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Abstract. We consider a simple market where a vendor offers multiple variants of a certain product and
preferences of both the vendor and potential buyers are heterogeneous and possibly even antagonistic.
Optimization of the joint benefit of the vendor and the buyers turns the toy market into a combinatorial
matching problem. We compare the optimal solutions found with and without a matchmaker, examine the
resulting inequality between the market participants, and study the impact of correlations on the system.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 89.75.-k Com-
plex systems

1 Introduction

The study of complex economic systems has attracted at-
tention of many physicists. They have contributed to the
field with several highly simplified, yet influential, mod-
els such as the minority game [1], percolation [2], scaling
models of financial markets [3], as well as with a set of
useful tools and insights [4–7].

Adopting a simplifying point of view characteristic for
the works mentioned above, in this paper we focus on the
interactions between consumers and producers. These in-
teractions represent a classical example of decision-making
under uncertainty [9] where the limited information avail-
able to the contract participants results in a risk of mak-
ing a wrong decision. In the standard economic litera-
ture, problems related to the interactions of consumers
and producers are as diverse as the research of consumer
behavior [8], the question of trust [10], the economics of
information [11,12], and the behavior of entire firms and
industries [13,14].

This work is particularly motivated by the classical
stable-marriage problem [15,16] in which N men and N
women all have their individual preferences and are to
be matched one-to-one. Almost inevitably, it’s impossi-
ble to satisfy everyone and hence stable matchings (where
no one has the possibility to exchange the assigned part-
ner for a better one) or the optimal matching (where the
total satisfaction is maximal) are of interest. The stable
marriage problem has implications in many economic and
social systems. It can represent matching of job seekers
and employers or that of lodgers and landlords; it is also
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a metaphor for problems in logistics [17] and in online
marketing [18].

We study a situation where a certain product is avail-
able in multiple variants and the preferences of both the
buyer and the vendor for each of the variants can be rep-
resented by numbers (the higher the number, the more
appreciated the variant). The matching of the buyer and
the vendor is then achieved by the selection of a single vari-
ant to be delivered. In the given framework, we first study
outcomes achieved with the help of an external match-
maker – an idealized agent supervising the market and
having perfect information about all the preferences. In
particular, we investigate the inequality between profits
enjoyed by the two involved parties and how correlations
of the preferences influence the system’s behavior.

For comparison, we study two simple matchmaker-free
models of variant selection. In the first matchmaker-free
model, the vendor makes consecutive offers and the buyer
decides whether to accept an offer or not. Our results show
that while this approach results in a small decrease of
the total satisfaction, it considerably decreases the buyer-
vendor inequality. In the second matchmaker-free model,
the buyer is searching for the optimal variant by himself.
We study the optimal number of examined variants and
show that under some conditions, this number may be
infinite: the buyer is tempted to search forever. Numer-
ical simulations of the studied models are in most cases
accompanied with approximate analytical results.

2 Trading under matchmaker’s supervision

We assume that a given product is available in N differ-
ent variants which can be prepared by a vendor and fulfill,
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to a greater or lesser degree, needs of a given buyer. The
buyer’s utility from purchasing variant α is denoted by
xα and the vendor’s utility from providing this variant is
denoted by yα. The matchmaker optimizes the joint ben-
efit by maximizing the total utility uα(xα, yα). Obviously,
the system’s behavior depends on the choice of the utility
function and on the nature of the utilities xα, yα – we shall
study different settings in the following sections.

2.1 Linear utility function

The simplest form of the total utility is

uα(xα, yα) = xα + yα (1)

where both utilities are merely summed with equal
weights. In addition, we assume that both xα and yα are
random variables drawn from the uniform distribution in
the range [−1, 1], U(−1, 1), and that they are uncorre-
lated. The distribution f(uα) then has the tent-shaped
form

f(uα) =
{

(2 + uα)/4 uα ∈ [−2; 0),
(2 − uα)/4 uα ∈ [0; 2]. (2)

The probability that a randomly selected variant has the
total utility greater than uα is P (uα) :=

∫ 2

uα
f(u′) du′.

Since utilities of different variants are mutually indepen-
dent, the largest utility um := maxN

α=1 uα has the distri-
bution

g(um) = Nf(um)[1 − P (um)]N−1. (3)

Here the factor N appears because any of N variants can
have the largest utility, the factor f(um) is the occurrence
probability of um, and the factor [1 − P (um)]N−1 is the
probability that the remaining N−1 variants have utilities
lower than um; equation (3) is also known as the extreme
statistics of the random variable um. We study the model
by computing 〈um〉 (by 〈x〉 we denote the average of x
over all possible realizations). Since P (uα < 0) = 1/2
and um < 0 only when all N variants have uα < 0,
it follows that P (um < 0) = 2−N . Hence, assuming
N � 1, we can confine our computation to um > 0 where
f(um) = (2 − um)/4 and P (um) = (2 − um)2/8. When N
is large, P (〈um〉) is small and thus we can use the approx-
imation 1 − P (um) ≈ exp[−P (um)]. After replacing the
lower integration bound in 〈um〉 with −∞ (this is again
justified by the negligible probability of um < 0) we obtain

〈um〉 ≈ 2N

N − 1
−

√
2πN2

(N − 1)3
≈ 2 −

√
2π

N
(4)

where we neglected terms of order O(1/N) and higher. We
see that as N increases, 〈um〉 rapidly approaches its up-
per bound – the difference scales with N−1/2. Numerical
computation of 〈um〉 shows that the relative error of equa-
tion (4) decreases fast with N : it is less than 1% already
for N = 17.

Apart from the optimal total utility um, the inequality
between the vendor and the buyer is also of interest. If
variant β maximizes uα, we say that the buyer-vendor
inequality is |xβ −yβ| and denote its expected value by Δ.
To compute Δ, one needs to realize that for any given uα,
the term |xα − yα| ranges from 0 to 2− uα (this maximal
difference is achieved when one of the two utilities is 1
and the other is uα − 1). Since xα and yα are uniformly
distributed, all possible values of |xα − yα| are equally
probable and hence 〈|xα − yα|〉 = 1 − uα/2. In turn, Δ =
1− 〈um〉/2 =

√
N/(2π) which can be easily confirmed by

numerical computation.

2.2 Affecting the inequality

Blind maximization of the total utility may not be the
best policy because it can result in large inequalities be-
tween society members. In an effort to prevent that, the
matchmaker may adopt the utility function

u′
α(xα, yα) =

(
xk

α + yk
α

)1/k (k > 0). (5)

where the variants that have one or both utilities negative
are automatically excluded (they do not have the chance
to become selected anyway). Choosing k � 1 in equa-
tion (5) favors those pairs (xα, yα) where at least one of the
utilities is high, while k < 1 favors more equal splitting of
the total utility. The expected value of u′

m := maxN
α=1 u′

α
can be computed in the same way as in the previous sec-
tion, yielding

〈um
′〉 ≈ 2 −

(
Γ (1

2 + 1
k )
√

π

Γ (1 + 1
k )41−1/k

)1/2

N−1/2. (6)

Interestingly, 〈u′
m〉 scales with N in the same way as 〈um〉.

The expected buyer-vendor inequality is now a func-
tion of k, Δ(k). Numerical results shown in Figure 1 con-
firm our initial insight that Δ(k) grows with k. In partic-
ular, the value 0.5 achieved for k � 100 corresponds to
picking the variant which maximizes one of the utilities
and paying no attention to the other utility. In that case,
the selected variant has the larger of the two utilities close
to 1 and the other one is 0.5 on average: together we have
limk→∞ Δ(k) = 0.5. Further, it can be seen in Figure 1
that k < 1 does not significantly decrease the inequality
Δ(k) and thus to create a more social society, one has to
use a different utility function. For example, for N = 1 000,
optimizing the outcome of the weaker (which corresponds
to uα(xα, yα) = min[xα, yα]) decreases the inequality by
29% while reducing the total utility by less than 0.3%.

2.3 Serving several buyers at once

When there are several buyers in the market, the match-
maker can either find the best variant for each buyer sepa-
rately or she can compromise buyers’ needs by finding one
variant for all. While the former case is identical with our
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Fig. 1. Inequality Δ(k) as a function of k for N = 1000. The
inset focuses on small values of k and the results are averaged
over 10 000 independent realizations.

analysis above, the latter case is different and requires the
straightforward generalization of the total utility to the
form Myα +

∑M
i=1 xi,α where M is the number of buyers

and xi,α is the utility of variant α for buyer i. For con-
sistency with our previous formalism, we introduce the
per-buyer utility

u′′
α(x1,α, . . . , xM,α, yα) = yα +

1
M

M∑
i=1

xi,α := yα + aα (7)

where aα is the average buyers’ utility of object α, the
maximal utility we denote as u′′

m. When utilities xi,α are
independent and the number of buyers is large, the central
limit theorem states that the difference aα − 〈xi,α〉 is ap-
proximately a normally distributed quantity with variance
proportional to 1/M . It follows that due to the fast decay
of the normal distribution, the matchmaker cannot find an
object with the average utility aα differing substantially
from 〈xi,α〉. This is confirmed by Figure 2 where we show
〈u′′

m〉 for various values of M . As M increases, fluctuations
of aα gets smaller and 〈u′′

m〉 ≈ 1, corresponding to a neg-
ligible contribution of aα to u′′

α (it can be shown that to
achieve non-negligible maxα aα, the necessary number of
variants is proportional to eM ).

Now we see that it’s impossible to satisfy several buy-
ers with one variant. Since production of an individual
variant for each buyer is often too expensive, it is then a
natural question how to compromise between the buyers’
satisfaction and the costs of personalized production.
Within the given framework, one can introduce an ad-
ditional cost which increases with the number of variants
produced by the vendor – such a cost forces the vendor to
narrow down the selection. This aspect of buyer-vendor
interactions is extensively studied in [19,20] where they
show that based on the compromise described above and
a few simple additional assumptions, one can reproduce a
rich variety of market phenomena.

0 500 1000 1500 2000
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Fig. 2. Average utility with multiple buyers (results are av-
eraged over 1 000 independent realizations).

2.4 Correlated utilities

So far we assumed that the vendor’s and buyer’s utilities
are mutually uncorrelated. While convenient for analytical
computation, this is not a realistic assumption because in
general: what is good for the vendor is not good for the
buyer and vice versa. In other words, one expects xα and
yα to be negatively correlated.

To study the influence of correlations we first need to
find a way how to introduce them into the system. In gen-
eral it is easy to create correlated quantities by introduc-
ing a control parameter t ∈ [0, 1] and assuming that both
quantities have a common part which is proportional to
t and independent parts which are proportional to 1 − t.
However, when each part itself is uniformly distributed,
the resulting distribution depends on the value of t and
this effect distorts further analysis of the system [19]. This
motivates us to switch from uniform distributions to nor-
mal distributions which preserve their functional form un-
der addition. We assume that utilities xα and yα are ob-
tained as

xα =
√

1 − tXα +
√

t Cα, yα =
√

1 − t Yα +s
√

tCα (8)

where Xα, Yα, Cα are drawn from the standard normal
distribution N (0, 1), t ∈ [0, 1] is the parameter control-
ling the correlation strength and the parameter s switches
between positive (s = 1) and negative (s = −1) correla-
tions. Since when adding two normal distributions, indi-
vidual means and individual variances sum up to give the
resulting mean and variance respectively, both xα and yα

have zero mean and unit variance. It is simple to compute
the Pearson correlation coefficient of xα and yα which is
Cxy = st.

To study the system of utilities produced by equa-
tion (8), we assume the linear total utility given by equa-
tion (1). Hence uα is normally distributed with zero mean
and its variance can be shown to be equal to 2(1+st) := v.
We are again interested in um := maxN

α=1 uα and 〈um〉.
It can be shown (see Appendix 4 for details) that 〈um〉
approximately solves the equation

〈um〉 exp
[ 〈um〉2
4(1 + st)

]
= N

√
1 + st

π
. (9)
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Fig. 3. The dependence of the average maximal utility 〈um〉
on st for N = 1000 (numerical results and their standard de-
viations are obtained from 1 000 realizations of the model).

A comparison of this result with a numerical computa-
tion of 〈um〉 (where we randomly generate the utilities
xα and yα, find the maximal total utility um and average
over many realizations) is shown in Figure 3. As we can
see, positive correlations amplify the variance of uα and
hence allow the matchmaker to reach a higher optimal
utility. Notice that by setting t = 0 in equation (9), one
automatically obtains the result for normally distributed
uncorrelated utilities.

More insight can be gained if we attempt to find an
approximate solution of equation (9). When N is large, the
factor 〈um〉 on the left side of equation (9) is much smaller
than the exponential term and hence it can be neglected.
The simplified equation can be solved and gives us the
approximate result

〈um〉2 ≈ 4(1 + st) ln
[
N

√
(1 + st)/π

]
. (10)

In contrast to equation (4), this time 〈um〉 grows with N
without bounds. On the other hand, this growth is ex-
tremely slow: 〈um〉 is proportional to the square root of
ln N . For example, in the uncorrelated case increasing N
from 1 000 to 1 000 000 increases 〈um〉 only by 50%.

3 Trading without the matchmaker

Despite all the results obtained so far, one question re-
mains open: what is the matchmaker’s contribution to the
studied vendor-buyer matchings? This question can be an-
swered by investigating matchmaker-free methods of the
variant selection.

3.1 Vendor proposes

In [19] they assumed that when the vendor offers a variant,
the buyer accepts it only if his cost is smaller than the ven-
dor’s cost (instead of maximization of utilities, they stud-
ied minimization of costs). In our framework this means
that the buyer accepts variant α only if xα ≥ yα (i.e., he
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Fig. 4. The total utility of the selected variant with and
without the matchmaker. Individual utilities are drawn from
N (0, 1), results are averaged over 1 000 realizations.

wants to profit more than the vendor). The vendor’s ad-
vantage is that he decides which variants to propose – ob-
viously, it is optimal to begin with the variant that max-
imizes yα. This concept, where proposing and accepting
sides are well defined and distinguished, is similar to the
classical Gale-Shapley algorithm known from the stable
marriage problem [15].

Based on the matching described above and using
equation (1), we can compute the average total utility of
the selected variant and compare it to the case with the
matchmaker. Assuming normally distributed utilities and
zero correlations, we studied the system numerically. As
can be seen in Figure 4, the total utility with the match-
maker is considerably higher. On the other hand, the in-
equality between the fellows decreases from approximately
1.1 (with the matchmaker) to approximately 0.4 (when the
vendor proposes). When correlations are present, the dif-
ference between the two matching methods decreases and
becomes zero for Cxy = ±1.

3.2 Buyer’s search

As we have seen, the matchmaker optimizes the total util-
ity at the cost of compromising the utilities of individuals.
The buyer can avoid being “compromised” by searching
for the best variant by himself. The drawback is that the
search is costly (it consumes buyer’s time and attention)
and the corresponding cost has to be subtracted from the
utility of the eventually selected variant. Since the time
spent by searching grows linearly with the number of ex-
amined variants, it is natural to assume the linear cost
term βN , where N is the number of examined variants
and β > 0 is the cost per examined variant. The expected
buyer’s utility is

uS(β, N) =
〈

max
1≤α≤N

xα

〉 − βN := 〈xm〉 − βN. (11)

This form of the buyer’s utility was suggested in [11]
where, however, the emphasis was on the discussion of
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the cost of information. In today’s computerized and net-
worked world, searching is easy. Hence to obtain approxi-
mate analytical results, we assume that β is much smaller
than the typical utility value.

In equation (11), the term 〈xm〉 grows with N but
the cost βN eventually takes over and the total util-
ity uS(β, N) decreases (see Fig. 5a for an illustration).
This behavior is in agreement with the classical observa-
tion “Good things satiate, bad things escalate” by psy-
chologists Coombs and Avrunin [21]. It is now natural
to ask, what number of examined variants Nopt maxi-
mizes uS(β, N). We shall do that in three distinct cases.
In addition to xα drawn from the uniform distribution
U(−1, 1) and from the normal distribution N (0, 1), which
were studied before, we consider also the case when xα is
drawn from the power-law distribution f(x) = (γ−1)x−γ ,
x ∈ [1,∞), γ > 2 (for accounts on the importance of
power-law distributions in complexity management and
organization see e.g. [6,22]).

In Appendix B we find expressions for 〈xm〉 in all three
cases. Therein, the optimal number of variants Nopt is
found in the forms

uniform: Nopt = (β/2)−1/2 − 1, (12)

normal: Nopt ≈
(
β
√

− ln(2πβ2)
)−1

, (13)

power-law: Nopt ≈
(
β(γ − 1)/Γ (δ)

)−1/δ
, (14)

where δ = (γ − 2)/(γ − 1). Noticeably, in all three cases
we observe a power-law dependency of Nopt on β. In the
case of uniformly distributed utilities, 〈xm〉 has an up-
per bound and with N it grows very slowly (that means:
there is little to be gained by an extensive search). In
consequence, Nopt is proportional to β−1/2 and hence it is
little sensitive to changes of β. When utilities are normally
distributed, 〈xm〉 grows with N without bounds – this al-
lows Nopt to reach higher values than in the former case.
In the power-law case, values of Nopt are largest and their
dependency on β is strongest. Moreover, as the power-law
exponent γ gets closer to 2, the growth of 〈xm〉 with N
becomes linear and hence when the growth rate is larger
than β, it is optimal for the buyer to search “forever” (the
exponent δ diverges).

To review the accuracy of the presented results, in Fig-
ure 5 we compare them with numerical simulations. As can
be seen, good agreement is achieved in all three cases. Let
us conclude with the remark that in the power-law case,
the average, the mode, and the median of xm may differ
significantly. In consequence, it is an important question
whether the buyer should rely on 〈xm〉 which is strongly
affected by rare extreme events.

4 Conclusion

In this paper, we studied several simplified models of inter-
actions between buyers and a vendor. Assuming that both
the vendor and the buyers can attribute certain utility val-
ues to each available variant, the decision which variant
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Fig. 5. The buyer’s search for three distinct probabilistic dis-
tributions of utilities – comparison of numerical results (shown
with symbols) and analytical results (shown with lines) for
uS(0.01, N) (a) and Nopt (b); γ = 4 in both figures.

is to be delivered can be formulated as a mathematical
optimization problem.

Firstly we assumed that there is a matchmaker who
can fairly select the optimal variant according to what is
best for all participants of the contract. A plausible cri-
terion for the matchmaker is to select the variant with
the maximal total utility. Our results show that when the
utilities are uniformly distributed, the matchmaker can
achieve the total utility close to its upper bound even
when the number of available variants is small. In other
words, little choice is enough in this case. On the other
hand, when the total utility is maximized, the difference
between utilities of the vendor and the buyer may be too
large to consider it to be the optimal choice. When the
mere summation of individual utilities is replaced by a
more refined expression, the inequality between the in-
volved parties may be decreased. In particular, we found
that when the matchmaker maximizes the smaller of the
two individual utilities, the inequality decreases signifi-
cantly while the total utility is almost unchanged.

When the matchmaker tries to find one variant for
several buyers, the situation turns out to be far less fa-
vorable: the number of variants needed to approach the
upper bound of the total utility grows exponentially with
the number of buyers. As a result, production of multiple
variants is advisable – this topic was extensively studied in
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our previous works [19,20]. Assuming normally distributed
utilities, we studied the influence of correlations on the
system behavior. While analytically more demanding, this
generalization is important because it makes the system
more realistic. Our results confirm that the optimal total
utility depends strongly on the correlation of utilities.

Secondly we studied the variant selection without a
matchmaker. In this case, the space of possible means of
variant selection is vast and hence we focused on two par-
ticular situations. In the first one, the vendor offers and
the buyer passively decides whether to accept the offered
variant or not. While in comparison with the matchmaker-
mediated outcome, the total utility is slightly lower (see
Fig. 4), the inequality is decreased substantially. In the
second selection method, the buyer chooses the variant
by himself but he also has to pay the cost for examining
the variants. Here we considered three different distribu-
tions of utilities and shown that when the distribution has
a power-law tail, for the buyer it may be optimal to in-
spect a huge number of variants. In the extreme case of a
power-law distribution with the exponent lower or equal
than 2, the buyer does best by searching forever. Admit-
tedly, these results are influenced by the linear growth of
searching cost with the number of examined variants N
assumed by equation (11). In contrast, in psychology it is
well known that refusing the second best variant or hav-
ing too many options may be frustrating for people [23].
These effects could be included by adding an additional
cost term depending on the utility of the second best vari-
ant, or simply by a part of the searching cost proportional
to a higher power of N .

Appendix A: Extreme statistics for normally
distributed variables

In this appendix we show how 〈um〉 can be approximated
when the number of variants, N , is large. Assuming uα ∈
N (0, v), um := maxN

α=1 uα has the distribution

f(um) =
Ne−u2

m/2v

√
2πv

(
1 −

∫ ∞

um

e−u2/2v

√
2πv

du

)N−1

. (A.1)

The error function erf[x] := 2√
π

∫ x

0 exp[−t2] dt allows us to

write the integral in equation (A.1) as 1
2 −erf[um/

√
2v]/2.

When N is large, u2
m/(2v) � 1 and hence we can use

the asymptotic expansion erf[x] ≈ 1 − exp[−x2]/(x
√

π)
(taken from mathworld.wolfram.com, the next contribut-
ing term is proportional to exp[−x2]/x3). Again, we use
the approximation 1 − y ≈ exp[−y] (which is valid for
y 
 1) to obtain

f(um) ≈ N√
2πv

exp
[
− u2

m

2v
− (N − 1) exp[−u2

m/2v]
um

√
2π/v

]
.

Unfortunately, the integral corresponding to 〈um〉 cannot
be solved. Since f(um) does not have heavy tails, a rea-
sonably precise result can be obtained by approximating

〈um〉 with ũm maximizing f(um), yielding

〈um〉 = (N − 1)(1 + v/〈um〉2)
√

v

2π
exp[−〈um〉2/2v].

When N is large, v/〈um〉2 
 1 and hence we neglect this
term on the right side. In addition, N −1 ≈ N and we get

〈um〉 exp
[〈um〉2/2v

]
= N

√
v/2π (A.2)

which after substituting v = 2(1 + st) gives equation (9).

Appendix B: Analysis of the buyer’s search

We begin with xα ∈ U(−1, 1). Then xm has the distribu-
tion g(xm) = N

2

[
1 − (1 − xm)/2

]N−1 and in consequence
〈xm〉 = 1− 2/(N + 1). Maximizing uS(β, N) with respect
to N we get Nopt =

√
2/β − 1.

Now let’s consider xα ∈ N (0, 1). After substituting
v = 1 in equation (A.2), the expected utility uS(β, N)
can be maximized using implicit derivative, yielding the
condition βN〈xm〉 = 1. In this equation, “fast” and “slow”
terms (N and 〈xm〉 respectively) are mixed together and
hence an approximate solution can be found by the fol-
lowing iterative procedure. Approximating 〈xm〉 = 1
gives the rough estimate N0 = 1/β. Together with equa-
tion (A.2), this value leads to the improved estimate
〈xm〉 ≈ √− ln(2πβ2) and in turn we get

Nopt ≈
(
β
√
− ln(2πβ2)

)−1
,

an improved estimate of Nopt.
Finally let’s study the case where utilities xα are con-

strained to the range [1,∞) and follow the power-law dis-
tribution f(xα) = (γ−1)x−γ , γ > 2. Then the cumulative
distribution is P (xα) = x1−γ and the distribution of xm

is g(xm) = N(γ−1)x−γ(1−x1−γ)N−1. After approximat-
ing 1− x1−γ

m ≈ exp[−x1−γ
m ] (the relevant values of xm are

large) and replacing the lower integration bound with 0
we obtain 〈xm〉 ≈ N1/(γ−1)Γ [δ] where δ = (γ−2)/(γ−1);
this result is well defined for all γ > 2. When only a
fraction r of all utilities follows the power law, the re-
sult generalizes to 〈xm〉 ≈ (Nr)1/(γ−1)Γ [δ]. Maximization
of the expected utility uS(β, N) is straightforward and
yields Nopt ≈

[
β(γ−1)/Γ [δ]

]−1/δ. For a different analysis
of the largest value of a power-law distributed sample and
a broader discussion of power laws see [24].
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