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Abstract Decision-makers envision a significant role for

remotely operable laboratories in advancing research in

structural engineering, as seen from the tremendous sup-

port for the network for earthquake engineering simulation

(NEES) framework. This paper proposes a computational

framework that uses LabVIEW and web technologies to

enable observation and control of laboratory experiments

via the internet. The framework, which is illustrated for a

shaketable experiment, consists of two key hardware

components: (1) a local network that has an NI-PXI with

hardware for measurement acquisition and shaketable

control along with a Windows-based PC that acquires

images from a high-speed camera for video, and (2) a

proxy server that controls access to the local network. The

software for shaketable control and data/video acquisition

are developed in the form of virtual instruments (VI) using

LabVIEW development system. The proxy server employs

a user-based authentication protocol to provide security to

the experiment. The user can run perl-based CGI scripts on

the proxy server for scheduling to control or observe the

experiment in a future timeslot as well as gain access to

control or observe the experiment during that timeslot. The

proxy server implements single-controller multiple-obser-

ver architecture so that many users can simultaneously

observe and download measurements as a single controller

decides the waveform input into the shaketable. A provi-

sion is also created for users to simultaneously view the

real-time video of the experiment. Two different methods

to communicate the video are studied. It is concluded that a

JPEG compression of the images acquired from the camera

offers the best performance over a wide range of networks.

The framework is accessible by a remote user with a

computer that has access to a high-speed internet connec-

tion and has the LabVIEW runtime engine that is available

at no cost to the user. Care is taken to ensure that the

implementation of the LabVIEW applications and the perl

scripts have little dependency for ease of portability to

other experiments.
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1 Introduction

Recent developments in web technologies provide an

excellent opportunity to form a network of laboratories that

allow control and observation of experiments via the

internet. Experimental research laboratories that are geo-

graphically far apart can be networked together to create

research collaboratories that promote engineering research

and decision-making. With this goal in mind, NSF is cur-

rently sponsoring the network for earthquake engineering

simulation (NEES). NEES (http:// www.nees.org) is a

simulation resource that is composed of geographically

distributed state-of-the-art experimental research equip-

ment sites that are specifically designed to advance

earthquake engineering research and education. Its objec-

tive is to make experimental laboratories with facilities like
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shaketables for simulating earthquakes, available for

remote participation and control. Such a network of labo-

ratories can also be useful to provide a complete

educational experience in distance-education programs in

which theory is complemented with hands-on experiments

[1–4].

Even though the internet is readily available as the

underlying infrastructure for communication, significant

modifications to the existing experimental configurations

are required. Sophisticated hardware for data acquisition

and control are needed to interface measurement and

control devices with a computer. Appropriate software that

can graphically display acquired measurements and allow

manipulation of control and measurement devices must be

developed. Novel IT architectures that create a secure

framework by integrating web technologies with the sys-

tem for data acquisition and control are needed. Moreover,

sufficient safety and security protocols are required to

prevent intentional or unintentional damage to the experi-

ment and its surroundings. The framework should also

support the single controller-multiple observers concept.

This capability will enable geographically distributed

engineers or students to simultaneously monitor and

download measurements from the experiment as one per-

son controls the loading on the test specimen.

Another facet of an internet-enabled experiment is to

provide the remote user with real-time video of the

experiment. Typically, structural engineering-related

experiments that involve earthquake motion evaluate

structural behavior at a frequency of 1–20 Hz. Capturing

this motion and communicating it in real-time requires a

high frame-rate digital camera and appropriate computer

hardware for acquiring images from the camera. Image

compression techniques have to be explored to reduce the

amount of data transmitted to the remote user. In most

cases, there is a trade-off between image compression and

image quality. As with the measured data, multiple users

may want to simultaneously watch the video of the

experiment and download it on to their personal computer.

Also, decision-makers sometimes employ strobe-lights

while doing vibration tests in the laboratory for viewing

mode shapes of the test structure. A similar capability in an

internet-enabled experiment is highly desirable for educa-

tional purposes.

In this study, we propose a computational framework

that enables the creation of such research collaboratories.

We illustrate the framework by implementing it for the

remote control and observation of a shaketable experiment.

The framework has two key components: (1) a local net-

work with computers that perform data/video acquisition

and shaketable control using LabVIEW virtual instrument

(VI) applications, and (2) a proxy server that controls access

to the local network. The proxy server uses a user-based

authentication protocol to provide security to the experi-

ment. This protocol also provides the proxy server with the

identify of the user, which is used to process user actions

like request for a timeslot to observe the experiment and

request to gain control of the experiment. The proxy server

has forms that allow users to schedule time for observing or

controlling the experiment on a future date. A user can

access the experiment at this scheduled timeslot by using

the forms provided on it. The proxy server uses the schedule

along with the authentication protocol to control access to

the LabVIEW computers. The implementation of the forms

on the proxy server and that of the applications for data

acquisition and shaketable control have little dependency.

The system ensures that only that user scheduled as con-

troller can decide the waveform input into the shaketable.

On the other hand, multiple users are permitted to schedule

for simultaneously observing and downloading the mea-

sured data from the experiment. Provision is also created for

multiple users to watch a live video feed of the experiment.

The images for the video are captured using a high frame-

rate camera. We have evaluated two different approaches to

transmit real-time video through LabVIEW applications.

One approach utilizes JPEG compression of the acquired

images and the other employs converting the image into an

array of numerical values that represent the intensities of the

gray-scale image. The former, while providing faster video

than the latter, requires the remote user to download addi-

tional software. The only requirements this framework

places on the remote user’s computer are the following two,

(1) a high-speed internet connection like DSL or cable, and

(2) the LabVIEW run-time engine [5] which is available at

no cost to the user.

2 Shaketable experiment

One way the seismic behavior of structural systems and

various structural control architectures is studied by using a

shaketable to simulate earthquake excitations. The sha-

ketable has a platform to mount the structural system under

consideration, and accelerations and displacements at dif-

ferent locations on the structural system are measured

while the ground motion is applied through the shaketable.

In this study, we consider a shaketable experiment that is

used in a laboratory course to illustrate concepts in struc-

tural dynamics for undergraduate and graduate students.

However, the illustrated computational framework is and

can be easily adapted to other laboratory experiments.

Figure 1 shows the laboratory setup of the shaketable

experiment considered for illustration of the computational

framework. It consists of a 1200 9 3400 (0.3 m 9 0.86 m)

one-dimensional shaketable and a 100 lb (445 N) electro-

magnetic shaker. The test specimen is a single or multi-story
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shear building having wide but thin aluminum columns and

heavy steel girders. Forced vibration tests are conducted by

applying a harmonic excitation to the table using a function

generator. The input frequency of the excitation is increased

in steps from a value that is lower than the natural frequency

of the structure to one that is much higher. For each input

frequency, the table is excited for a reasonable duration to

ensure that the structure vibrates in steady state motion, and

then the acceleration response is measured using acceler-

ometers mounted on the different floors and viewed using an

oscilloscope.

To transform this experiment to one that can be controlled

and monitored through the internet, significant monetary

investment on hardware as well as programming effort for

appropriate software is needed. Remote monitoring of the

response of the test specimen requires sophisticated data-

acquisition hardware that can enable communication between

the measurement devices like strain gauges and accelerome-

ters, a high-speed camera and a computer. Similarly, remote

operation of a shaketable requires hardware that enables the

computer to operate the electro-magnetic shaker.

Wirgau et al. [6] studied the viability of using national

instruments (NI) hardware and software for data acquisition

and control. They developed programs to communicate

with the NI hardware in the form of VI using NI’s Lab-

VIEW development system [7]. In particular, two VIs were

created for generation of waveform input and for display of

measurements. For remote control, a LabVIEW technology

referred to as Remote Panels [8] was employed. In this

method, the LabVIEW webserver on a NI PXI [9], which is

directly connected to the experiment, supported the previ-

ously described two VIs. It permitted access to these VIs

from only those computers whose IP addresses were already

registered on the PXI. A remote user was required to reg-

ister the IP address of his or her computer with the PXI by

providing it to the administrator. Then only could a user

control the experiment or observe the response through an

internet browser from that computer. Real-time video of the

experiment was provided by using Microsoft’s netmeeting

software with a web camera.

The implementation by Wirgau et al. [6] was restricted

in generality due to the following reasons:

• The remote panels technology allowed only one user to

use the VI for viewing and downloading the response of

the structure.

• The system was designed to accept connections only from

computers whose IP addresses were on a list maintained

by the LabVIEW webserver. Such a scheme is inflexible

as the system is intended for use by authorized engineers

via the internet irrespective of their IP address.

• A higher likelihood of intentional damage to the system

by malignant users on the internet existed, since the

PXI was directly connected to the internet.

• A scheduling facility did not exist. Such a facility

would allow users to sign up for controlling or

monitoring the experiment on a future date.

• The web camera used did not sufficiently capture the

high-frequency motions resulting from a shaketable

experiment.

• Netmeeting software did not ensure the high video

transmission rate that is required for remotely viewing

the real-time video of a dynamics experiment.

In the following sections, we propose a computational

framework that addresses all of these aspects. We describe

first the hardware and network setup of the framework and

then the software architecture implemented over this

hardware.

3 Hardware setup of framework

The computational framework is composed of a network of

three computers: (1) a Linux-based proxy server, (2) a NI

PXI [9] for data acquisition/control, and (3) a Windows-

based PC with hardware for video acquisition. The net-

working of the computers is illustrated in Fig. 2. An IBM

Thinkpad with the Fedora Linux operating system is used

as the proxy server. Figure 2 shows that the proxy server

serves as the gateway to the experiment for a remote user

Shear building
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Fig. 1 Laboratory setup of shaketable experiment
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on the internet. It has two network adapters, one for

communication with the internet and another for the

computers on the local network.

The PXI uses an NI 8176 controller and runs LabVIEW

in a Windows environment. The PXI does not directly

perform the data acquisition or real-time control. Instead, it

has a control board with a dedicated processor and mem-

ory. LabVIEW programs can be embedded into the board

for real-time control as well as data acquisition. This

facility protects the experiment from any software or

hardware related accidental failure in the host PXI as the

embedded program can safely shutdown the experiment

during such an event. The accelerometers mounted on the

test specimen are connected to this board through BNC

connectors. Similarly, the board is also wired to the sha-

ketable so that the generated waveforms can be

communicated to the shaketable for real-time control. This

PXI is the same one that was previously used in the study

by Wirgau et al. [6].

Real-time video of the experiment is obtained using a

Windows-based PC that has an NI-IMAQ card (PCI-1429)

mounted on its PCI express bus. The IMAQ card offers a

high data transfer rate of 680 MB/s. A high-speed Basler

camera (Model: A504 K) that uses a progressive scan

CMOS sensor is used to capture the video. The camera

produces 8-bit monochrome images and can capture ima-

ges at a maximum speed of 500 frames per second and a

resolution of 1,280 9 1,024 pixels. This frame rate is

sufficient for shaketable experiments as the frequencies

that are of interest often lie within 20 Hz. A zoom lens,

which can be controlled using software on the computer, is

attached to the basler camera. Since the camera requires a

bright setting for producing good images, powerful com-

mercial video lamps are employed for additional lighting.

4 Software architecture

The software architecture essentially consists of two types

of components: (1) LabVIEW applications for data acqui-

sition, video and control, and (2) web technologies for

experiment scheduling and authentication. The interaction

between these components is illustrated in Fig. 3. While

the LabVIEW applications are completely independent of

the web technologies, the web technologies do use some

information about the implementation of the LabVIEW

applications. Consequentially, we first describe the Lab-

VIEW applications, which is followed by a description of

the web technologies.

4.1 Data acquisition and control

As described earlier in this paper, Wirgau et al. [6]

implemented VIs for data acquisition and control and used

them in combination with LabVIEW Remote Panels for

remote observation of the experiment. The architecture of

their VIs is schematically illustrated in Fig. 4. For control

of the shaketable, a VI that generates the waveform with

given input amplitude and frequency is run on the host PXI.

Another VI that is embedded on the real-time board of the

PXI receives the generated waveform and communicates it

to the shaketable. These two VIs always maintain an active

TCP/IP connection for communication. The VI on the host

PXI is made available for the remote user using LabVIEW

Remote Panels technology. The LabVIEW webserver is

activated on the host PXI and it is configured to accept

connections from a specific remote computer. The remote

user can control this VI through a internet browser by

connecting to the LabVIEW webserver on the host PXI.

Our framework uses a similar implementation for granting

control of the experiment to the remote user.

Wirgau et al. [6] proposed a similar implementation for

data acquisition. This is schematically shown in Fig. 5. A VI

was run on the real-time board of the PXI to read measure-

ments from the accelerometers. These were communicated
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Fig. 2 Network setup of the computers
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using TCP/IP to another VI on the host PXI. The VI on the

host PXI displays the measured data using a simulated

oscilloscope. It also provides interfaces to manipulate the

display in the oscilloscope. For instance, the user can freeze

the display to examine a specific frame, say, for calculating

the dynamic magnification factor. The remote user gains

access to this VI using LabVIEW remote panels. When

implemented in this manner, only one remote user can

control this VI and hence, observe the measurements. While

it was suitable for controlling the shaketable, it is desir-

able to provide the capability for multiple observers to

simultaneously monitor the experiment. Therefore, we have

modified the implementation to use LabVIEW’s Datasocket

technology. The new implementation enables multiple users

to simultaneously view and download the acceleration

measurements.

LabVIEW’s Datasocket technology is specifically aimed

at distributing measurements to geographically distributed

users. The computer that is used to make the measurements

writes them to a Datasocket server that may be running on

the same computer or on a different computer. All users

irrespective of geographical location can obtain the mea-

surements by using a LabVIEW application that subscribes

to the Datasocket server. Thus, our implementation of data

acquisition using datasockets consists of two types of

applications: one for the PXI that will gather data using the

appropriate devices and publish it to a LabVIEW Data-

socket server, and a second that will be used by each of the

remote users for observing the measurements.

The proposed framework for data acquisition is given in

Fig. 6. The VI that is embedded on the real-time control

board reads data from the accelerometers. It always

maintains a TCP/IP connection with the VI on the host PC.

The VI sets the acquisition rate of the control board to

1,000 scans/s. During each scan, the control board acquires

the voltage values returned by the accelerometers. The VI

uses a loop structure such that it acquires data corre-

sponding to 100 scans during every loop iteration. The

acquired data is stored in a 100 9 m array, where the

number of rows correspond to the number of scans and the

number of columns m to the number of accelerometers,

respectively. This array of data acquired in each loop

iteration is communicated to the VI on the host PXI. The

VI on the host PC uses the accelerometer calibration

information to convert the acquired voltage values into

meaningful acceleration values. It then writes the acceler-

ation values to the Datasocket server that is running on the

Windows-based PC. To reduce the number of write
Internet
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Remote computer

accelerometers
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RT Board

oscilloscope
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VI displays

Host PXI
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Remote user controls VI
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Fig. 5 Wirgau et al.’s [6] framework for data acquisition
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operations to the Datasocket server, the VI accumulates

1,000 scans of data and then writes it to the datasocket

server. The Datasocket server is configured to accept

connections from computers with VIs that wish to read the

acceleration values.

To view the accelerations, the remote user downloads a

LabVIEW executable that is created from a VI. This exe-

cutable connects to the Datasocket server running on the

PXI and reads the accelerations. The executable also pos-

sesses various graphical interfaces that enable the user to

examine the acceleration measurements. In particular, there

is a knob control that the user can adjust to set the number

of data points and hence, the number of wavelengths to be

shown in the oscilloscope. The user can visualize a fewer

number of datapoints in the oscilloscope using this control,

even though the Datasocket server provides acceleration

measurements in chunks of only 1,000. The client exe-

cutable makes this possible by breaking the data read from

the Datasocket server into smaller pieces as determined by

the setting on the knob control. These pieces are sequen-

tially processed by the oscilloscope. Additional interfaces

like a button control to freeze a particular dataframe in the

oscilloscope and a tool for moving the scales in the oscil-

loscope are also present. The VI also provides facilities to

download the acquired data in a format that can be viewed

in a spreadsheet application like Microsoft Excel. The

application writes the acquired data to a specified spread-

sheet file whenever the corresponding switch is turned on.

4.2 Video acquisition

Programs for video acquisition are developed using NI’s

image acquisition (IMAQ) drivers. The camera produces

images at a rate that can be set using IMAQ drivers. Real-

time video is provided by continuously streaming these

images to the remote user. These images, which are

obtained through the IMAQ hardware, are in a unique

format that requires installation of IMAQ drivers for

viewing. This can be a hindrance to the remote users as

they may have to download a fairly large-sized set of

drivers. To avoid this issue, the images can be converted to

a different format that the remote user can view without

installing additional software. Another important consid-

eration while implementing real-time video, is related to

the size of the images transmitted to the remote user. If the

images are large, the remote user may experience signifi-

cant delay between consecutive images due to the

increased communication time. The images can be sent in a

compressed form as a solution. Multiple alternatives are

available with regard to handling these issues, and these

alternatives determine the factors like size and quality of

the image that is communicated to the remote user. For

example, when the images are converted to a JPEG form,

the reduction in size of the image is often achieved at the

expense of some information loss in the final JPEG image.

These factors play a significant role in determining the

performance of the real-time video of the experiment.

It must be stated that the video quality also depends on

many other factors in addition to the above-mentioned.

Some of these are mentioned below:

1. Network bandwidth: the video speed is limited by the

weakest link (lowest bandwidth network) in the route

taken by the video packets.

2. Number of observers: it is expected that the commu-

nication time will increase if the number of observers

simultaneously using the experiment increase.

3. Network traffic: network traffic varies through the day

and so, the observer may experience different video

speeds at different times.

While the effect of the number of observers can be

understood using some simple experiments, the effect of

network bandwidth and network traffic are much more

difficult to examine. The authors are currently testing the

system in a distance education course with the aim of

understanding the effect of these factors. However, the

results presented in this study are from tests conducted

within the university network with only few observers

simultaneously using the system.

In this study, we have evaluated two techniques to provide

real-time video. These two methods only differ in the image

processing algorithms used to modify the images before

communicating them to the remote user. Otherwise, both the

methods function in a similar manner. The working of this

framework is illustrated in Fig. 7. As in the case of mea-

surement communication, both methods use LabVIEW’s

Datasocket technology for communicating real-time video

of the experiment. There are two VIs: (1) the VI on the

Windows-based PC continuously acquires images from the

IMAQ interface, processes them and writes the resulting

images to the Datasocket server, and (2) the VI on the remote

client connects to the Datasocket server and displays the

images that are received. The image processing techniques

that differentiate the two methods are described below.

• JPEG streaming: In this method, the VI on the host PXI

converts the acquired IMAQ images to a JPEG stream.

The conversion algorithm accepts an integer parameter

between 0 and 100 that corresponds to the desired

Datasocket
serverdisplays video

Application

Remote computer

VI acquires
images from IMAQ

server
and writes to Datasocket

Windows−based PC

Fig. 7 LabVIEW components for video acquisition
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quality of the resulting image. The image quality

increases with increase in the value of the parameter

but so does the size of the resulting image. Since the

camera produces an 8-bit monochrome image with a

resolution of 1,280 9 1,024 pixels, the size of the

original image is approximately 1 MB. After experi-

menting with the value of the parameter, we have found

that a value of 90 gives a good compromise between the

size and the quality of the image. The size of the image

after compression is close to 42 KB, which is consid-

erably smaller than the size of the original image. This

image is written to the Datasocket server. The main

advantages of this method are: (a) faster communica-

tion because of the smaller image size, and (b) absence

of any noticeable delay between consecutive images at

the remote computer. The main disadvantage of this

implementation is that it requires the remote computer

to have IMAQ drivers to display the received images

even though the images were converted to a JPEG

stream format at the PXI.

• Intensity graph: One approach that avoids having

IMAQ drivers at the remote computer involves using

LabVIEW’s intensity graph interface. The acquired

image is converted to a two-dimensional array of

integer values that represent the color intensities of the

corresponding pixel in the image. The VI on the host

PXI writes these arrays to the Datasocket server. The

application on the remote computer continuously

downloads these arrays from the Datasocket server.

The application generates the images by plotting these

arrays in an intensity graph. The color scale of the

intensity graph is adjusted to gray-scale as the camera

generates a monochrome image. The intensity graph is

continuously refreshed with new arrays from the

Datasocket server. Thus, the remote user will see the

real-time video of the experiment in the intensity graph.

While the IMAQ drivers are not required for the remote

user, this implementation can involve higher commu-

nication time between the remote client and the server

than the previous method. The reason is that the size of

the communicated arrays can be significantly larger,

i.e., of the order of 1 MB. One way of reducing the size

of the communicated data is to shrink the acquisition

window for the camera. For example, if the experiment

can be captured in a window of 850 9 800 pixels, then

the size of the communicated data is only 425 KB. This

is considerably smaller than the amount of data

generated from a full acquisition window.

Table 1 summarizes the differences between the two

techniques. The table gives estimates of the amount of data

required to communicate a single image to the remote user

when using the two techniques. It is observed that the

method using intensity graph sends more data and hence

requires significantly larger network bandwidth. Moreover,

the JPEG compression does not significantly reduce the

quality of the image. Therefore, the JPEG compression

technique is a better overall solution and will deliver better

performance over a wide variety of networks. The intensity

graph method is a better alternative only in the presence of

very high bandwidth such as in the case when the remote

user and the experimental site are located in the same LAN.

5 Web architecture

The LabVIEW applications described earlier in the paper

use one of the following two technologies for communi-

cation with the remote user: (1) Datasockets, and (2) remote

panels. Datasockets are used for sensor and video data

communication while the remote panels are used for remote

shaketable control. The Datasocket server and the Lab-

VIEW webserver, which are the programs that support the

two technologies, operate by listening on certain network

ports. The proxy server controls access to these network

ports using perl-based CGI scripts within a webserver and

thereby provides security to the experiment. The key

actions performed by the proxy server from the moment a

user logs into the system to observe or control the experi-

ment until the time when a user disconnects from the system

is illustrated using a flowchart in Fig. 8. As seen from the

flowchart, the following sequence of steps are involved:

1. The remote user is authenticated by the proxy server

using WRAP [10], a web-based authentication

mechanism.

Table 1 Comparison of two video transmission techniques

Features JPEG compression Intensity array

IMAQ drivers Required at both host and remote computer Required only at host

Data size 42 KB 450 KB

Effect of reducing acquisition window Reduces data size Reduces data size

Computation Compression is computation intensive Computationally inexpensive

Suggested use Over any network Suitable only for high band width networks
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2. The user schedules a particular timeslot for controlling

or observing the experiment on a future date.

3. On the scheduled date, the user connects to the proxy

server and is authenticated.

4. The user requests access to control or monitor the

experiment by running a CGI script on the webserver.

5. The CGI script checks if the user is scheduled to

monitor or control the experiment during the current

timeslot.

6. If the user is scheduled, the script then sets up port

forwarding on the proxy server so that the user can

access the appropriate server on the LabVIEW host.

7. The user runs a LabVIEW application that is down-

loadable from the website to observe the experiment.

To control the experiment, the user uses a browser as

explained previously in the paper.

8. Port forwarding that was setup in the previous step is

disabled when the current timeslot expires.

These steps are performed using the following compo-

nents, which constitute the web architecture.

5.1 User authentication

North Carolina State University uses a cookie-based

authentication protocol referred to as WRAP [10]. This

authentication protocol is used to verify the authenticity of

users with access to the university’s computing facilities.

Students and university employees have a username and

password that can be used in various computing labs

around campus. We have used this authentication protocol

for providing internet security to the experiment.

WRAP is a web-based authentication mechanism to

verify the identity of a user without requiring the user to

login to each individual webserver within the university

domain. In this authentication mechanism, the user

obtains an encrypted cookie, called the WRAP cookie,

from a SSL-secured server by using his/her username and

password. Whenever the user visits a WRAP-protected

website, the browser sends the WRAP cookie to the

website. The website verifies if the cookie is genuine and

also obtains the username for that user. If the user does

not already possess a WRAP cookie or possesses an

invalid cookie, the user will be forwarded to the SSL-

secured server that will issue a WRAP cookie to the user.

WRAP cookie components like the username are avail-

able as environment variables within CGI scripts. The

CGI scripts can, therefore, recognize the user making the

request.

The apache webserver on the proxy server is configured

to use WRAP. File directories that contain the CGI scripts

are protected using WRAP. Thus, the remote user is forced

to obtain a WRAP cookie before attempting to run the

scripts. If an authorized user is making a request, the CGI

scripts use the environment variables to recognize the user.

This information is later used in scheduling the user for the

experiment as well as setting up remote access to the

experiment for the user.

5.2 Experiment scheduling

A user can schedule to either control or observe the

experiment in a timeslot within the next 10 days. The

system provides eight timeslots for the experiment each

day. Each timeslot is 2 1
2

hours long and there is a 30 min

interval between the timeslots for the laboratory personnel

to make adjustments, if necessary. The system maintains

two timetables that keep track of the users currently reg-

istered to use the experiment. One timetable is for users

registered to observe the experiment while the other is for

users registered to conduct the experiment. The latter

timetable has only a single user for a given timeslot

whereas the former timetable can have multiple users

registered in any given timeslot. This is consistent with the

objective of allowing multiple observers but only a single

controller.

When a user wants to schedule for controlling the

experiment, the user can navigate to the 2-week timetable

from the homepage of the proxy server website. The user

can choose a timeslot by filling in the two text boxes on the

form and hitting the submit button. If the timeslot is cur-

rently unused, the user will be registered into the timeslot

and the updated table will be listed. If the timeslot is

already taken, the user will be displayed a corresponding

message. To schedule as an observer to the experiment, the

procedure is similar with the only difference being that the

forms do not check for availability of a selected timeslot

because multiple observers are permitted.

Remote user
connects to website

User is authorized
using WRAP

User schedules a
particular timeslot

Remote user
connects to website

User runs script
to setup access

User is authorized
using WRAP

User runs LabVIEW
application to

observe experiment

User controls the 
shaketable via

browser

To schedule During scheduled timeslot

Controller Observer

Fig. 8 Flowchart showing remote user actions to access the

experiment
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5.3 Single-user control

To initiate experiment within their scheduled timeslot, the

user first visits the website. The activities performed by the

proxy server to setup access for the remote user are given

in a flowchart in Fig. 9. As shown in the figure, once the

user is authenticated using WRAP, the proxy server checks

whether the user is already scheduled to control the

experiment. If scheduled, the script permits the remote user

to access the LabVIEW webserver on the host PXI. The

remote user uses a browser to access an http link returned

by the script. The user must use internet explorer as the

browser since the LabVIEW runtime engine is only con-

figured to work with it.

Access to the LabVIEW webserver is setup using the

networking concept of packet forwarding. All TCP/IP

packets arriving from the remote user’s computer of the

proxy server are forwarded to the host PXI on the listening

port of the LabVIEW webserver. There are two software

components involved in setting up packet forwarding. One

is the CGI script that is run on the webserver when the user

visits the website. The other is a perl script that is always

running on the proxy server. Figure 10 shows the interac-

tion between the two scripts in a sequence diagram. The

CGI script identifies the IP address of the remote user’s

computer. It then verifies if remote access is already

enabled for the user. For this purpose, the script uses a data

file that keeps track of the various users currently using the

system. If the user is already logged in, the system simply

informs the user that the connections are already active and

that the user needs to visit the returned http link. If the user

is not logged into the system, it communicates the IP

address and the duration left in the timeslot to the perl

script. The perl script then enables packet forwarding for

packets arriving from the remote user’s computer. The perl

script also ensures that the packet forwarding is disabled

after the expiry of the allotted time for the user.

The reason for using a perl script different from the CGI

script to setup packet forwarding lies in concerns regarding

network security. Also, using a single script that is always

active on the proxy server provides a way of queuing

multiple requests. Even if the user runs the CGI script

multiple times, the requests are processed sequentially as

all the CGI requests are finally processed by a single perl

script.

5.4 Multi-user observation

The implementations for access to monitor the measure-

ments and to view the real-time video are similar in many

ways to the implementation discussed above for an access

to control the experiment. As discussed earlier in the paper,

the remote user will view the video and acceleration

measurements using two different LabVIEW applications.

These applications will attempt to connect to the Data-

socket server on the Windows-based PC in the local

network. Therefore, the scripts in this case enable access to

the TCP/IP port on which the Datasocket server listens.

Figure 11 shows a sequence diagram representing the

interaction between the CGI script activated by the remote

user and the perl script that is always active on the proxy

server. The key difference between Figs. 11 and 9 lies in

the TCP/IP port to which packet forwarding is enabled. The

scripts in this case setup packet forwarding to the listening

port of the datasocket server. It is noted that this

Yes

No

User asked to run
LabVIEW application

date
Sets up packet 

forwarding

User asked to 
schedule for future

Is
user scheduled?

Proxy server 
authenticates user

Fig. 9 Flowchart showing proxy server actions for enabling remote

access

Sends IP and
time left

Identifies
remote user

Find remote
computer IP

CGI script
invoked by user

connected?
Is user

and username
Record IP

in background
Perl script 

Receives IP
and time left

No

Yes

Forward user
to webpage

Setup packet forwarding to

Continue listening
for requests

LabVIEW webserver on
Host PXI

Fig. 10 Sequence diagram of actions in giving remote user access to

control the experiment
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mechanism enables access to both video and acceleration

measurements as both are delivered via the Datasocket

server.

5.5 Experiment administration

The software architecture, while automating the operation

of the laboratory, should also provide sufficient adminis-

trative tools to the laboratory administrator. In the event

that the experiment needs to be stopped, the laboratory

administrator must be able to gain control of the experi-

ment. Since the remote user who is controlling the

experiment accesses the corresponding VI through remote

front panels, the laboratory administrator can easily gain

control of the VIs by directly accessing them through the

host PXI. Also, the CGI scripts record the username and

the IP address of the remote users currently using the

system in a data file. The administrator can use the infor-

mation in the file to disconnect any user from the system by

disabling packet forwarding between the remote user’s

computer and the appropriate computer on the local net-

work. The administrator can modify the weekly schedule as

well as the daily schedule to make any changes.

6 Summary and conclusions

Recent computing advances in web technology have given

rise to new ideas in web-based experimentation for sup-

porting engineering research and education. The National

Science Foundation (NSF) is sponsoring the development

of a national Network for Earthquake Engineering Simu-

lation (NEES) that will make large-scale laboratories with

seismic testing facilities available for control and obser-

vation to geographically distributed researchers. Numerous

hurdles exist in the various tasks from creating applications

that will enable a remote user to perform data acquisition

and control of the experiment to developing novel security

and safety protocols for preventing intentional or uninten-

tional damage to the laboratory experiment. In this study,

we have proposed a computational framework as a solu-

tion. The framework uses a combination of National

Instruments hardware and software, and web technologies

to create a comprehensive internet-based environment that

implements a single-user multiple-observer model for

remote control and observation of laboratory experiments.

The proposed framework is illustrated for a shaketable

experiment. LabVIEW applications that use Datasocket

technology and remote panels are developed for data

acquisition and control, respectively. Video of the experi-

ment is acquired using high-speed cameras and NI’s IMAQ

software. Video transmission using two techniques—JPEG

compression and intensity graph, is explored. The study

concludes that the JPEG compression method is relatively

more reliable. The computers that operate the shaketable

experiment are in a local network, which is protected using

a proxy server. The webserver uses NC State University’s

WRAP authentication protocol to provide web security.

Remote users are able to access the laboratory schedules on

the website, which is hosted by the proxy server, and

schedule for controlling or observing the experiment on a

future date. Within a scheduled timeslot, the appropriate

remote user is given permission to control or monitor the

experiment after the user is authenticated by the website.

The main conclusions from this study are:

• LabVIEW remote panels technology is an efficient

solution if only a single user needs to remotely access

the laboratory experiment. Such an implementation is

suitable for the controller in a single-controller multi-

ple-observer framework.

• LabVIEW Datasockets technology enables simulta-

neously communicating data to users distributed across

the internet. This technology is ideal for communicat-

ing sensor and video data to remote observers in a

single-controller multiple-observer framework.

• The JPEG compression technique is relatively better

than the intensity graph method for video transmission.

It provides a suitable compromise between the size of

the communicated data and the image quality received

at the remote user.

• A webserver with suitable user-authentication protocol,

CGI scripts and Linux networking concepts are

Sends IP and
time left

Identifies
remote user

Find remote
computer IP

CGI script
invoked by user

connected?
Is user

and username
Record IP

in background
Perl script 

Receives IP
and time left

No

Yes

Request user
to run VIs

Setup packet forwarding to

Continue listening
for requests

Datasocket server on
Windows−based PC

Fig. 11 Sequence diagram of actions in giving remote user access to

monitor the experiment
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sufficient to create a secure web-based environment to

control access to laboratory experiments.

• The web technologies and LabVIEW VIs are decoupled

to a large extent. The dependencies between the two

components are primarily with respect to the TCP/IP

listening ports of the LabVIEW webserver and the

Datasocket server.

• The computational framework is easily extendable to

other laboratory experiments. The major task in adapt-

ing the framework to a new experiment is the

development of new LabVIEW VIs that are necessary

for control and data acquisition with respect to the new

experiment.
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