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Abstract. Distributed queuing is a fundamental coordination problem that arises
in a variety of applications, including distributed directories, totally ordered mul-
ticast, and distributed mutual exclusion. The arrow protocol is a solution to dis-
tributed queuing that is based on path reversal on a pre-selected spanning tree of the
network.

We present a novel and comprehensive competitive analysis of the arrow pro-
tocol. We consider the total cost of handling a finite number of queuing requests,
which may or may not be issued concurrently, and show that the arrow protocol is
O(s · log D)-competitive to the optimal queuing protocol, where s and D are the
stretch and the diameter, respectively, of the spanning tree. In addition, we show that
our analysis is almost tight by proving that for every spanning tree chosen for execu-
tion, the arrow protocol is�(s · log(D/s)/log log(D/s))-competitive to the optimal
queuing protocol. Our analysis reveals an intriguing connection between the arrow
protocol and the nearest neighbor traveling salesperson tour on an appropriately
defined graph.
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1. Introduction

Ordering of events and messages is at the heart of any distributed system, arising in
a multiplicity of applications. Distributed queuing is a fundamental ordering problem,
which is useful in many applications ranging from totally ordered multicast to distributed
mutual exclusion.

To motivate distributed queuing, consider the problem of synchronizing accesses to
a single mobile object in a computer network. This object could be a file that users need
exclusive access for writing, or it might just be a privilege, as in the case of distributed
mutual exclusion. If a user requests the object which is not on the local node, the request
must be transmitted to the current location of the object, and the object should be moved
to the user. If there are multiple concurrent requests from users at different nodes, then
the requests must be queued in some order, and the object should travel from one user to
another down the queue. The main synchronization needed here is the management of
the distributed queue. The information needed by every user about the queue is minimal:
each user only needs to know the location of the next request in the queue, so that it can
pass the object along. Distributed queuing abstracts out the essential part of the above
synchronization problem.

In the distributed queuing problem, processors in a message-passing network asyn-
chronously and concurrently request to join a total order (or a distributed queue). The
task of the queuing algorithm is to enqueue these requests and extend the total order. Each
requesting processor (except for the last request in the queue) should be informed of the
identity of its successor in the queue. This is a distributed queue in two senses. Firstly,
it can be manipulated by nodes in a distributed system. Secondly, the knowledge of the
queue itself is distributed. No single processor, or a small group of processors, needs to
have a global view of the queue. Each processor only needs to know its successor in the
queue, and thus has a very local view of the queue.

Such a distributed queue can be used in many ways. For example, it can be used
in distributed counting by passing an integer counter down the queue, or, as explained
earlier, it can be used to ensure mutually exclusive access to a distributed shared object.
An efficient implementation of a distributed queue is important for the performance of
all these applications.

The arrow protocol is an elegant distributed queuing protocol that is based on path
reversal on a pre-selected spanning tree of the network. The arrow protocol was invented
by Raymond [19] in the context of distributed mutual exclusion, and has since been
applied to distributed directories [4], and totally ordered multicast [11]. It has been shown
to outperform centralized schemes significantly in practice [12]. However, thus far, there
has not been a thorough formal analysis of the arrow protocol. Previous analyses [4],
[18] have considered only the sequential case, when there are no concurrent queuing
requests, and different requests are always issued far apart in time. Though an analysis
of the sequential case gives us some insight into the working of the protocol, one of the
most interesting aspects of the arrow protocol is its performance in the concurrent case,
when multiple requests are being queued simultaneously.

Our Contribution. We present the first formal performance analysis of the arrow pro-
tocol in the presence of concurrent queuing requests. Let s denote the “stretch” of the
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pre-selected spanning tree on which the arrow protocol operates, and let D denote the di-
ameter. Informally, the stretch of a tree is the overhead of routing over the tree as opposed
to routing over the original network. We provide precise definitions in Section 3.

• We present a competitive analysis showing that the total cost incurred by the
arrow protocol to service any finite set of requests, which may or or may not be
concurrent, is never more than a factor of O(s ·log D) away from the performance
of the “optimal” offline queuing protocol which has omniscient global knowledge
and which gets synchronization for free. In other words, the competitive ratio of
the arrow protocol is O(s · log D).
• We also present an almost matching lower bound showing that on any spanning

tree of diameter D, the worst-case competitive ratio of the arrow protocol is at
least �(s · log(D/s)/log log(D/s)). This shows that our upper bound for the
competitive ratio is almost tight.

The difficulty in a concurrent analysis of the protocol is as follows. A queuing
protocol has many options when faced with concurrent requests. Depending on the
origins of the requests, some queuing orders may be much more efficient than others.
For example, when presented with simultaneous (or nearly simultaneous) requests from
nodes u1, u2, and v, where u1 and u2 are close to each other but v is far away, it is more
efficient to avoid ordering v between u1 and u2. The reason is that if v were ordered
between u1 and u2, information would have to travel between u1 and v and between v
and u2, which would both lead to long latencies. On the other hand, if v was ordered
after (or, equivalently, before) both u1 and u2, information would have to travel only
between v and u2 and between u1 and u2, which would lead to a lower total latency.
More generally, r queuing requests can be ordered in any of r ! ways, and depending on
the origins of the requests, some orders may be much more efficient than others. Thus,
we first need a good characterization of the queuing order of the protocol.

Our analysis employs a novel “nearest-neighbor” characterization of the order in
which the arrow protocol queues requests, and this yields a connection between the
arrow protocol and the nearest-neighbor heuristic for the traveling salesperson problem
(TSP). With the help of this characterization, we derive the competitive ratio of the arrow
protocol. In order to establish our main result we must prove a new approximation result
for the TSP nearest-neighbor heuristic [20].

This work combines two previous papers [10], [14] and expands on them. Herlihy
et al. [10] presented an analysis of the arrow protocol for the concurrent one-shot case,
when all the queuing requests were issued simultaneously. They showed that the cost of
the arrow protocol was always within a factor of s · log|R| of the optimal, where R is
the set of nodes issuing queuing requests, and also provided an almost matching lower
bound. Building on this work, Kuhn and Wattenhofer [14] presented an analysis of the
more general dynamic case: if nodes are allowed to initiate requests at arbitrary times,
the arrow protocol is within a factor of O(s · log D) of the optimal, and also presented
an almost matching lower bound. The present paper extends both previous papers with
respect to the used communication model. While in [10] and [14], the arrow protocol is
only analyzed for a synchronous communication model, we generalize the analysis for
asynchronous communication in this paper.
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While the main focus of this paper is the theoretical analysis, we also present results
from experiments which corroborate the theoretical results. The experiments show that
the performance of the protocol is indeed extremely good in practice, especially under
situations of high contention.

1.1. Previous and Related Work

The arrow protocol was invented by Raymond [19] in the context of distributed mutual
exclusion. Demmer and Herlihy [4] showed that in the sequential case, i.e. when two
queuing requests are never simultaneously active, the time and message complexity
of any queuing operation was at most D, the diameter of the spanning tree, and the
competitive ratio of the arrow protocol was s, the stretch of the pre-selected spanning
tree. The protocol has been implemented as a part of the Aleph Toolkit [12]. We have
also implemented the protocol, and present our experimental results in Section 5.

Spanning Trees. The arrow protocol runs on a pre-selected spanning tree of the net-
work. Choosing good spanning trees for the protocol is an important problem whose
goal is complementary to this paper. While Demmer and Herlihy [4] suggested using a
minimum spanning tree, Peleg and Reshef [18] showed that the protocol overhead (at
least for the sequential case) is minimized by using a minimum communication spanning
tree [13]. They further showed that if the probability distribution of the origin of the
next queuing operation is known in advance, then it is possible to find a tree whose
expected communication overhead for the sequential case is 1.5. They also note that if
the adversary (who decides when and where requests occur) is oblivious to the spanning
tree chosen, then one can use approximation of metric spaces by tree metrics [1]–[3]
to choose a tree whose expected overhead is O(log n log log n) for general graphs, and
O(log n) for constant dimensional Euclidean graphs (the expectation is taken over the
coin flips during the selection of the spanning tree). There is a recent breakthrough by
Emek and Peleg [6] which manages to compute a O(log n) approximation, meaning that
the maximum stretch of the computed spanning tree is at most a logarithmic factor (in
the number of nodes) larger than the maximum stretch of an optimal spanning tree (with
minimum maximum stretch).

Fault-Tolerance. Herlihy and Tirthapura [9] showed that the arrow protocol can be
made self-stabilizing [5] with the addition of simple local checking and correction ac-
tions.

Other Queuing Protocols. There is another queuing protocol based on path reversal,
due to Naimi, Trehel, and Arnold (NTA) [17]. The NTA protocol differs from the arrow
protocol in the following significant ways. Firstly, the NTA protocol assumes that the
underlying network topology is a completely connected graph, while the arrow protocol
does not. Next, the arrow protocol uses a fixed spanning tree, and the pointers can point
only to a neighbor in the spanning tree. However, the NTA protocol does not use a fixed
spanning tree, and a node’s pointer can point to any node in the graph. Thus, in the
arrow protocol an ordering operation never travels farther than the diameter of the tree,
while in NTA it could travel through every node in the graph. Under certain assumptions
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on the probability distribution of operations at nodes, it is shown [17] that an expected
O(log n) messages are required per queuing operation, where n is the number of nodes
in the graph. Since we do not assume anything about the probability distribution of
operations at nodes, our result is a worst-case result, whereas the analysis of NTA is a
probabilistic analysis.

Another queuing protocol is the dynamic distributed object manager protocol by Li
and Hudak, as implemented in their Ivy system [15]. As in arrow, Ivy uses pointers to
give the way to not-yet collected tokens of previous requests. In contrast to arrow, Ivy
needs a complete connection graph to be operational. A find message will then direct
all visited pointers directly towards the requesting node, in order to provide shortcuts
for future requests. Using this “path shorting” optimization, Ginat et al. [7] proved that
the amortized cost of a single request is �(log n), where n is the number of nodes in
the system. However, this analysis is not directly comparable with our analysis of arrow,
since the arrow protocol does not assume a complete connection graph, whereas Ivy
does.

Roadmap. The remainder of the paper is organized as follows. We first present a
description of the arrow protocol in Section 2. In Section 3 we analyze the competitive
ratio of the arrow protocol. In Section 4 we present a lower bound on the competitive
ratio. In Section 5 we present experimental results of our protocol implementation.

2. The Arrow Protocol

The purpose of any queuing protocol is to order operations totally. The information
returned by a queuing protocol is as follows. For each operation issued by a node, the
node should be informed of the successor of the operation, except for the following case:
if there is currently no successor to an operation (it is the globally last element in the
queue, and no more operations are ordered after it), then the issuing node is not informed
anything. Queuing operations can be issued by nodes asynchronously, and the same node
might issue many operations. Consider a queuing operation a issued by node v. Suppose
a is ordered behind operation b. The queuing of a is considered complete when the node
which issued operation b is informed that b’s successor is a.

We begin with an informal description of the arrow protocol. The protocol runs on
a pre-selected spanning tree of the network. Initially, some node in the tree contains the
tail of the queue; we call this the root. Every node in the network has a pointer which
points to a neighbor in the tree. The pointers are initialized such that following the chain
of pointers starting from any node leads to the root.

When node v issues a queuing operation, the operation follows the chain of pointers
starting from v towards the root, simultaneously flipping the pointers on the way, back
towards v. Once v’s operation reaches the root, it has found its predecessor, and its
queuing is complete. The queue has been extended, and the tail of the queue has moved
to node v. The simple action of flipping only those pointers on the path to the root has
modified the global state such that following the chain of pointers from any node now
leads to the new root, v. A new queuing operation from another node w will now be
queued behind v’s operation.
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u

v

w
id(u) = ?

Fig. 1. Arrow protocol: initial system state. The pointers point to neighbors in the tree, leading to a unique
sink u.

More formally, we model the network as a graph G = (V, E), where V is the
set of processors and E the set of point-to-point FIFO communication links between
processors. The protocol chooses a spanning tree T of G. Each node v ∈ V has a
pointer, denoted by link(v), which is either a neighboring node in the spanning tree, or
v itself. Each node v also has an attribute id(v), which is the unique identifier of the
previous queuing operation issued by v. If v has not issued any queuing operations so
far, then id(v) is the special symbol⊥. A node v is called a sink if link(v) = v. The link
pointers are initialized so that following the pointers from any node leads us to a unique
sink, the root of the tree; an example is shown in Figure 1.

In the arrow protocol, when a node v initiates a queuing operation whose id is a, it
executes the following sequence of steps atomically:

• Set id(v)← a.
• Send queue(a) message to u1 = link(v).
• Set link(v)← v.

When node ui receives a queue(a)message from node ui−1, it executes the following
atomic sequence of steps, called a path reversal. Let ui+1 = link(ui ):

• Flip ui ’s link, i.e. set link(ui )← ui−1.
• If ui+1 
= ui , then forward message queue(a) to ui+1.
• If ui+1 = ui , then operation a has been queued behind id(ui ). The queuing of a is

considered complete since ui has been informed of the identity of the successor
of operation id(ui ).

In some applications, additional messages need to be sent. For example, in synchro-
nizing accesses to mobile objects, it is necessary for ui to send the actual object to v
through a message. However, we do not consider these additional messages as a part of
the queuing protocol itself.

Thus far, we have described the protocol as if the operations were being executed
sequentially, spaced far apart in time. The striking feature is that the protocol works
just as well even in the case of concurrent queuing operations. An example execution
with two concurrent queuing operations is illustrated in Figures 1–5. For a proof of
correctness, we refer the reader to [4], where the authors argue that every concurrent
execution of the protocol is equivalent to some sequential execution, and since every
sequential execution is correct, so is every concurrent execution.
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m1

v

u

x

z

wid(u) = ?

y

id(v) = m1

Fig. 2. Arrow protocol step 1. Node v initiates a queuing request, and sends message m1, on its way to x .

id(v) = m1vz

m1
m2

x

id(u) = ?
id(w) = m2

u

y

w

Fig. 3. Arrow protocol step 2. Node w initiates another request, and sends m2, now on its way to x .

u

v id(v) = m1

m1

xy

z
m2

id(w) =m2wid(u) = ?

Fig. 4. Arrow protocol step 3. Messages m1 and m2 follow the pointers, reversing their directions along the
way. Note that m2 has been deflected towards v.

id(w) = m2

y x

u

z

w

m2 ordered behind m1

v

m1 ordered behind ?

Fig. 5. Arrow protocol step 4. Both m1 and m2 find their predecessors in the total order and are queued
concurrently.
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3. Analysis

We now describe our analysis of the cost of the arrow protocol under concurrent access
to the queue. Our analysis is organized as follows. We first define our model and the cost
metrics more precisely. In Section 3.4 we give a characterization of the queuing order of
the arrow protocol, which will help us derive the upper bound on its cost. This is followed
by an analysis which bounds the cost of an optimal algorithm with a Manhattan Traveling
Salesperson Tour from below. The optimal algorithm pays nothing for synchronization,
and can order the requests differently from the arrow protocol to minimize the cost. In
Section 3.6 we give a new analysis of the TSP nearest neighbor heuristic which will
allow us to derive the competitive ratio in Sections 3.7 and 3.8.

3.1. Model

We are given a graph G = (V, E) representing the network, and a spanning tree T of
the graph. We first consider a synchronous model of computation, where the latency of a
communication link is predictable. In particular, we focus on the case where every edge
has unit latency. In Section 3.8 we extend our results for synchronous communication
to asynchronous systems. For nodes u, v ∈ V , let dT (u, v) denote the distance between
u and v on T , and let dG(u, v) denote the distance between u and v on the graph G.

Definition 3.1. Given a graph G = (V, E) and a spanning tree T , the stretch of T is
defined as s := maxu,v∈V dT (u, v)/dG(u, v).

A queue()message arriving at a node is processed immediately, and simultaneously
arriving messages are processed in an arbitrary order. Our analysis holds irrespective
of the order in which the queue() messages are locally processed. This assumes that
node v can process up to dv messages in a time step at a node, where dv is v’s degree.
Because in practice the time needed to service a message is small when compared with
communication latency, this assumption seems reasonable. For a simple example with
concurrent queue() operations, see Figure 6.

In summary, the optimal queuing algorithm has the following additional power
over the arrow protocol. First, it can globally order queuing requests differently from

v

y

x

u

w

v

y

x

u

y

x

u

queue   (   y   )

queue   (   x   ) queue   (   y   )

queue   (   x   )

w w

v

w

v

y

x

u

Fig. 6. Arrow protocol: concurrent queue messages. Initially node v is selected as the tail of the queue. Nodes
x and y both choose to join the queue simultaneously. Message queue(y) arrives at node u before queue(x).
Finally, queue(x) and queue(y) find their respective predecessors y and v in the queue, and x is the new tail
of the queue.
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the arrow protocol, since it has complete knowledge of current and future requests.
Next, at every single node, the optimal algorithm can locally order arriving messages
differently from the arrow protocol. Finally, the optimal algorithm can communicate
over the communication graph G while the arrow protocol has to communicate over the
spanning tree T .

The Concurrent Queuing Setting. Each queuing request is an ordered pair (v, t)where
v ∈ V is the node where the request was issued, and t ≥ 0 is the time when it was
issued. Let R = {r0 = (v0, t0), r1 = (v1, t1), . . .} denote the set of all queuing requests.
The requests ri in R are indexed in the order of non-decreasing time, with ties broken
arbitrarily, so that i < j �⇒ ti ≤ tj . Note that this tie-breaking rule is not used in any
way in the algorithm, and is just a convenient way for indexing the requests.

Suppose a request r = (v, t) is queued behind another request r ′ = (v′, t ′). The
queuing of r is considered complete at the time v′ is informed that the successor of r ′ is r .

Definition 3.2. If request r = (v, t) is queued behind r ′ = (v′, t ′), then the latency
r is the time that elapses between the initiation of the request (i.e. t) and the time v′ is
informed that the successor of r ′ is r .

Definition 3.3. The cost of any queuing algorithm is the total latency, which is the sum
of the latencies of all the individual queuing requests.

The reason for using the above metric for latency is as follows. In many applications,
the only knowledge needed about the distributed queue is the identity of the successor
of a node’s request. For example, in synchronizing accesses to a mobile object, each
node only needs to know where to send the object next, so knowledge of the successor
suffices. If v also needs to know the identity of the predecessor of request r then v′ can
send v a message, and the additional delay to do so will not be more than the above
defined latency. The cost in such a case would be comparable with our current definition
of latency.

Another option would be to consider the total message complexity (number of
messages sent) as the cost metric and to ignore latency. However, this does not work for
an online algorithm for the following reason. Consider a scenario where only two nodes
u, v initiate requests. An optimal offline algorithm may order every request of u before
any request of v, such that a single message is enough to transport the information of
the last request of u to the first request of v (which experiences a huge latency, for that
matter). No online algorithm can compete against such a powerful adversary.

3.2. Cost of Arrow

We first look at the cost of the arrow algorithm. Suppose the arrow protocol runs and
orders all the requests in R into a queue. Let πA be the resulting queuing order, i.e.
πA(i) denotes the index of the i th request in arrow’s order. We introduce r0 = (root, 0)
representing the “virtual” request at the root, which is the start of the queue; since this
request should be the first in any queuing order, including the one induced by arrow, we
have rπA(0) = r0.
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As already proved in [4], in arrow each request rj will send a message to its prede-
cessor rj using the direct path in the spanning tree.

Therefore, if the arrow protocol orders request ri immediately after request rj , then
the latency of ri using the arrow protocol (denoted by cA(ri , rj )) is given by

cA(ri , rj ) = dT (vi , vj ). (1)

According to Definition 3.3, the total latency of the arrow algorithm for the request
set R, denoted by costR

arrow is

costR
arrow =

|R|∑
i=1

cA(rπA(i), rπA(i−1)) =
|R|∑
i=1

dT (vπA(i), vπA(i−1)). (2)

3.3. Cost of an Optimal Offline Algorithm

We now look at the cost of an optimal offline ordering algorithm Opt that has complete
knowledge about all the requests R in order to determine the queuing order. We assume
that the knowledge of R can only be used to determine the queuing order and to send
the right messages. It does not make sense to assume that all nodes know R from the
beginning because in this case, nodes know their requests’ successors without commu-
nicating. Also for Opt, requests occur distributedly and dynamically. Hence, a node v
does not know about a request r = (v, t) before time t . All other nodes can only know
about r if they are informed by v. Thus, if r is the successor of a request r ′ = (v′, t ′), v′

cannot know about r before time t + dG(v, v
′). Let πO be the queuing order induced by

Opt. Suppose that Opt ordered rj immediately after ri . See Figure 7.
From Definition 3.2, the latency of rj is the time elapsed between tj and the instant

when vi is informed that the successor of ri is rj . The following conditions place lower
bounds on the latency of rj :

• At time tj , only vj knows about request rj . Node vi cannot know about the
existence of rj before time tj + dG(vi , vj ). Thus, the latency of rj in Opt must be
at least dG(vi , vj ).

ti
m
e

ri = (vi; ti)

vj vi

msg

dT(vi; vj)

rj = (vj ; tj)

ri = (vi; ti)

vj vi

dT(vi; vj)

msg

rj = (vj ; tj)

ti � tj

dT(vi; vj)

Fig. 7. The latency of an optimal algorithm for ordering rj after ri . Left: vi is informed about rj before time
ti , therefore the latency is ti − tj . Right: Request ri has been issued at vi when the message arrives from vj .
Thus the latency of rj is dG(vi , vj ).
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• Since request ri does not exist before ti , vi cannot be informed of ri ’s successor
before ti . Thus, the latency of rj ’s request is at least ti − tj .

Let cOpt(ri , rj ) and cO(ri , rj ) be defined as follows:

cOpt(ri , rj ) := max
{
dG(vi , vj ), ti − tj

}
,

cO(ri , rj ) := max
{
dT (vi , vj ), ti − tj

} ≤ s · cOpt(ri , rj ), (3)

where s := max(u,v) dG(u, v)/dT (u, v) is the stretch of the spanning tree T . From the
above argument, we have the following fact:

Fact 3.4. The latency of rj in the optimal algorithm, if it is ordered immediately after
ri , is at least cOpt(ri , rj ) ≥ cO(ri , rj )/s.

Let costR
Opt denote the total latency (defined in Definition 3.3) of Opt for request set

R. Due to Fact 3.4, we have

costR
Opt ≥ min

π

|R|∑
i=1

cOpt(rπ(i), rπ(i−1)) ≥ 1

s
·min

π

|R|∑
i=1

cO(rπ(i), rπ(i−1)). (4)

In the above relation, the minimum is taken over all possible permutations π of
requests in R. Let πO denote the order which minimizes the right-hand side sum of (4).

The competitive ratio ρ achieved by the arrow algorithm is the worst case ratio
between the cost of arrow and the cost of an optimal offline ordering strategy, the worst
case being taken over all possible request sets R:

ρ := min
R

costR
arrow

costR
Opt

. (5)

3.4. The Arrow Protocol in the Dynamic Setting

We now take a closer look at the ordering produced by the arrow algorithm. We will
define a new cost measure cT on the set R, and show that πA, the ordering produced
by arrow, corresponds to a nearest-neighbor TSP path with respect to this cost, starting
from the root request. Then, using amortized analysis, we will show that this new cost
cT is comparable with latency cost cA.

Definition 3.5. The cost cT is defined over requests in R as follows. For ri , rj ∈ R,
let d = tj − ti + dT (vi , vj ). If d ≥ 0, then cT(ri , rj ) = d. If d < 0, then cT(ri , rj ) =
ti − tj + dT (vi , vj ).

Note that cT is asymmetric: cT(ri , rj ) does not necessarily equal cT(rj , ri ). We will
need the following fact which follows from the definition of cT .

Fact 3.6. For all ri , rj ∈ R, cT(ri , rj ) ≥ 0.

A nearest-neighbor TSP path on R induced by cost c is a traveling salesperson path
which starts from the root r0 = (root, 0) and visits the requests of R in an order πNN that
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satisfies the following constraints:

c(r0, rπNN(1)) = min
r∈R

c(r0, r), (6)

c(rπNN(i), rπNN(i+1)) = min
(r∈R)∧(r 
∈{rπNN(0)···rπNN(i−1)})

c(rπNN(i),r ). (7)

For 0 ≤ i ≤ |R| − 1, we define the following:

• Ri is the subset of requests {rπA( j) ∈ R | j > i}.
• Fi is a configuration where all arrows on the spanning tree point towards node
vπA(i). Note that in the initial configuration F0, all arrows are pointing towards
the root, vπA(0).
• Ei is an execution of the arrow protocol starting from configuration Fi with all

requests in Ri being issued.

Lemma 3.7. For each 1 ≤ i ≤ |R| − 1, no request in Ri−1 except for rπA(i) will be
able to distinguish locally between executions Ei−1 and Ei .

Proof. Executions Ei−1 and Ei start from Fi−1 and Fi respectively. Configurations Fi−1

and Fi are equivalent, except that all pointers on the path P between vπA(i−1) and vπA(i)

are pointing towards vπA(i−1) in Fi−1 and towards vπA(i) in Fi (see Figure 8). Among
requests in Ri−1, rπA(i) is the next request in the total order. Thus rπA(i) will take a direct
path from vπA(i) to vπA(i−1) on the tree.

Assume, for the sake of contradiction, that there is a request rπA( j) with j > i (i.e.
rπA( j) is ordered after rπA(i)) that is able to distinguish between Ei−1 and Ei . Then rπA( j)

must have been able to see an arrow on P pointing towards vπA(i−1) before rπA(i) reversed
it. In such a case, rπA( j) would have deflected rπA(i), and would have been ordered before
rπA(i). This contradicts the assumption that rπA(i) comes earlier than rπA( j) in the total
order.

v�A(i)

Con�guration Fi

Con�guration Fi�1

v�A(i�1)

v�A(i�1) v�A(i)

Fig. 8. The executions starting from Fi−1 and Fi are indistinguishable to every request but rπA(i) (issued by
vπA(i)).
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Lemma 3.8. The queuing order of arrow, πA is a nearest-neighbor TSP path on R
induced by the cost cT , starting with the dummy token/request r0 = (root, 0).

Proof. We first prove (6) for πA. Let S be the set of requests which minimize cT(r0, s),
for s ∈ S. Since the start time of r0 is 0, cT(r0, ri ) = ti + dT (root, vi ).

When initiated, the requests of S start moving towards root traveling on the tree T ,
since the tree is initialized with all arrows pointing towards root. Note that at each point
in time, all already initiated requests in S are at the same distance from root.

If two or more find requests from S meet at a node, only one continues towards
root, and the others are deflected. Thus, at least one request from S arrives at the root,
and no request outside of S can make it to root before that. It follows that the immediate
successor of r0 in πA is a request from S, thus proving (6) for the ordering πA using
metric cT .

Suppose (7) was true for i = k for πA using metric cT . We will now show this to be
true for i = k + 1, i.e. that the request succeeding rπA(k+1) is that request in Rk+1 that is
closest to rπA(k+1) according to metric cT .

Consider executions Ek and Ek+1. From Lemma 3.7, no request in Rk except for
rπA(k+1) will be able to distinguish between the two executions. For the purpose of
ascertaining a request succeeding rπA(k+1) in execution Ek , it is sufficient to consider the
execution Ek+1 where all arrows are pointing to vπA(k+1) and all requests in Rk+1 are
issued. From the previous argument, the next request in this total order, rπA(k+2), is the
request in Rk+1 that is closest to rπA(k+1) according to metric cT . Thus, (7) is also true
for i = k + 1.

Lemma 3.9. Consider any two requests ri = (vi , ti ) ∈ R and rj = (vj , tj ) ∈ R. If
tj − ti > dT (vi , vj ), then ri is ordered before rj by arrow.

Proof. Proof by contradiction. Suppose rj was ordered before ri . Say rk = (vk, tk)was
the immediate predecessor of rj in the order formed by the arrow protocol.

From Lemma 3.8, we have the following:

cT (rk, rj ) ≤ cT (rk, ri ),

tj − tk + dT (vk, vj ) ≤ ti − tk + dT (vk, vi ),

(tj − ti ) ≤ dT (vk, vi )− dT (vk, vj ),

≤ dT (vj , vi ).

The last inequality is due to the triangle inequality for the metric dT (u, v). This
contradicts our initial assumption, and completes the proof.

Recall that πA denotes the order induced by the arrow protocol over the request set
R, and let rπA(0) denote the root request (root, 0). Recall that costR

arrow denotes the cost
of the arrow protocol over the request set R.
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Lemma 3.10. Let

CT =
|R|−1∑
i=0

cT(rπA(i), rπA(i+1)).

Then

costR
arrow = CT + tπA(|R|).

Proof. From the proof of Lemma 3.8, we know that

cT(rπA(i), rπA(i+1)) = tπA(i+1) − tπA(i) + dT (vπA(i), vπA(i+1)).

Thus,

CT =
|R|−1∑
i=0

cT(rπA(i), rπA(i+1))

=
|R|−1∑
i=0

(tπA(i+1) − tπA(i) + dT (vπA(i), vπA(i+1)))

= tπA(|R|) +
|R|−1∑
i=0

dT (vπA(i), vπA(i+1)).

From (2), we know that

costR
arrow =

|R|∑
i=1

dT (vπA(i), vπA(i−1)).

The lemma follows.

Assume we are given a set of requests where times of high activity alternate with
times where no request is placed. Intuitively, it seems apparent that the most significant
ordering differences between arrow and an optimal offline algorithm are in the high
activity regions. Neglecting the order inside high activity regions, arrow and the offline
algorithm essentially produce the same ordering. In Lemma 3.11 we show that if after
some request r no request occurs for a long enough time, we can shift all requests
occurring after r back in time without changing the cost of either arrow or the offline
algorithm.

Notation. Let R≤t = {ri ∈ R | ti ≤ t} and R≥t = {ri ∈ R | ti ≥ t}.

Lemma 3.11. Let ri = (vi , ti ) and ri+1 = (vi+1, ti+1) be two consecutive requests with
respect to times of occurrence. Further choose two requests ra ∈ R≤ti and rb ∈ R≥ti+1

minimizing δ := tb − ta − dT (va, vb). If δ > 0, every request r = (v, t) ∈ R≥ti+1 can be
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replaced by r ′ := (v, t − δ) without changing the cost of arrow and without increasing
the cost of an optimal offline algorithm.

Proof. By Lemma 3.9, the requests in R≤ti are ordered before the requests in R≥ti+1

by arrow. By the definition of δ, this does not change is we replaced requests as above.
The transformation therefore does not change the ordering (due to arrow) of the requests
in R≤ti .

Let r be the latest request of R≤ti in arrow’s order. All costs cT(r, r ′) between r
and requests r ′ ∈ R≥ti+1 are decreased by δ. Therefore, request r ′0 minimizing cT(r, r ′)
among all r ′ ∈ R≥ti+1 remains the same. Clearly, the order of the requests in R≥ti+1 is not
changed as well and, thus, arrow’s order remains unchanged under the transformation of
the lemma. Because the cost cA of arrow only depends on the order (see (1)), cA remains
unchanged under the transformation.

For the optimal offline algorithm, we show that the optimal cost cO(r, r ′) between
any two requests r = (v, t) and r ′ = (v′, t ′) cannot be increased by the transformation.
If either (1) both r and r ′ are in R≤ti or (2) both r and r ′ are in R≥ti+1 , then cO(r, r ′) does
not change.

If r ∈ R≥ti+1 and r ′ ∈ R≤ti , then by the definition of δ, cO(r, r ′) is reduced by δ.
If r ∈ R≤ti and r ′ ∈ R≥ti+1 , the term max{0, t − t ′ + dT (v, v

′)} remains zero before
and after the transformation. From the definition of cO (equation (3)) cO(r, r ′) remains
dT (v, v

′) before and after the transformation.

In the following we assume that all requests are already transformed according to
Lemma 3.11.

Lemma 3.12. Let ri = (vi , ti ) and ri+1 = (vi+1, ti+1) be two consecutive requests
with respect to time of occurrence. Without loss of generality, we can assume that there
are requests ra ∈ R≤ti and rb ∈ R≥ti+1 for which dT (ra, rb) ≥ tb − ta .

Proof. If it is not the case, we can apply the transformation of Lemma 3.11.

Lemma 3.13. The cost cT(ri , rj ) of the longest edge (ri , rj ) on arrow’s path is
cT(ri , rj ) ≤ 3D where D is the diameter of the spanning tree T .

Proof. For the sake of contradiction, assume there is an edge (ri , rj ) with cost
cT(ri , rj ) > 3D on arrow’s tour. By Lemma 3.12, we can assume that the temporal
difference between two successive requests (with respect to time of occurrence) is at
most D. Consequently, in each time window of length D, there is at least one request.
We set ε := (cT(ri , rj )−3D)/2. There is a request rk with tk ∈ [ti +D+ε, ti +2D+ε].
We have

tk − ti ≥ D + ε > dT (vi , vk)

and therefore, by Lemma 3.9, arrow orders ri before rk . Consequently, if cT(ri , rk) <

cT(ri , rj ), rj cannot be the successor of ri and thus (ri , rj ) cannot be an edge of the arrow
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tour. We have

cT(ri , rk) = tk − ti + dT (vi , vk)

≤ 2D + ε + D = cT(ri , rj )− ε.

3.5. Optimal Offline Ordering and the Manhattan Metric TSP

In this subsection we show that (up to a constant factor) the real cost (using cO) of an
optimal offline algorithm is the same as the Manhattan cost cM for the same ordering.

Definition 3.14 (Manhattan Metric). The Manhattan metric cM(ri , rj ) is defined as

cM(ri , rj ) := dT (vi , vj )+ |ti − tj |.

Lemma 3.15. Let π be an ordering and let CO and CM be the costs for ordering all
requests in order π with respect to cO and cM. The Manhattan cost is bounded by

CM ≤ 4CO + tπ(|R|).

Proof. We can lower bound the optimal cost of (3) by

cO(ri , rj ) = max{dT (ri , rj ), ti − tj } ≥ dT (ri , rj )+max{0, ti − tj }
2

. (8)

Let DT :=∑|R|i=1 dT (vπ(i−1), vπ(i)) and TU :=∑|R|i=1 max{0, tπ(i−1) − tπ(i)}, that is,
we have CO ≥ (DT + TU )/2. Further, let TU := ∑|R|

i=1 max{0, tπ(i−1) − tπ(i)} and let
T := ∑|R|

i=1 |tπ(i) − tπ(i−1)|. We clearly have T = TU + TD . Because tπ(0) = t0 = 0,
we also have TD = TU + tπ(|R|). Adding TU on both sides yields T = 2TU + tπ(|R|) and
therefore

2
|R|∑
i=1

max{0, tπ(i−1) − tπ(i)} =
|R|∑
i=1

|tπ(i) − tπ(i−1)| − tπ(|R|).

We thus have

4CO ≥ 2DT + 2
|R|∑
i=1

max{0, tπ(i−1) − tπ(i)}

≥ DT +
|R|∑
i=1

|tπ(i) − tπ(i−1)| − tπ(|R|)

= CM − tπ(|R|).

The last equation follows from the definition of CM.
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Lemma 3.16. Let π be an order and let CM be the Manhattan cost for ordering all
requests in order π . We have

CM ≥ 3
2 t|R|,

where t|R| is the largest time of any request in R.

Proof. Let p be the path connecting the requests R in order π . We define α(t) to be
the number of edges of p crossing time t , i.e.

α(t) := |{(rπ(i), rπ(i+1)) ∈ p | t ∈ [tπ(i), tπ(i+1)]}|.

Further, α(t ′, t ′′) denotes the maximum α(t) for any t ∈ [t ′, t ′′]. We partition R into
subsets R1, . . . , Rk where the Ri are maximal subsets of consecutive (with respect to
time of occurrence) requests for which α(t) ≥ 2.

Let Ri := {ri,1, . . . , ri,si } where the ri, j are ordered according to ti, j , i.e. j ′ > j →
ti, j ′ > ti, j . We have r1,1 := r0, ri+1,1 is the first request occurring after ri,si , and ri,si is
the latest request in R>ti,1 for which α(ti,1, ti,si ) ≥ 2. If there is no request in R>ti,1 for
which α(ti,1, ti,si ) ≥ 2, ri,si := ri,1.

The Manhattan cost cM(ra, rb) consists of two separate parts, the distance cost
dT (va, vb) and the time cost |tb − ta|. Let cMd and cMt denote the total distance and time
costs of cM, respectively, that is, cM = cMd + cMt . To get a bound on cMt , we define�t (1)i

and �t (2)i as follows:

�t (2)i := ti,si − ti,1 and �t (1)i := ti+1,1 − ti,si .

By the definition of the Ri , we have

cMt ≥ 2
k∑

i=1

�t (2)i +
k−1∑
i=1

�t (1)i . (9)

We now show how to get a lower bound on cMd . First, we observe that path p consists
of the edges connecting requests inside the Ri as well as one edge per pair Ri and Ri+1

connecting a request in Ri with a request in Ri+1. Thus, path p first visits all nodes of
R1, then all nodes of R2, and so on.

Let ra and rb be two requests for which tb − ta ≤ dT (va, vb). Assume that ra ∈ Ri

and rb ∈ Rj for j > i . Further, let cMd (i, j) be the total distance cost occurring between
requests of Ri ∪ · · · ∪ Rj . Because ra and rb have to be connected by p we have

cMd (i, j) ≥ dT (va, vb) ≥
j−1∑
�=i

�t (1)� . (10)

By Lemma 3.12, we can assume that for each i there are requests ra ∈ R≤ti,si
and

rb ∈ R≥ti+1,1 for which tb − ta ≤ dT (va, vb). We can choose ra’s and rb’s such that all

�t (1)i ’s are covered and such that each Ri is covered at most twice. We start by choosing
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ra,1 and rb,1 such that ra,1 ∈ R1 and such that tb,1 is as large as possible. Assume that
rb,i−1 is in Rj . ra,i and rb,i are chosen such that ta,i ≤ tj,sj and such that tb,i is as large as
possible. We stop as soon as rb,i ∈ Rk . By Lemma 3.12, we make progress in each step
and therefore the last tb will be in Rk .

Let Rj be the subset containing tb,i . By the way we choose the ta,i and tb,i , it is
guaranteed ra,i+2 is in a subset Rj ′ for which j ′ > j . If this were not the case, ra,i+2 and
rb,i+2 would have been chosen instead of ra,i+1 and rb,i+1. If we sum up the estimates of
(10) for all pairs ra,i and rb,i , each edge is at most counted twice and therefore

cMd ≥
1

2

k−1∑
i

�t (1)i .

Combining this with (9) concludes the proof.

Lemma 3.17. Let π be an order and let CO and CM be the costs for ordering all
requests in order π with respect to cO and cM. The Manhattan cost is bounded by

CM ≤ 12CO.

Proof. By the Lemmas 3.15 and 3.16, we have

3
2 t|R| ≤ 4CO + t|R|

and therefore t|R| ≤ 8CO. (Note that t|R| ≥ tπ(|R|).) Applying this to Lemma 3.15
completes the proof.

3.6. The TSP Nearest-Neighbor Heuristic

We have seen that the cost of the arrow protocol is closely related to the nearest neighbor
heuristic for the TSP problem. Rosenkrantz et al. [20] have shown that the cost of a
nearest-neighbor TSP tour is always within a factor log N of the cost of an optimal
TSP tour on a graph with N nodes, for which the distance metric obeys the triangle
inequality. We cannot use this result for two reasons. First, the number of requests |R|
(the nodes of the tour) is not bounded by any property of the tree T (e.g. number of
nodes n, diameter D). The number of requests may grow to infinity even if there are
no two requests which are handled concurrently by arrow. Second, and more important,
the nearest-neighbor tour of arrow is with respect to the cost cT for which the triangle
inequality does not hold. However, the triangle inequality is a necessary condition for
the analysis of [20]. Here, we give a stronger and more general approximation ratio for
the nearest-neighbor heuristic. Instead of the triangle inequality, we have a cost function
which is upper bounded by a metric for which the triangle inequality holds.

Theorem 3.18. Let V be a set of N := |V | nodes and let dn: V × V → R and
do: V × V → R be distance functions between nodes of V . For dn and do, the following
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conditions hold:

do(u, v) = do(v, u), do(u, w) ≤ do(u, v)+ do(v,w),

do(u, v) ≥ dn(u, v) ≥ 0, do(u, u) = 0.

Let CN be the length of a nearest-neighbor TSP tour with respect to the distance function
dn and let CO be the length of an optimal TSP tour with respect to the distance function
do. Then

CN ≤ 3
2�log2(DNN/dNN)� · CO

holds, where DNN and dNN are the lengths of the longest and the shortest non-zero edge
on the nearest-neighbor tour with respect to dn .

Proof. According to their lengths, we partition the edges of non-zero length of the
nearest-neighbor (NN) tour in log2(DNN/dNN) classes. Class Ci contains all edges (u, v)
of length 2i−1dNN ≤ dn(u, v) < 2i dNN, i.e. the lengths of all edges of a certain class
differ by at most a factor of 2. We show that for each class the sum of the lengths of the
edges is at most 3

2 ·CO . We therefore look at a single class C of edges. Let d be the length
of the shortest edge (with respect to dn) of C. All other edges have at most length 2d.

Let VC be the set of nodes from which the NN tour traverses the edges of C. We
compare the total length of the edges in C with the length (with respect to do) of an
optimal TSP tour t on the nodes of VC . Because of the triangle inequality the length of
such a tour is smaller than or equal to CO . Consider an edge (u, v) of the tour t . Without
loss of generality, assume that in the NN order, u comes before v. Let u′ be the successor
of u on the NN tour. The edge (u, u′) is in C. During the NN algorithm, at node u,
v could have been chosen too. Therefore, dn(u, u′)≤dn(u, v)≤do(u, v). Thus, for every
edge e on the optimal tour t , there is an edge e′ on the NN tour whose length is smaller
than or equal to the length of e. Because e and e′ have one endpoint in common, the
length of tour t is at least twice the sum of the lengths of the �|C|/2� smallest edges of
C. Because the length of all edges in C is at most 2d, the sum of the lengths of all edges
in C is at most three times the sum of the �|C|/2� smallest edges of C. This completes
the proof.

3.7. Complexity of Arrow

In this section we prove the competitiveness of arrow by putting our individual parts
together.

Theorem 3.19. Let costarrow be the total cost of the arrow protocol and let costOpt be
the total cost of an optimal offline ordering algorithm. We have

ρ = costarrow

costOpt
= O(s · log D),

where s and D are the stretch and the diameter of the spanning tree T , respectively.
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Proof. We first show that

CT ≤ 3�log2(3D)� · CM. (11)

Equation (11) can be derived from the TSP NN result of Theorem 3.18 as follows. cT

and cM comply with the conditions for dn(u, v) and do(u, v), respectively. By Lemma
3.8, cT ≥ 0. Further, by the definition of cT , we have

cT(ri , rj ) = tj − ti + dT (vi , vj )

≤ |tj − ti | + dT (vi , vj ) = cM(ri , rj ).

Clearly, the triangle inequality holds for the Manhattan metric cM. The only thing missing
to apply Theorem 3.18 is abound on the ratio of the longest and the shortest edge on
arrow’s NN path. By Lemma 3.13, the maximum cost of any edge on arrow’s path is
3D. The minimum non-zero cost of an edge is 1 because time is an integer value (we
have a synchronous system). Theorem 3.18 is about TSP tours (i.e. connecting request
rπ(|R|) again with r0). Since the last edge of a tour has at most the cost of the whole path,
there is at most an additional factor of 2.

By applying Lemmas 3.10 and 3.17, the theorem can now be derived as follows:

costR
arrow = CT + tπA|R| ≤ CT + CM

≤ (3�log2(3D)� + 1
) · CM ∈ O(s · log D · costR

Opt).

3.8. Complexity of Arrow in the Asynchronous Model

One of the major reasons for using the arrow protocol is its correctness under arbitrary
concurrency in a completely asynchronous environment [4]. So far we have simplified
this general setting by considering a synchronous system where the delay of each message
is exactly 1. In this section we show that Theorem 3.19 also holds when assuming an
asynchronous communication model.

In an asynchronous message passing model, message delays are not bounded by a
constant, that is, messages can be arbitrarily fast or slow. However, all messages arrive at
their destinations after a finite amount of time. To have a notion of time in asynchronous
systems, it is commonly assumed for the analysis that each message has a delay of at
most one time unit. The time complexity is then defined as the worst-case (every possible
execution) running time, assuming that each message occurs a delay of at most one time
unit.

We first look at the cost of an optimal asynchronous queuing algorithm. Clearly, the
synchronous time complexity of an algorithm is a lower bound on the asynchronous time
complexity. If we assume also that an optimal algorithm has to cope with worst-case
message delays, we can therefore use the synchronous cost of Opt given by Lemma 3.17
as a lower bound for the cost of Opt in the asynchronous model.

The asynchronous cost of the arrow protocol is defined by Definitions 3.2 and 3.3
as for the synchronous case. That is, the latency cost for queuing a request rj = (vj , tj )

after ri = (ri , ti ) is the time from rj ’s initiation (time tj ) until vi receives the message
from vj . In contrast to a synchronous system, this time does not only depend on ti , tj ,
and dT (vi , vj ) but also on the message delays when sending the request from vj to vi .
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Let us consider an asynchronous execution of the arrow protocol for a given request
set R. To analyze the given execution, we can assume that the message delays are scaled
such that the latency of the slowest message between adjacent nodes is 1. Let π ′A be the
ordering of the requests resulting from this execution. For two consecutive (with respect
to π ′A) requests ri = (vi , ti ) and rj = (vj , tj ), we define c′A(ri , rj ) to be the time between
the occurrence of rj at time tj and vi being informed about rj . Let cost′RArrow be the total
cost of the given arrow execution. By Definitions 3.2 and 3.3 and because the largest
message delay is assumed to be 1, we have

cost′RArrow :=
|R|∑
i=1

c′A(rπ ′A(i−1), rπ ′A(i)) ≤
|R|∑
i=1

dT (vπ ′A(i−1), vπ ′A(i)).

Analogously to cost cT from Section 3.4, we define a cost measure c′T as follows:

c′T (ri , rj ) :=



tj − ti + c′A(ri , rj ) if rj is the request directly after ri with
respect to π ′A

cT (ri , rj ) otherwise.

Analogous to the synchronous case, for requests rπ ′A(i−1) and rπ ′A(i) which are consecutive
with respect toπ ′A, c′T (ri , rj ) is the time difference between the initiation of ri and vi being
informed about rj . Hence, since cT (ri , rj ) ≥ 0 (Fact 3.6 ), we also have c′T (ri , rj ) ≥ 0
and because c′A(ri , rj ) ≤ dT (vi , vj ), we get c′T (ri , rj ) ≤ cT (ri , rj ) and therefore

0 ≤ c′T (ri , rj ) ≤ cT (ri , rj ) ≤ cM(ri , rj ). (12)

In analogy to Lemma 3.8 for the synchronous case, we obtain the following lemma.

Lemma 3.20. The queuing order π ′A resulting from a given asynchronous execution
of the arrow protocol is an NN TSP path on R induced by the cost c′T , starting with the
dummy token/request r0 = (root, 0).

Proof. The proof of Lemma 3.7 does not make use of any of the special properties
of synchronous systems. Therefore, Lemma 3.7 also holds in the asynchronous setting
(when replacing πA by π ′A in the definitions of Ri , Fi , and Ei ). It therefore suffices to
prove that (6) holds for π ′A and c′T , that is, c′T (r0, rπ ′A(1)) = minr∈R c′T (r0, r). The rest
then follows using the same argument as in the proof of Lemma 3.8. According to the
definition of the arrow protocol, rπ ′A(1) is the request corresponding to the first queuing
message arriving at v0. By definition of c′T , this happens at time c′T (r0, rπ ′A(1)). Because
we assume all message delays to be at most 1, c′T (r0, r) upper bounds the time when the
message corresponding to r would reach v0 for all other requests r . The lemma therefore
follows.

Combining inequality (12) with Lemma 3.20 and Theorem 3.18, we obtain the
following theorem which extends Theorem 3.19 to the asynchronous setting.
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Theorem 3.21. Let cost′arrow be the total cost of an asynchronous execution of the
arrow protocol and let cost′Opt be the total cost of an asynchronous execution of an
optimal offline ordering algorithm. We have

ρ ′ = cost′arrow

cost′Opt

= O(s · log D),

where s and D are the stretch and the diameter of the spanning tree T , respectively.

4. Lower Bound

In this section we prove that our analysis is almost tight for any spanning tree.

Theorem 4.1. For any graph G and any spanning tree T of G, there is a set of ordering
requests R such that the cost of the arrow protocol is a factor �(s + log D/log log D)
off the cost of an optimal ordering, s and D being the stretch and the diameter of the
spanning tree T , respectively.

Proof. We first prove the�(s) lower bound bound. By the definition of s, there are two
nodes u and v for which dT (u, v) = s · dG(u, v). We place two requests ru and rv at the
same time at nodes u and v, respectively. All algorithms (including the arrow protocol)
need to send at least one message from u to v or from v to u. Because the arrow protocol
communicates on the tree T , the queuing delay of arrow is at least dT (u, v) whereas an
optimal algorithm can send the message with delay dG(u, v). Hence, the �(s) bound
follows and it only remains to prove that the cost of the arrow protocol can be by a factor
�(log D/log log D) off the cost of an optimal ordering.

For the�(log D/log log D) lower bound, we assume that the communication graph
G is equal to T . Adding more edges to G can only decrease the cost of an optimal ordering.
It is sufficient to concentrate on the nodes on a path P that induces the diameter D of
the spanning tree T . Let v0, v1, . . . , vD be nodes of path P . We recursively construct a
set of ordering requests by the nodes of P; nodes outside P do not initiate any ordering
requests. For simplicity assume that the initial root is node v0 (if not, let node v0 initiate
an ordering request well before the other nodes); for simplicity further assume that D is
a power of 2 (if not, drop the part of P outside the largest possible power of 2).

Let k be an even integer we specify later. We start the recursion with an ordering
request r by node vD at time k. Request r is of “size” log D and “direction” (+1); we
write r = (vD, k, log D,+1) in short. In general a request r = (vi , t, s, d) with t > 0
asks for s requests of the form

(vi−d·2 j , t − 1, j,−d), for j = 0, . . . , s − 1.

In addition to these recursively defined requests there will be requests at nodes v0 and vD

at times all 0, 1, . . . , k−1 (some of these requests are already covered by the recursion).
An example is given in Figure 9.
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Fig. 9. A problem instance with diameter D = 64 and k = 6. The path is depicted horizontally, the time
advances vertically. Each dot represents a request as computed by the recursion. The dots are connected by
the arrow order πA, starting with the root “virtual” request (top-left). The connection between two successive
requests illustrates how the arrow protocol operates: a request sends a message along the diagonal line until
it finds the predecessor; the latency and message complexity is represented by the length of the diagonal line,
the (cost-free) time a token has to wait for its successor by the length of the vertical line.

For this set of requests, from the definition of the recursion and as shown in Figure 9,
arrow will order the requests according to their time, i.e. a request with time ti will be
ordered earlier than a request with time tj if ti < tj . Requests with the same time t are
ordered “left to right” if t is even, and “right to left” if t is odd. Then the cost of arrow
is costarrow = k D.

The Minimum Spanning Tree (MST) of the requests with the Manhattan metric is
given by a “comb”-shaped tree: Connect all requests at time 0 by a “horizontal” chain, and
then connect all requests on the same node (but different request times) by a “vertical”
chain, for each node. The Manhattan cost of the MST is D for the horizontal chain.
A vertical chain of node vi costs as much as the latest request of node vi .

From the recursion we know that there is one request at time k of size log D. Since
the recursion only generates requests of smaller size, we have log D requests at time
k − 1, less than log2 D requests at time k − 2, etc. The Manhattan cost of the MST is
therefore bounded from above by

CM(MST) ≤ D +
k∑

t=0

(t · logk−t D)

< D + logk+1 D

(log D − 1)2
.
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Setting k = �log D/log log D� we get CM(MST) = O(D) for a sufficiently large
D. Since an MST approximates an optimal order πO within a factor of 2, and using the
fact that costOpt is up to constants bounded from above by the Manhattan cost (see (3)
and Definition 3.14), we conclude that costOpt = O(D). Then the competitive ratio is

ρ = costarrow

costOpt
= k D

O(D)
= �(k) = �

(
log D

log log D

)
.

Note that for any stretch s, it is straightforward to construct a (G, T )-pair for which
the competitive ratio of the arrow protocol is O(s + log D) which makes the above
bound almost tight. One could for instance construct such a graph G by taking a tree
and a cycle of length s + 1, connected by a single edge. However, as the next theorem
shows, for every stretch s and every spanning tree T , there also is a graph G for which
Theorem 3.19 is almost tight.

Theorem 4.2. For any stretch s and any tree T , there is a graph G, such that s is the
stretch of T and such that there is a set of ordering requests R such that the cost of
the arrow protocol is a factor �(s · log (D/s)/log log (D/s)) off the cost of an optimal
ordering, D being the diameter of T .

Proof. Let P = v0, . . . , vD be a path of length D of T , that is, P is a longest path
of T . We construct a graph G by adding edges between nodes v(i−1)s and vis for i ∈
{1, . . . , �D/s�}. Clearly, the stretch of the spanning tree T of G is s. To place the requests,
we need the set of requests for a path P ′ of length �D/s� from the proof of Theorem 4.1.
All requests which are assigned to the i th node of the path P ′ are placed on node v(i−1)s .
For the arrow protocol, the situation is exactly the same as in Theorem 4.1, except that
each edge is replaced by a path of length s. The cost of the arrow protocol therefore
is �(D log(D/s)/log log(D/s)). Because of the shortcuts from v(i−1)s to vis on G, the
cost of an optimal ordering is the same as in Theorem 4.1, that is, O(D). Thus, the claim
follows.

5. Experimental Results

Our theoretical analysis has so far shown that the arrow protocol is competitive to
the optimal queuing algorithm under varying degrees of concurrency. We now present
experimental results to show that in practice, the arrow protocol indeed performs very
well, especially under situations of high concurrency.

We implemented and compared the arrow protocol and the centralized queuing
protocol on an IBM SP2 distributed memory system with 76 processors. All programs
were written using MPI (Message Passing Interface) [16], [8].

Arrow Protocol. Since the message latency between any pair of nodes in the SP2
machine was roughly the same, we could treat the network as a complete graph with
all edges having the same weight. For the arrow protocol, we used a perfectly balanced
binary tree (�log2 n� depth for n nodes) as the spanning tree.
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Fig. 10. Latency of the arrow protocol versus centralized protocol, for 100,000 enqueues per processor.

Centralized Protocol. A globally known central node always stored the current tail of
the total order. Every queuing request was completed using only two messages, one to
the central node, and one back.

We measured the time taken for 100,000 queuing requests per processor. Since
our aim was to measure purely the synchronization cost, a processor’s queuing request
was considered complete when the request found its predecessor and the identity of
the predecessor was returned to the processor. Each processor issued the next queuing
request immediately after it learnt about the completion of its previous request.

The results of running this experiment on different sizes of the distributed system
is shown in Figure 10. Figure 11 shows the average number of hops (interprocessor
messages) to complete one request of the arrow protocol. The average number of hops
is less than one because a large number of the requests find their predecessors locally,
and thus generate zero interprocessor messages.

Discussion. Note that the total number of queuing requests issued by the system (100,000
per processor) increases linearly with the size of the system. The best we can hope for
is that the latency remains constant with increasing system size, which would happen
under conditions of ideal parallelism. No queuing algorithm can achieve this, since coor-
dination between different processors is necessary to form a total order. In this light, it is
surprising that the arrow protocol initially shows sub-linear slowdown and then remains
nearly constant with increasing system size. In contrast, the centralized protocol shows
a linear slowdown with increasing system size. This is to be expected, since the central
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Fig. 11. Average number of hops per queuing request for the arrow protocol, taken over 100,000 requests
per processor.

processor has to handle a linearly increasing number of messages with increasing system
size. It is a tribute to the designers of the IBM SP2 that the system showed a graceful
degradation (only a linear slowdown) under such loads. When we tried the same experi-
ments on a loosely coupled network of SUN workstations, the centralized protocol could
not scale beyond 20 processors, while the arrow protocol scaled easily.

These experiments suggest that the arrow protocol performs very well under con-
currency. Queuing latencies are low and neighboring requests in the queue are very close
on the tree.

5.1. Related Experiments

Another set of experiments on the arrow protocol were performed by Herlihy and War-
res [12]. They used the protocol for building distributed directories, and compared it
against a home-based (centralized) directory protocol. They observed that the arrow
protocol outperformed the home-based protocol over a range of system sizes, from 2 to
16 processing elements.

Our experiments differ in the following aspects. Firstly, our experiments were con-
ducted on a much larger scale system of up to 76 processors. Secondly, we were only
interested in the queuing aspect of the protocol. Thus, we measured purely the queuing
cost, while Herlihy and Warres [12] measured the total cost for maintaining the dis-
tributed directory, which included the additional cost of transferring the object down the
queue.
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