43)

λi = proxS

(
λi − ri

(
n∑

j=1
Gi j λ j + ci

))
i ∈ PT 3. (44)

The factor ri is an arbitrary positive scalar which can be chosen such that (41), (42) become (34), (39). An
interpretation of ri is given in the following sections. The same can be carried out for the γ̇ equations (35) and
(40), which yields the more general formulation
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γ̇i = prox
R

+
0

(
γi − ri

(
n∑

j=1

(
G−1

)
i j γ̇ j − (

G−1c
)

i

))
i ∈ PN , (45)

γ̇i = κS

(
γ̇i − ri

(
n∑

j=1

(
G−1

)
i j γ̇ j − (

G−1c
)

i

)
, ri

)
i ∈ PT 3. (46)

In summary, the contact behaviour of a non-smooth mechanical system can be described by a set of n
non-linear equations. These equations can either be formulated in terms of the forces λ or in terms of the
accelerations γ̇ . In analogy to the inclusions we call them λ-equations and γ̇ -equations.

A mechanical system with a non-regular matrix G causes problems. The λ-equations of such a system
might have non-unique solutions, whereas a description of such a system by γ̇ -equations is not even possible.
We will therefore only discuss the λ-equations in the following.

5 Solving the non-linear equations

The λ-equations (43) and (44) describing the contact behaviour can be solved by different methods. One pos-
sibility is to use a Newton–Raphson method [1]. Other possibilities are iterative schemes which are derived
from the Jacobi and Gauss–Seidel methods [12], on which we focus in the following.

5.1 Banach fixed point theorem

A system of equations

ξ = F(ξ) , ξ ∈ R
m , F : R

m → R
m (47)

can be solved by the iterative method

ξ ν+1 = F(ξ ν), (48)

if the function F(ξ) is Lipschitz continuous with a Lipschitz constant L smaller than one (Banach fixed point
theorem),

||F(ξ) − F(ξ̂)|| ≤ L||ξ − ξ̂ || , L < 1 , ∀ξ̂ ∈ R
m . (49)

The smaller the Lipschitz constant L , the better the convergence is. Arbitrary norms || · || can be used. We
use either the spectral norm

||ξ ||2 =
√

ξ�ξ , ||A||2 = ρ(A) = max
h

|µh(A)| , ||Aξ ||2 ≤ ||A||2||ξ ||2, (50)

in which µh(A) are the eigenvalues of A, or the row-sum norm

||ξ ||∞ = max
h

|ξh | , ||A||Z = max
h

n∑
k=1

|ahk | , ||Aξ ||∞ ≤ ||A||Z ||ξ ||∞. (51)

5.2 Jacobi and Gauss–Seidel methods for linear systems

A linear system Ax + b = 0 with A ∈ R
m×m , x ∈ R

m and b ∈ R
m can be solved by Jacobi or Gauss–Seidel

iterative methods, both based on matrix splitting. The instruction for the Jacobi iteration (J) is

xν+1
h = − 1

Ahh




m∑
k=1
k 	=h

Ahk xν
k + bh


 . (52)
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An extension of the Jacobi method is the Jacobi iteration with relaxation (JOR)

xν+1
h = xν

h + ωh




− 1

Ahh




m∑
k=1
k 	=h

Ahk xν
k + bh




︸ ︷︷ ︸
xν+1

h Jacobi

−xν
h




= xν
h − ωh

Ahh

(
m∑

k=1

Ahk xν
k + bh

)
. (53)

If the relaxation parameter ωh is set equal to one, we arrive at the original Jacobi method without relaxation.
Convergence of the JOR method can be treated by the Banach fix point theorem (49). It can only be guaranteed
for strictly diagonal dominant matrices A, that is

m∑
k=1
k 	=h

∣∣∣∣ Ahk

Ahh

∣∣∣∣ < 1 ∀h. (54)

Another splitting scheme leads to the Gauss–Seidel iteration method (S),

xν+1
h = − 1

Ahh

(
h−1∑
k=1

Ahk xν+1
k +

m∑
k=h+1

Ahk xν
k + bh

)
. (55)

The corresponding relaxation method (SOR) reads

xν+1
h = xν

h − ωh

Ahh

(
h−1∑
k=1

Ahk xν+1
k +

m∑
k=h

Ahk xν
k + bh

)
. (56)

Convergence of the SOR method can only be guaranteed for positive definite matrices A.

5.3 Jprox method

We present now a Jacobi like iterative instruction to solve the non-linear system of λ-equations, which we call
Jprox method. For the λ-equation (34) of a unilateral constraint, we propose the scheme

λν+1
i = prox

R
+
0


− 1

Gii




n∑
j=1
j 	=i

Gi j λν
j + ci





 . (57)

Note that this instruction consists of the Jacobi method for a linear system G λ + c = 0 combined with a
projection onto the set R

+
0 . This means that we treat the unilateral constraint like a bilateral constraint and add

a projection. The instruction (57) is identical to the iterative scheme used in [3] to solve linear complementarity
problems

γ̇ = Gλ + c, γ̇ ≥ 0, λ ≥ 0, γ̇ �λ = 0. (58)

In a similar way, we choose for the spatial friction constraint (39) the scheme

λν+1
i = proxS


− 1

αi




n∑
j=1
j 	=i

Gi j λν
j + ci − Bi iλ

ν
i





 . (59)

This instruction is quite similar to the Jacobi method (52). Note however, that both components of the
friction force λi are simultaneously iterated in (59). In terms of the notation used in (52), this iteration would
simultaneously affect two components xh and xh+1. Moreover, the factor αi in (59) can not be regarded as
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two successive diagonal entries Ann , An+1n+1, but is related to the problem through (37). As a consequence,
also the right-hand side of (59) contains λi . This is different from the original Jacobi method (52), in which
xh occurs only on the left-hand side.

5.4 JORprox method

We use (43), (44) to derive an iterative instruction for the λ-equations, which corresponds to a Jacobi relaxation
method,

λν+1
i = prox

R
+
0

(
λν

i − ri

(
n∑

j=1
Gi j λν

j + ci

))
=: prox

R
+
0

(Fi (λν)) i ∈ PN , (60)

λν+1
i = proxS

(
λν

i − ri

(
n∑

j=1
Gi j λν

j + ci

))
=: proxS (Fi (λν)) i ∈ PT 3. (61)

Both instructions are composed of the JOR method combined with an additional projection, and are there-
fore addressed as the JORprox method. Note that the factor ri in (60) corresponds to the relaxation factor ωh
in (53), that is ri = ωh/Ghh , where h is the row in G which belongs to the unilateral constraint i . If i is
an spatial friction constraint, it affects two rows h and h + 1 in G. Thus the JORprox (61) merges two JOR
method instructions (53) with relaxation factors ωh and ωh+1. The two relaxation factors cannot be chosen
independently, because of

ri = ωh

Ghh
= ωh+1

G(h+1)(h+1)

. (62)

Methods similar to JORprox are used by [1,5,9].

5.5 Convergence of the JORprox method

In this section we show that the JORprox method converges if the underlying JOR method does. The proof
uses the fact that the proxC mapping is a contraction. In particular, it holds for prox

R
+
0

and Fi (λ) as defined in
(60) that

||prox
R

+
0
(Fi (λ)) − prox

R
+
0
(Fi (λ̂))||2 ≤ ||Fi (λ) − Fi (λ̂)||2 (63)

because the derivative of prox
R

+
0

is always equal to or less than one, see Fig. 3. The mapping proxS together
with Fi (λ) from (61) satisfies

||proxS(Fi (λ)) − proxS(Fi (λ̂))||2 ≤ ||Fi (λ) − Fi (λ̂)||2 (64)

which is visualized in Fig. 4. Note that the vector from F(λ̂) to F(λ) reduces in length after the projection
of F(λ̂) and F(λ) to the set S has been performed. Note also that (64) applies for a contact with associated
friction, i.e. friction that does not depend on the contact’s normal load. In this case, the set S of admissible
tangential forces is constant as it has been presumed in (64).

Inequalities of type (63) or (64) may be combined to state global estimations, which are necessary for
the multi-contact case. If, for example, one unilateral contact (63) and one spatial friction constraint (64) is
considered, one obtains because of the contractivity of prox∥∥∥∥∥

(
prox

R
+
0
(F1(λ)) − prox

R
+
0
(F1(λ̂))

proxS(F2(λ)) − proxS(F2(λ̂))

)∥∥∥∥∥
2

≤
∥∥∥∥
(

F1(λ) − F1(λ̂)

F2(λ) − F2(λ̂)

)∥∥∥∥
2

:= ‖F(λ) − F(λ̂)‖. (65)

Furthermore, F(λ) can be written by (60), (61) in the form F(λ) = λ−R(Gλ+c), in which R is a diagonal
matrix with entries ri ,

R =

r1 0 0

0 r2 0
0 0 r2


 =




ω1
G11

0 0
0 ω2

G22
0

0 0 ω3
G33


 . (66)
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Fig. 3 The function prox
R

+
0

Fig. 4 Graphical interpretation of inequality (64)

We therefore obtain from (50) the estimation

‖F(λ) − F(λ̂)‖2 ≤ ||I − R G||2︸ ︷︷ ︸
L

||λ − λ̂||2 (67)

which proves together with (65) that the JORprox method satisfies the Banach fixed point theorem if the JOR
method does. To guarantee the convergence of the underlying JOR method, the Lipschitz constant L in (67)
must be less than one. This can be expressed by a condition on the values of ωh , which we derive by estimating
the spectral norm with the help of the max-row norm,

L = ||I − R G||2 ≤ ||I − R G||∞︸ ︷︷ ︸
L̃

= max
h


|1 − ωh | + ωh

m∑
k=1
k 	=h

∣∣∣∣Ghk

Ghh

∣∣∣∣

 < 1. (68)

In Fig. 5, the estimation L̃ of the Lipschitz constant L is shown as a function of ωh , together with the two
summands that build it up. The left diagram corresponds to a matrix G which is strictly diagonal dominant.
In this case, a minimum Lipschitz constant L̃ is reached for ωh = 1. In the right diagram, the matrix G is not
strictly diagonal dominant. As a consequence, the estimate L̃ of the Lipschitz constant continuously increases
from one. Although convergence cannot be guaranteed for this case, the numerical scheme might still work.
This results from the fact that L̃(ωh) is close to one for small values of ωh . However, choosing ωh small does
not solve the problem, because this choice influences the stop criterion of the algorithm, which is based on a
relative and absolute error estimate: The choice ωh = 0 causes ri = 0 by (66). As a consequence, the itera-
tive instructions (60), (61) for inclusion i become independent from all other inclusions j , and the algorithm
terminates already after the first loop, because after it the values of λi are not changed anymore. Note that the
parameter ri controls the influence of the j-th inclusion on the i-th inclusion.

Based on these observations, we suggest the following choice of parameter ri : if the matrix G is strictly
diagonal dominant, we set

ri = 1

Ghh
, (69)

in which h denotes the row in G which belongs to constraint i . In the case of spatial friction, h addresses any
of the associated rows in G, preferably the one which minimizes ri . If G is not strictly diagonal dominant,
then ri has to be chosen small. A good empiric criterion is
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Fig. 5 Minimizing the Lipschitz constant L̃(ωh) (68). In the left figure, G is strictly diagonal dominant, and a minimum can be
reached for ωh = 1. In the right figure, G is not strictly diagonal dominant, and the Lipschitz constant L̃(ωh) is always greater
than one

1

ri
=

m∑
k=1

|Ghk | . (70)

If the diagonal elements predominate, then the criteria (69) and (70) become similar.

5.6 Interpretation

The Jprox method can be interpreted in the following way (Fig. 6): in order to calculate the constraint force
λν+1

i of the constraint i , we assume that all other constraint forces λν
j are already known. If the constraint i

is unilateral or frictional with Bi i = 0, it can be solved straightforward. If the constraint i is a spatial friction
constraint with Bi i 	= 0, then a better approximation is gained. Then the next constraint i +1 is treated under the
same assumption that all other constraint forces are known. The calculation of the constraint force λν+1

i+1 uses

λν
i , thus it does not utilize the fact that λν+1

i has already been computed. The update of the forces λν → λν+1

is not performed until all constraints have been treated. The parameter ri in the JORprox is equivalent to a
relaxation factor and determines the influence of the constraints j on the constraint i .

5.7 SORprox method

It is also possible to solve the λ-equations with a SOR like method. In contrast to (60), (61), the iterative
procedure is now

λν+1
i = prox

R
+
0

(
λν

i − ri

(
j<i∑
j=1

Gi jλ
ν+1
j +

n∑
j=i

Gi jλ
ν
j + ci

))
i ∈ PN , (71)

λν+1
i = proxS

(
λν

i − ri

(
j<i∑
j=1

Gi jλ
ν+1
j +

n∑
j=i

Gi jλ
ν
j + ci

))
i ∈ PT 3. (72)

and deviates from (60), (61) in the immediate update of the calculated forces within the loop. We call the
instructions (71) and (72) the SORprox method. It is presumable that the convergence of these instructions
is the same as in the SOR method, because the proxC mapping is a contraction. Note that the SOR method
converges for positive definite matrices G. This is the case if all possible constraint states do not cause an
underdetermined system. If the constraints can act on the system in a way that it becomes underdetermined,
then G is only positive semidefinite and convergence cannot be guaranteed. The SORprox method without
relaxation (Sprox) can be interpreted in the following way (Fig. 6).

All constraints are solved by the assumption that all other contact forces are known. By contrast to the
Jprox method, the constraint forces are updated after each calculation, thus the calculation of λν+1

i+1 uses λν+1
i

instead of λν
i . This corresponds to a successive solution of the individual constraints [11].
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Fig. 6 Interpretation of the Jprox and Sprox method

Fig. 7 Planar model of a block on a surface

5.8 Numerical example

In this example we treat a planar system, consisting of a block on a surface with external loads FX , FY , M . The
contact between the block and the surface is modeled by two unilateral and two planar frictional constraints,
which act on the block’s lower corners (Fig. 7). Note that planar friction – as a special case of spatial friction
– is simply represented by the filled–in sign function Sgn in (5) and (6), instead of SgnSp. We assume all
constraints to be active on velocity level. For such a case, the equations of motion (7) are


m 0 0

0 m 0
0 0 Js




︸ ︷︷ ︸
M


ẍ

ÿ
ϕ̈




︸ ︷︷ ︸
u̇

−

 0 0 1 1

1 1 0 0
−� � h h




︸ ︷︷ ︸
W




λ1
λ2
λ3
λ4




︸ ︷︷ ︸
λ

−

Fx

Fy
M




︸ ︷︷ ︸
h

= 0. (73)

We choose as m = 2.1, Js = 0.018, � = 0.15 and h = 0.05, for which the λ-equations (43), (44)
become
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Fig. 8 Convergence of the JORprox (dashed) and the SORprox (solid) method. The number of iterations is shown as a function
of the relaxation parameter ωh

λ1 = prox
R

+
0
(λ1 − r1 (1.8λ1 − 0.8λ2 − 0.4λ3 − 0.4λ4 + c1)), (74)

λ2 = prox
R

+
0
(λ2 − r2 (−0.8λ1 + 1.8λ2 + 0.4λ3 + 0.4λ4 + c2)), (75)

λ3 = proxS3(λ3 − r3 (−0.4λ1 + 0.4λ2 + 0.6λ3 + 0.6λ4 + c3)), (76)

λ4 = proxS4(λ4 − r4 (−0.4λ1 + 0.4λ2 + 0.6λ3 + 0.6λ4 + c4)). (77)

where ci contains the terms c = W�M−1h. The matrix G = W�M−1W is neither strictly diagonal dominant
nor positive definite, but only positive semidefinite. Thus, we cannot guarantee convergence, and the system
(74), (75), (76), (77) might have non-unique solutions for the forces λ.

As an example, consider the case that the block remains in the stick state, which can be realized by moderate
or vanishing loading (FX , FY , M). For this situation one can show that non of the proxC -functions project on
their sets (proxC (x) ≡ x). As a consequence, (74), (75), (76), (77) reduce to a set of linear equations which
are not independent due to the semi-definiteness of G, and the contact forces can not be determined uniquely.
However, we are already satisfied if the algorithm returns just one of those solutions, because in this example
all possible force distribution lead to the same (unique) generalized accelerations u̇. If one of the contacts is
going to slide or open, then the contact forces are expected to be unique. In these situations, the solution λ
of the contact problem (74), (75), (76), (77) is at a point at which some of the proxC -functions really project,
which makes the non-linear equations of the system (74), (75), (76), (77) independent.

The non-linear equations (74), (75), (76), (77) are solved by the JORprox and the SORprox method. In
Fig. 8 the number of iteration steps is shown in function of the relaxation factor ωh . It is assumed that all con-
straints have the same relaxation parameter. Convergence cannot be guaranteed, but the iteration converges
anyway for some ωh . In the first plot both unilateral constraints are closed and both friction constraints stick.
The solution is non-unique. In the plot we see the number of iteration steps of the JORprox method (dashed)
and of the SORprox method (solid). In the second plot both unilateral constraints are closed and both friction
constraints slide. Further we have in the third plot one closed unilateral constraint. The corresponding friction
constraint sticks. The other unilateral constraint opens.

6 Augmented Lagrangian

It has been shown in Sect. 4 that the inclusions describing unilateral and frictional contact behaviour can be
written as equations. In the following we will briefly discuss how those equations are connected to optimization
theory. As described in [2,10], a constrained optimization problem can be turned into an unconstrained saddle
point problem of the so-called augmented Lagrangian function. We review this mathematical theory and apply
it afterwards to mechanics by using the principle of least constraints and it’s dual principle. We show that
the non-linear equations (43), (44) and (46) describing the contact behaviour are the necessary and sufficient
conditions for the saddle point of the augmented Lagrangian function when applied to mechanics.

6.1 Equality constraints

We consider a strictly convex cost function f (x) together with an affine equality constraint g(x) = 0. Asso-
ciated with the optimization problem
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min
x

f (x) for g(x) = 0 (78)

is the augmented Lagrangian function [2]

La(x, µ) = f (x) + µ g(x) + r

2
g2(x). (79)

The factor µ is the Lagrange multiplier known from the ordinary Lagrangian, and r an additional penalty
parameter. Finding the saddle point of the augmented Lagrangian function, i.e.

min
x

max
µ

La(x, µ), (80)

is equivalent to solving the optimization problem (78).

6.2 Inequality constraint

An optimization problem with an inequality constraint

min
x

f (x) for g(x) ≤ 0 (81)

is reformulated with the help of a slack variable ν to obtain

min
x

f (x) for g(x) + ν = 0 , ν ≥ 0. (82)

The associated augmented Lagrangian function is [2]

La(x, µ, ν) = f (x) + µ (g(x) + ν) + r

2
(g(x) + ν)2

︸ ︷︷ ︸
P(g(x),ν,µ)

, (83)

and the corresponding saddle point problem

min
x,ν≥0

max
µ

La(x, µ, ν). (84)

The term P(g(x), ν, µ) in (83) does not depend on f (x) and can be minimized separately with respect to
ν ≥ 0. This leads to the unconstrained saddle point problem [2]

min
x

max
µ

L̂a(x, µ) = min
x

max
µ

[
f (x) − µ2

2r
+ 1

2r
prox2

R
+
0
(µ + r g(x))

]
. (85)

Note that L̂a(x, µ) is continuously differentiable, because the continuous function prox
R

+
0

appears qua-
dratic. The necessary conditions for the saddle point are

∂ L̂a(x, µ)

∂x
= ∂ f (x)

∂x
+ ∂g(x)

∂x
prox

R
+
0
(µ + r g(x)) = 0, (86)

∂ L̂a(x, µ)

∂µ
= −µ

r
+ 1

r
prox

R
+
0
(µ + r g(x)) = 0. (87)

Equations (85), (86), (87) hold in this form not only for inequality constraints on x as in (81), but also for
any restrictions on the Lagrangian multiplier µ that can be expressed together with a linear-affine function g(x)
as a proxC (·)-condition. This includes in particular the two- and three-dimensional friction law in mechanics,
for which the sets C has to be chosen as the friction interval and the friction disk, respectively.
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6.3 Mechanical systems with unilateral constraints

The framework of the augmented Lagrangian theory can be used in dynamics in connection with the principle
of least constraints. A mechanical system with one unilateral constraint is represented on acceleration level by
the optimization problem

min
u̇

Z(u̇) = 1

2
(u̇ − u̇u)� M (u̇ − u̇u) for − γ̇i = −w�

i u̇ − ζi ≤ 0. (88)

The cost function Z is called the “Zwang”1 of the system. The accelerations of the constrained and uncon-
strained system are denoted by u̇ and u̇u , respectively, where u̇u = M−1h. By applying conditions (86) and
(87) we obtain

Mu̇ − h − wi prox
R

+
0
(λi − r γ̇i ) = 0, (89)

−λi + prox
R

+
0
(λi − r γ̇i ) = 0, (90)

where the Lagrange multiplier µ corresponds to the constraint force λi . Elimination of prox
R

+
0

from (89) yields

Mu̇ − h − wi λi = 0, (91)

−λi + prox
R

+
0
(λi − r γ̇i ) = 0. (92)

From (91) we recognize the equations of motion for a system with one constraint. Equation (92) expresses
the set-valued force law

−λi ∈ Upr(γ̇i ) ⇔ −λi + prox
R

+
0
(λi − r γ̇i ) = 0. (93)

This important relation follows immediately from (24) when setting bi = xi − r yi , but can also be gained
through convex analysis2. To obtain finally the λ-equation (43) from (91) and (92), one first solves (91) for u̇,
then substitute the result in γ̇i = w�

i u̇ + ζi , and puts the resulting expression for γ̇i into Eq. (92).
If we start, instead of (88), with the dual principle of least constraints

min
λi

1

2
λ�

i Gλi + cλi for − λi ≤ 0, (94)

in which G = w�
i M−1wi and c = w�

i (M−1h+ζi ), and perform all steps from (81), (82), (83), (84), (85), (86),
(87), then we arrive finally with the γ̇ - equation (45). In this case, the Lagrangian multiplier µ corresponds to
the relative contact acceleration γ̇i .

6.4 Box constraints

We consider a constrained optimization problem of the form

min
x

f (x) for − a ≤ g(x) ≤ a. (95)

There are now two possibilities on how to treat this problem: one could either split up the box constraint
into two separate inequalities −g(x) − a ≤ 0 and g(x) − a ≤ 0 and treat them as in Sect. 6.2, or introduce a
slack variable ν such that

min
x

f (x) for − a ≤ g(x) − ν ≤ a , ν = 0. (96)

The augmented Lagrangian function for this case is [2]

La(x, µ, ν) = f (x) + µ ν + r

2
ν2

︸ ︷︷ ︸
P(ν,µ)

for − a ≤ g(x) − ν ≤ a. (97)

1 “Zwang”: German word for “constraint”.
2 Proof of (93): −λi ∈ Upr(γ̇i ) ⇒ −γ̇i ∈ N

R
+
0
(λi ) ⇒ λi = prox

R
+
0
(λi − r γ̇i ).
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Minimization of (97) with respect to ν yields the unconstrained saddle point problem [2]

min
x

max
µ

L̂a(x, µ) = min
x

max
µ

[
f (x) − µ2

2r
+ 1

2r
κ2

S(µ + rg(x), r)

]
, (98)

in which the the function κS takes into account the two-dimensional special case of (23). Since L̂a(x, µ) is
continuously differentiable, we obtain for the saddle point

∂ L̂a(x, µ, r)

∂x
= ∂ f (x)

∂x
+ ∂g(x)

∂x
κS(µ + rg(x), r) = 0, (99)

∂ L̂a(x, µ, r)

∂µ
= −µ

r
+ 1

r
κS(µ + rg(x), r) = 0. (100)

6.5 Mechanical systems with planar frictional constraints

The optimization problem (95) can be used to describe planar dry friction within the dual principle of least
constraints,

min
λi

1

2
λ�

i Gλi + cλi for − a ≤ −λi ≤ a. (101)

After having applied (99) and (100), we arrive at

Gλi + c − κS(γ̇i − rλi , r) = 0, (102)

−γ̇i + κS(γ̇i − rλi , r) = 0. (103)

This is equivalent to

Gλi + c − γ̇i = 0, (104)

−γ̇i + κS(γ̇i − rλi , r) = 0. (105)

Elimination of λi from (104) and (105) yields the non-linear γ̇ -equation for one planar friction constraint
(46). Note that dry friction does not restrict the accelerations u̇, but only the values of the friction force λi . As
a consequence, the primal principle of least constraints remains unconstrained in the presence of dry friction,
but has to be modified through addition of support functions that account for the frictional effects [7]. Only
in the dual problem (101), the restriction of the friction force remains visible through inequality constraints.
Coulomb friction, for which the bounds of the tangential forces depend on the unknown normal load, can not
be treated by optimization theory. People speak about “quasi optimization” or the like to express that they
are solving the tangential sub-problem by methods from optimization theory under the assumption of given
normal loads, which in turn are updated within a normal sub-problem under the assumption of given tangential
loads.

6.6 Remarks

Optimization problems with several constraints are treated by summing up the functions P(g(x), ν, µ) of
the individual constraints in the augmented Lagrangian function. Each constraint has then its own Lagrange
multiplier µi and penalty factor ri .

The saddle point of the augmented Lagrangian can also be determined by Uzawa’s method [4]. Basically,
one first minimizes the augmented Lagrangian function with respect to x for fixed Lagrange multipliers µ by
using e.g. a steepest gradient method. In a second step, the Lagrange multipliers are updated. For example, the
update for a constraint g(x) ≤ 0 is

µ = prox
R

+
0
(µ + rg(x)), (106)

which corresponds to (87). Roughly spoken, in each minimization step a better solution is gained for x due to
the penalty term. According to this solution x, better Lagrange multipliers µ can be determined. Attention has
to be paid that not all non-smooth constraints can be treated as optimization problems. As already mentioned,
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quasi optimization problems are not optimization problems and cannot be solved for example by steepest
gradient methods.

Note that instead of combining the two non linear equations (89) and (90) to one non-linear λ-equation
(43), which is solved by an iteration in λi , it is also possible to iterate the two nonlinear equations (89) and
(90) in λi and γ̇i :

γ̇ ν+1
i = G prox

R
+
0
(λν

i − r γ̇ ν
i ) + ci , (107)

λν+1
i = prox

R
+
0
(λν

i − r γ̇ ν
i ). (108)

An Uzawa-like procedure would be: solve (107) for γ̇i with fixed λi , then do one update step for λi
according to (108).

7 Exact-regularization

Up to now we have shown two different approaches how to obtain a system of equations which describes
the behaviour of a non-smooth mechanical system. In Sect. 4 contact inclusions have been turned into equa-
tions by analyzing the behaviour of the individual constraints. In Sect. 6, optimization problems related to
mechanics have been discussed to arrive at the desired description of the system. We show now a third way
how to obtain the same set of equations, but now based on the concept of exact regularization. In Sect. 2 the
mechanical system has been described by the equations of motion (7) and set-valued force laws (2), (3), (5)
and (6). According to (93), those force laws can directly be transformed into equations and solved together
with the equations of motion. The transformation (93) can thereby be regarded as an exact regularization [9],
which gives another interpretation of the problem. The main difficulty when dealing with set-valued force law
is the fact that a whole set is obtained for some arguments, for example Upr(0) = R

−
0 . One way to avoid this

problem is to regularize the set-valued force laws. For example, the set-valued part of the function Upr(x) can
be regularized as a straight line with slope r and intersection y
 at the ordinate. This leads to a regularized
function

y = UprRegul(x) = prox
R

+
0
(y
 − r x). (109)

The function UprRegul(x) has a unique value y for every function argument x . Of course, the regularized
and the set-valued force law are different and do not describe the same behaviour. In Fig. 9, the set-valued
force law −y ∈ Upr(x) is plotted in light gray, the regularized force law y = UprRegul(x) law in dashed dark
gray.

Fig. 9 Exact regularization of the Upr-function

The set-valued force law and the regularized force law coincide if

(x ≥ 0, y = y
 = 0), (110)

(x = 0, y = y
 ≥ 0). (111)

Thus, every point (x, y) that satisfies

y = y
 = UprRegul(x) = prox
R

+
0
(y
 − r x) (112)

is a point of the set-valued function −y ∈ Upr(x). The idea of exact regularization is to shift the regularized
function to the point at which the true solution, i.e. the solution of the set-valued function would be. Figure 10
summarizes the set-valued force laws for unilateral contact and planar friction together with their associated
exact regularization.
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a) b)

c)

Fig. 10 Non-linear equations describing the set-valued force laws. The regularized force law is shifted to a position such that it
intersects the set-valued branch of the contact inclusion in the point at which the solution is

8 Conclusions

In this paper we have discussed three possible methods to obtain the non-linear equations describing the con-
tact behaviour of a non-smooth mechanical system. First, we have merged the equations of motion and the
set-valued force laws to obtain inclusions describing the individual non-smooth constraints. By examining
the behaviour of one single inclusion, a system of non-linear equations respecting the contact laws have been
derived. The non-linear equations have been solved by the JORprox or SORprox iterative method. These
solution methods correspond to a successive evaluation of all contacts. The parameter ri can be interpreted as
a relaxation factor and determines the influence of all constraints j 	= i on constraint i . A second possibility
to obtain the non-linear equations describing the mechanical system is to set up a constrained optimization
problem (principle of least constraints and its dual), which can be turned into an unconstrained saddle point
problem of the continuously differentiable augmented Lagrangian function. The conditions for the saddle point
lead to the same non-linear equations as above. The parameter r is in this case a penalty factor. A third method is
to regularize the set-valued force laws and to shift them into a position at which they coincide with the original
ones. This idea is known as exact regularization. The factor r is the slope of the regularized function. Exact
regularization links the two main approaches in non-smooth mechanics; the regularized and the set-valued
approach.



346 C. Studer, Ch. Glocker

Appendix: Proof of relations (24), (25), (26)

In the following we prove relations (24), (25), (26). With the help of convex analysis, the functions Upr(·) and
the SgnSp−1(·) can be expressed as normal cones NC to the sets R

+
0 and S [7]. The associated potentials are the

indicator functions �
R

+
0

and �S . The function SgnSp(·) can be expressed as subdifferential of the conjugate
potential �


S(xi ) = ai ||xi ||2. Thus relations (24), (25), (26) can be rewritten as

xi + r N
R

+
0
(xi ) � bi ⇔ xi = proxR0+(bi ), (113)

xi + r ∂�

S(xi ) � bi ⇔ xi = κS(bi , r), (114)

xi + r NS(xi ) � bi ⇔ xi = proxS(bi ). (115)

Relations (113) and (115) can be treated together by writing in the form

xi + r NC (xi ) � bi ⇔ xi = proxC (bi ). (116)

Reformulating the left part of (116) yields

0 ∈ (xi − bi ) + rNC (xi ), (117)

which are for r > 0 the optimality conditions of the strictly convex optimization problem

min
xi

1

2r
||xi − bi ||2 + �C (xi ). (118)

More explicitly, this problem may be stated as

min
xi

1

2r
‖xi − bi‖2 for xi ∈ C (119)

and determines the nearest point xi in C to bi

xi = proxC (bi ), (120)

which is expressed in the right part of (116).
To prove relation (114), the subdifferential ∂�


S(xi ) = ai∂||xi || is needed. For xi 	= 0, ∂�

S is differentiable,

and we get

ai∂‖xi‖ = ai∂

√
x�

i xi = ai xi√
x�

i xi

= ai
xi

‖xi‖ . (121)

For xi = 0 we use the definition of the subgradient yi ∈ ∂||0||, i.e.

ai‖x

i ‖ ≥ ai‖0‖ + y�

i (x

i − 0) ∀x


i , (122)

and get

ai ≥ y�
i

x

i

||x

i ||

= ||y�
i || · 1 · cos(φ) ∀φ . (123)

Thus, the subdifferential gradient at xi = 0 consists of all vectors yi with length less than or equal to ai
and forms, in this case, precisely the set S,

∂‖0‖ ≡ S. (124)

With the help of (121) we may now evaluate the left part in (114) for xi 	= 0, which gives

xi = bi − rai
xi

||xi || ⇔ xi (1 + rai

||xi || )︸ ︷︷ ︸
>0

= bi . (125)
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From the second equation in (125) we see that the two vectors xi and bi are parallel. It therefore holds that

xi = bi − rai
bi

||bi || ⇔ bi

(
1 − rai

||bi ||
)

︸ ︷︷ ︸
>0

= xi , (126)

where the term (1 − rai/||bi ||) has to be greater than zero due to the parallelity of xi and bi . Thus,

xi = bi − rai
bi

||bi || if ||bi || > rai ⇔ bi

r
/∈ S, (127)

which proves the right part in (114) for xi 	= 0. For xi = 0 we take into account (124) in the left part of
(114), i.e.

0 ∈ bi − r ∂||0|| = bi − r S. (128)

Thus,

xi = 0 if
bi

r
∈ S, (129)

which proves the right part in (114) for xi = 0.
Note also that the functions proxS and the κS are linked together by

xi = κS(bi , r) = bi − proxr S(bi ). (130)

List of Symbols
Upr unilateral primitives
Sgn filled-in signum function (one dimensional case, planar friction)
SgnSp filled-in signum function (two dimensional case, spatial friction)
prox proximal point function
JORprox Jacobi relaxation method combined with a projection
SORprox Gauss-Seidel relaxation method combined with a projection
UprRegul regularized Upr

q generalized coordinates
u generalized velocities
γi relative contact velocity of the i-th constraint (one dimensional, e.g. unilateral)
γi relative contact velocity of the i-th constraint (more dimensional, e.g spatial friction)
γ vector of all relative contact velocities
λi contact force of the i-th constraint (one dimensional, e.g. unilateral)
λi contact force of the i-th constraint (more dimensional, e.g. spatial friction)
λ vector of all contact forces

M mass matrix
h vector of gyroscopic and external forces
wi generalized force direction of the i-th constraint (one dimensional, e.g. unilateral)
Wi generalized force direction of the i-th constraint (more dimensional, e.g. spatial friction)
W generalized force directions of all constraints
ζi inhomogeneity term of the i-th constraint (one dimensional, e.g. unilateral)
ζ i inhomogeneity term of the i-th constraint (more dimensional, e.g spatial friction)
ζ vector of all inhomogeneity terms

G G = W�M−1W
c c = W�M−1h
Gi j partial matrix of G linking the i-th and j-th constraint
ci partial entry of c belonging to the i-th constraint (one dimensional, e.g. unilateral)
ci partial vector of c belonging to the i-th constraint (more dimensional, e.g spatial friction)

PN set of all unilateral constraints which are active on velocity level
PT 3 set of all spatial friction constraints which are active on velocity level
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