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Abstract We analyze the ellipticity of the standard k · p wurtzite model for the sym-
metrized and the Burt–Foreman operator ordering. We find that for certain situations the
symmetrized Hamiltonian is unstable, leads to unplausible results and can cause spurious
solutions. We show that the operator ordering in wurtzite must be completely asymmetric to
be stable. The asymmetric operator ordering is elliptic and consequently no spurious solutions
are obtained. Therefore we recommend the use of a complete asymmetric operator ordering
for nitride device simulation.

Keywords k · p · Spurious solutions · Finite element method · Nanostructures · Operator
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1 Introduction

In the numerical modeling of optoelectronic devices, the electronic properties of the active
regions are often determined using the k · p envelope function theory (EFT). Its formulation
as a coupled system of partial differential equations requires only a modest computational
effort. Therefore systems of quantum wells, wires or dots can be solved on standard worksta-
tions using plane-wave expansions, finite differences or finite elements. An important issue
(in the EFT) is the correct ordering of the differential operators. Starting from bulk k · p
terms, one replaces the wavenumbers k j by operators −i∂ j . As an example, second order
terms are transformed according to

˜H(2)
i j ki k j → −∂i H

(2)
i j ∂ j − ∂ j H

(2)
j i ∂i . (1)

Here, ˜H(2)
i j represents the coefficient matrix of the terms proportional to ki k j in the desig-

nated k · p matrix. In a bulk crystal, the wavenumber operator commutes with the coefficients
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and therefore, the information of the splitting of ˜H(2)
i j into H(2)

i j and H(2)
j i is lost. Due to

lack of knowledge, usual implementations use a symmetric distribution to obtain a her-
mitian equation system. Burt (1992, 1999) discovered that the operator ordering could be
derived from the heterostructure’s Schrodinger equation. He concluded that, the operator
ordering is hermitian, but not necessarily symmetric. Foreman (1997) then derived the
operator ordering for zinc-blende models, which is referred to as the Burt–Foreman (BF)
ordering.

With the advent of blue- and green-light emitting diodes, modeling of nitride nanostruc-
tures with wurtzite crystal symmetry attracts much attention. Usual calculations are based on
the symmetrized version of the wurtzite Hamiltonian (Chuang and Chung 1996). Mireless and
Ulloa (1999) derived the corresponding operator ordering and demonstrated the underesti-
mation of the coupling to remote d-like states in the symmetrized version of the Hamiltonian.
The derivation of the operator ordering given by Ram-Mohan and Yoo (2006) differs slightly
from Mireless and Ulloa (1999), as their analysis employs one additional parameter, leading
to parameters which can only be determined from first principle calculations.

In this work, we analyze the 6×6 k · p Hamiltonian of Chuang and Chung (1996) and
show that the symmetrized Hamiltonian is unstable and leads to spurious solutions. We then
use the ellipticity analysis (as presented in Veprek et al. (2007) for zinc-blende materials) to
suggest a stable operator ordering.

2 Effect of operator ordering on wurtzite quantum wells and quantum wires

In the k · p theory, the Löwdin perturbation technique (Löwdin 1951) is usually used to
reduce the Hamiltonian to a smaller number of relevant bands, including the effect of the
reduced bands perturbatively. Using the notation of Stavrinou and Dalen (1997), the Löwdin
interaction term on the remaining bands is given by

Hint
j j ′ = h̄2

m2
0

∑

α,β=x,y,z

k̂α

(

∑

ν

〈 j | p̂α|ν〉〈ν| p̂β | j ′〉
E − Eν

)

k̂β . (2)

Here, the sum runs over all reduced remote bands ν. In a heterostructure with material
dependent matrix elements, the operators k̂. do not commute with the position dependent
coefficients and therefore, have to remain in their correct order. The Hamiltonian of Chuang
and Chung (1996) including the operator ordering is given by1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

F +� κ∗ ξ 0 0 0
κ G−� −ξ∗ 0 0 �

η∗ −η λ 0 � 0
0 0 0 F −� κ −ξ∗
0 0 � κ∗ G+� ξ

0 � 0 −η η∗ λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3)

where

1 For the bulk crystal, the matrix (3) is identical to the transpose of Chuang and Chung (1996). It follows the
derivation presented in Bir and Pikus (1974).
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Fig. 1 In-plane dispersion of a
1.5 nm GaN—Al0.25Ga0.75 N
(left) and GaN—Al0.7Ga0.3 N
(right) quantum well. The dashed
line denote results obtained with
asymmetric (Burt–Foreman)
ordering while the dotted
dispersions were obtained using
the symmetrized Hamiltonian
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λ = k̂z A1k̂z + k̂x A2k̂x + k̂y A2k̂y θ = k̂z A3k̂z + k̂x A4k̂x + k̂y A4k̂y

κ = −k̂x A5k̂x + k̂y A5k̂y + i(k̂x A5k̂y + k̂y A5k̂x ) (4)

η = −k̂z A+
6 (k̂x + i k̂y) − (k̂x + i k̂y)A−

6 k̂z ξ = −k̂z A−
6 (k̂x + i k̂y) − (k̂x + i k̂y)A+

6 k̂z

� = i k̂y(A+
5 − A−

5 )k̂x − i k̂x (A+
5 − A−

5 )k̂y � = √
2�3.

The parameters A5 and A6 are split into two asymmetric parts

Ai = A+
i + A−

i . (5)

In (3), the effect of k-dependent spin orbit splitting (via the A7 parameter, Bir and Pikus
1974; Ren et al. 1999) and the strain dependence have been neglected. In a bulk crystal, (3)
reduces into the usual form. The heterostructure Hamiltonian (3) has a more complicated
form on the off-diagonal terms κ, η and ξ , and also includes a term � on the diagonal which
cancels in bulk.

In Mireless and Ulloa (1999), it was shown that BF operator ordering does lead to signifi-
cantly different results when the parameters of the involved materials change by a significant
amount at the heterointerface. This is illustrated in Fig. 1 where the difference in the band
structure of a 1.5 nm wide GaN quantum well embedded in AlGaN is plotted. The material
parameters are taken from Vurgaftman and Meyer (2003) for all calculations. The results
were obtained using the finite element k · p solver tdkp (Veprek et al. 2008). The left and
right figure correspond to Al molefractions (mf) of 0.25 and 0.7. The dashed line denotes the
calculation using a completely asymmetric ordering while the dotted line denotes the results
obtained with the symmetrized Hamiltonian. The difference is significant and increases with
increasing Al content (and therefore, increasing parameter difference between barrier and
well material). Increasing the Al content further would lead to subbands bending into the
forbidden band gap for the symmetric ordering. If similar calculations are performed for
a square 1.8 nm2 quantum wire using the same material system, the effects are even more
dramatic, as can be seen from Fig. 2. For the material system with an Al mf of 0.25, the sym-
metrized Hamiltonian leads to stronger confined states and dispersions differing by more
than 25 meV. In the calculation with an Al mf of 0.7, symmetrized operator ordering yields
spurious states above the upper valence band-edge of GaN (which is at 0.0156 eV). In Fig. 3,
the probability density of the top valence band state in the quantum wire is plotted for both
orderings. The state corresponding to symmetric operator ordering is spuriously localized
at the corners of the structure. The results obtained using BF operator ordering are still in a
reasonable form and not affected by any spurious solution. These findings can be explained
in terms of the ellipticity of the given equation system.
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Fig. 2 Dispersion of a fictive
1.8 nm2 square
GaN—Al0.25Ga0.75 N (left) and
GaN—Al0.7Ga0.3 N (right)
quantum wire, calculated with BF
and symmetric operator ordering
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Fig. 3 Probability distribution of
top valence band state in a fictive
1.8 nm2 square
GaN—Al0.7Ga0.3 N quantum
wire, calculated with symmetric
(left) and BF operator ordering
(right). The symmetric ordering
leads to a state spuriously
localized at the corners of the
structure

3 Ellipticity analysis of wurtzite k · p model

The bilinear form of the coupled equation system given by the EFT is in analogy to a scalar
second order partial differential operator given by (Veprek et al. 2007)

α̂(f, v) =
∫

�

∑

i jkl

∂iv

k hkl

i j ∂ j fl , (6)

where hkl
i j ≡ (H(2)

i j )kl . Here, k, l run over the Bloch-band indices [1, m] depending on the
number of Bloch-bands involved. i, j run over the directions of the system. The bilinear form
of an elliptic equation is convex. This is fulfilled if the coefficient matrix hkl

i j is definite. If hkl
i j

has both eigenvalues with positive and negative signs, the equation system is non-elliptic. As
outlined in Veprek et al. (2007), the lack of ellipticity of the designated equations changes
their mathematical nature, leading to an improperly-posed problem. Solutions of these equa-
tions then depend on the applied discretization method and may appear as being spurious.
The second order terms of the k · p 6 × 6 matrix decouple into two similar 3 × 3 blocks,
hence only one block must be analyzed. The associated matrix hkl

i j is given by

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A2 + A4 −A5 0 i(A−
5 − A+

5 ) −i(A−
5 + A+

5 ) 0 0 0 −A+
6−A5 A2 + A4 0 i(A−

5 + A+
5 ) −i(A−

5 − A+
5 ) 0 0 0 A+

6
0 0 A2 0 0 0 −A−

6 A−
6 0

−i(A−
5 − A+

5 ) −i(A−
5 + A+

5 ) 0 A2 + A4 A5 0 0 0 −i A+
6

i(A−
5 + A+

5 ) i(A−
5 − A+

5 ) 0 A5 A2 + A4 0 0 0 −i A+
6

0 0 0 0 0 A2 i A−
6 i A−

6 0
0 0 −A−

6 0 0 −i A−
6 A1 + A3 0 0

0 0 A−
6 0 0 −i A−

6 0 A1 + A3 0
−A+

6 A+
6 0 i A+

6 i A+
6 0 0 0 A1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (7)
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Fig. 4 Degree of non-ellipticity
(8) for different choice of the
splitting for parameters
Ai+ and Ai− in GaN
(A5 = −3.4, A6 = −4.9 and
other parameters were taken from
Vurgaftman and Meyer (2003)).
The equations are elliptic for
ρ = 0. The cross denotes the
symmetric splitting

To quantify the non-ellipticity of a given parameter set, one defines the ratio between
positive and negative eigenvalues λi of hkl

i j by (Veprek et al. 2007)

ρ =
∣

∣

∣

∣

∣

∑

i,λi >0 λi
∑

j,λ j <0 λ j

∣

∣

∣

∣

∣

. (8)

In order to determine the optimal splitting, we calculate eigenvalues of the second order
coefficient matrix hkl

i j for different choices of A5,+ and A6,+ and plot the non-ellipticity ratio
(8) for each combination. In Fig. 4, the situation for GaN parameters is shown.

The equation is elliptic only for a completely asymmetric distribution between Ai,+ and
Ai,− for both parameters A5 and A6. Any significant deviation from the completely asym-
metric splitting leads to increasing non-ellipticity. The non-ellipticity of the symmetrized
operator ordering is indicated with the cross in Fig. 4. Obviously, the symmetrized opera-
tor ordering is highly non-elliptic. For AlN and InN, we obtain very similar results. These
materials also require a complete asymmetric split between Ai,+ and Ai,−. The complete
asymmetric split is not only required for the effective mass parameters Ai of Vurgaftman and
Meyer (2003), but also for the parameters given by Ren et al. (1999); Dugdale et al. (2000);
Kim et al. (1997), and Rezaei et al. (2006).

4 Conclusion

The symmetrized wurtzite k · p Hamiltonian of Chuang and Chung (1996) is numerically
unstable for material systems with a significant discontinuity of the material parameters at
interfaces. Its application to quantum wires can lead to spurious solutions, depending on
the involved materials. The associated problems are caused by the lack of ellipticity due to
wrong operator ordering, as it was already found for zinc-blende k · p models (Veprek et al.
2007). The suggested complete asymmetric operator ordering reestablishes the ellipticity
of the equation system and leads to stable and spurious solution free band structures. The
ordering has also been motivated physically in Mireless and Ulloa (1999), although their
estimate suggests a less asymmetric distribution. As the asymmetric operator ordering leads
to reliable band structures in nanostructures of all dimensions and for all material systems,
it is recommended for nitride device simulation.
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