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Abstract. The observations of power laws in the time to extrema of volatility, volume and intertrade times,
from milliseconds to years reported by Preis et al. (2010, 2011), are shown to result straightforwardly from
the selection of biased statistical subsets of realizations in otherwise featureless processes such as random
walks. The bias stems from the selection of price peaks that imposes a condition on the statistics of price
change and of trade volumes that skew their distributions. For the intertrade times, the extrema and power
laws results from the format of transaction data.

1 Introduction

The random walk model of Bachelier (1900) [1], later ex-
tended into the geometrical Brownian model (GBM) [2],
forms a reasonable first-order approximation of the dy-
namics of financial market prices. The GBM constitutes
the starting point for more refined modern models that
take into account the stylized facts documented in the last
50 years. While the GBM is based on the generally veri-
fied absence of linear correlation of returns, many studies
have show in addition the existence of long-memory in
the volatility, volatility clustering and multifractality, fat
tails in the distributions of returns, correlation between
volatility and volume, time-reversal asymmetry, the lever-
age effect, gain-loss asymmetries and many others (see for
instance, [3,4]).

Recently, Preis et al. [5–11] have claimed the discovery
of a new stylized fact in the form of universal power laws
associated with so-called switching points. They found
that local maxima of volatility and volume, and local min-
ima of intertrade times, are reached and followed by power
laws in the time to the extrema that are reminiscent of
critical points in physics. The power laws are found to
hold from time scales ranging from milliseconds to years.

Here, we show that these power laws are also found in
the minimal random walk (they also hold as well for the
GBM). They derive from the statistical method used by
Preis et al. to define the switching points. Using Occam
razor, this suggests that there is no need to invoke new
properties for real financial prices, since essentially all
characteristics of switching points documented by Preis
et al. [5–11] can be recovered in the GBM. In other words,
we show that the discovery of Preis et al. is likely an arti-
fact of their statistical analysis, which does not account for
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the impact of conditioning associated with the definition
of switching points on the statistical properties of financial
returns. Our finding applies directly to the volatility. For
volumes, one just needs to take into account the correla-
tion between absolute price increments and volume, which
is very strong at the daily time scale and weaker but yet
pronounced at the tick-by-tick time scale. Concerning the
dynamics of intertrade intervals, we show that it originates
simply from the format of the transaction price data.

2 Analysis of volatility peaks

The local extrema considered by Preis et al. [5–11] are de-
fined as follows. The transaction price p(t0), where t0 is
a discrete time in the interval [0, T ] measured in trans-
action number or in calendar time, is defined to be a
local maximum (resp. minimum) of order Δt if there
is no higher (resp. smaller) transaction price in the in-
terval t0 − Δt ≤ t ≤ t0 + Δt. Independently of any
assumption on the underlying generating process, this
definition imposes stringent conditions on the price in-
crements before and after the extrema. For instance, by
virtue of the definition of the existence of a local maxi-
mum, the conditional expectation of the last price incre-
ment Δp(t0) = p(t0) − p(t0 − 1) leading to the maximum
must be positively skewed and the conditional mean of
|Δp(t0)| = |p(t0)− p(t0 − 1)| has to be larger than the un-
conditional mean of |Δp(t)|. This skewness also holds for
earlier increments from t0−2 to t0−1, from t0−3 to t0−2,
and so on, with a decreasing amplitude as one considers
price increments further away from the peak. Similarly,
the increment Δp(t0 + 1) = p(t0 + 1) − p(t0) is nega-
tively skewed, with the conditional mean being smaller
than the unconditional mean. This negative skewness also
holds for later increments with a progressively decreasing
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Fig. 1. Conditional and unconditional distributions of price
increments (see text). The vertical lines correspond to the un-
conditional expectation of |Δp(t)| (dashed line) and to the ex-
pectation of Δp(t0) = p(t0)−p(t0−1) conditioned on the price
peak occurring at time t0 (continuous line) for a price following
the random walk model with iid Gaussian increments N(0, 1).
The distribution of Δp(t0) = p(t0) − p(t0 − 1) is strongly pos-
itively skewed, in particular with no negative realizations, as
results from the definition of p(t0). Similarly, the distribution
of Δp(t0 + 1) = p(t0 + 1)− p(t0) is strongly negatively skewed,
in particular with no positive realizations, as results from the
definition of p(t0).

amplitude. While these effects can be studied in details an-
alytically for the GBM, for pedagogy, we choose to show
the result of numerical simulations for the random walk
model

p(t) =
t−1∑

i=0

ξ(i) (1)

with Gaussian N(0, 1) iid increments ξ(i) (Fig. 1). The
same properties as shown in Figure 1 hold for the volume
and intertrade waiting times.

Preis et al. [5–11] have constructed the average tra-
jectories of volatility, volume and intertrade waiting times
as a function of time to the extrema. They have aver-
aged twice, first, over different trend durations and, sec-
ond, over different orders Δt. A positive trend duration is
simply defined as the time between the last minimum to
the next maximum. A negative trend duration is defined
as the time between the last maximum to the next mini-
mum. In order to be able to stack all positive and negative
peaks respectively on each other, Preis et al. have normal-
ized each trend duration to 1 by defining a dimensionless
time ε taking the value 0 at the beginning of the trend
and 1 at the extrema. They have found that volatility,
volume and intertrade waiting times as a function of the
dimensionless reduced time ε are power laws of the dis-
tance |ε − 1| to the extrema.

We have performed exactly the same analysis as Preis
et al. [5–11] on the random walk model (1) with Gaussian
N(0, 1) iid increments ξ(i) and find essentially the same
power law dependences as found empirically on financial
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Fig. 2. (a) Financial volatility σ2∗(ε) obtained from numer-
ical simulations of the random walk model; (b) volume v∗(ε)
obtained from numerical simulations with the model of linear
correlations between the volume and absolute price change (see
text); (c) log-log plot of v∗(ε) as a function of |ε−1| on both side
of the peak placed at ε = 1. The two straight lines correspond
to the power laws v∗(ε) ∼ |ε − 1|βv , with β+

v = −0.16 in the
range 10−1.95 < ε− 1 < 10−1.05, and β−

v = −0.12 in the range
10−2.45 < 1 − ε < 10−1.3; (d) intertrade time τ∗(ε) obtained
from numerical simulations with the model with non-zero prob-
ability of “walking up the book” (see text) with p0 = 0.5.

time series (see Fig. 2). Figure 2a shows the average
stacked peak of volatility as a function of ε for the ran-
dom walk model. Note that the scale-free structure of the
random walk ensures a weak dependence of this pattern
on the order Δt, as also found for the real financial data.
The asymmetry of the peak, as well as the two power-law
decays around the peak, are found to hold also for the
random walk model: a fit of the synthetic data generated
with the random model with expression

σ2∗(ε) ∼ |ε − 1|βσ (2)

yields β+
σ = −0.16 in the range 10−1.95 < ε− 1 < 10−1.05,

and β−
σ = −0.12 in the range 10−2.45 < 1 − ε < 10−1.3.

Note that a better model for the singular behavior for
ε → 1 amounts to replacing (2) by σ2∗(ε) = a− b|ε− 1|βσ

where a is a constant, so that the conditional volatil-
ity does not really diverge, but exhibits a finite-time
singularity characterized by an infinite slope. A fit to the
synthetic data usually gives b > 0 and βσ � 0.7.
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The asymmetry around the peak results from (i) the
selection of realizations with peaks that ensure that large
positive (resp. negative) price changes are more probable
before (resp. after) the peak and (ii) the asymmetry in
dimensionless time ε, that is by definition fixed to the
single trend for 0 ≤ ε ≤ 1, but is free for 1 ≤ ε ≤ 2 and
may include in these values another trend, or even multiple
trends, when Δt is large. This effect becomes even stronger
for tick-by-tick data, where the probability of having zero
price change is high and the micro trend (of given order)
is likely to be followed by a plateau of constant price.

These results are robust with respect to changes in the
generating price process. For instance, taking into account
the existence of an atom (probability concentration) for
zero price increments, or of a negative auto-correlations
of price increments at lag one due to bid-ask bounce and
other effects do not change qualitatively the results shown
in Figure 2. Moreover, the presence of the peak in volatil-
ity is robust to detrending of the initial time series (by
removing the linear/polynomial trend or using moving av-
erages). As described above, the peak stems from the bias
in statistics due to the conditioning. As long as the time
series is not degenerated (in particular, the support of the
probability distribution of increments ξ(i) should contain
more than one point in each half-axis: ξ > 0 and ξ < 0),
conditioning on peaks will bias the average towards big-
ger increments, and thus skew the distribution of Δp(t0),
resulting in the peak of volatility. However, the quantita-
tive values of the parameters, such as the exponents β+

σ

and β−
σ and the ranges of the power-law scaling, strongly

depend on the particular model and on the methods of
preprocessing of the data (e.g. filtering or detrending).

3 Analysis of volume and intertrade interval
peaks

Since the random walk model does not include any vol-
ume or intertrade intervals, we need to enrich it slightly
to match the observations of Preis et al. [5–11]. We start
with the well-established empirical fact that volume is cor-
related with the absolute price change at many scales. In-
deed, as Preis et al. have noted [5–11], there are almost
no correlation between signed price increments Δp(t) and
volume v(t), due to the almost symmetric distribution of
the Δp(t). But, at the same time, it is well known that the
correlation between absolute price increments |Δp(t)| and
volume is very strong at the daily scale (see for instance
the early review [12]) and weaker but clearly pronounced
at the transactions scale. Here, it should be noted that
studies of transaction data are not common because the
transaction price is subjected to bid-ask bounce and thus
does not reflect well market price moves.

For illustration, let us take the example of transaction
data of December’2011 futures on the DAX index over the
period 07/11/2011–06/12/2011 (1 892 243 transactions in
total) obtained from Bloomberg Historical Intraday Tick
database. For this dataset, we find that the Pearson cor-
relation coefficient between signed price increments Δp(t)

and volume v(t) is equal to 1.02% with the 95% confidence
interval [0.88%, 1.16%] clearly excluding the null hypoth-
esis of a zero value. The correlation coefficient between
absolute price increments |Δp(t)| and volume v(t) is more
than 10 times stronger and equal to 15.7% with its 95%
confidence interval equal to [15.6%, 15.9%].

Due to the correlation between volume and absolute
price change, the structure of the volume dynamics repro-
duces qualitatively that of the absolute price increments.
Assuming again that the price follows a random walk (1),
we account for the correlation between volume and abso-
lute price change by specifying the following process for
the volume:

v(t) =
∣∣∣|Δp(t)| + σμμ(t)

∣∣∣, (3)

where μ(t) is an iid Gaussian noise N(0, 1) independent of
p(t) and σμ is a coefficient that controls the amplitude of
the correlation between |Δp(t)| and v(t). Figure 2b shows
the average stacked volume dynamics v∗(ε), conditional on
price peak, as a function of ε for the random walk model
with (3) and correlation coefficient of 0.2. One can clearly
observe the same asymmetric peak as for the volatility
shown in Figure 2a. Around the peak of volume, which
coincides with that of price, Figure 2c shows a log-log plot
of the volume v∗(ε) as a function of |ε−1| on both side of
the peak placed at ε = 1. This log-log plot demonstrates
the existence of two power laws, according to v∗(ε) ∼ |ε−
1|βv , with β+

v = −0.16 in the range 10−1.95 < ε − 1 <
10−1.05, and β−

v = −0.12 in the range 10−2.45 < 1 − ε <
10−1.3. As for the conditional volatility around the peak,
we note that a better model is v∗(ε) = a′−b′|ε−1|βv with
b′ > 0 and βv < 1.

As shown in Figure 2d, we are also able to reproduce
the negative peak of the average intertrade intervals τ
as a function of ε, conditioned on the existence of a price
peak, and its approximate power law dependence in terms
of |ε − 1| on both side of the peak. For this, we consider
the same random walk model (1) with discrete price in-
crements ξ(i) and we model intertrade intervals τ(t) as a
mixture of (i) iid exponentially distributed random vari-
ables reflecting a Poisson process for the order flow and
(ii) an atom at τ = 0 with probability mass p0, which ac-
counts for those times tc’s such that the price increment
Δp(tc) has the same sign as the previous nonzero incre-
ment Δp(t′c) (this means that the price moved in the same
direction as before). This is a simple toy model of the way
that the transaction data is organized. In the order-driven
exchanges such as the Chicago Mercantile Exchange and
the Frankfurt Stock Exchange, which were analyzed by
Preis et al. [5–11], the matching of orders is performed ac-
cording to a real-time “walk” within the order book. When
one submits a market order to buy or sell, it is immedi-
ately executed at the best possible price. But when the
submitted order is so large that it could not be executed
at one price (due to insufficient supply), a part of it is ex-
ecuted at the best next price and the rest – at the second
best next price, then at the third next best price – and so
on until the whole order is executed. This effect is known
as “walking up the book”. These executions correspond to
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different transactions, since they are performed at differ-
ent prices but, since they are triggered by the same order,
all of them have identical time stamp in the transaction
log-file. At the same time, such sequences of transactions
are moving price significantly, especially if more than two
levels in the order book are involved. Therefore, the logfile
of transaction records a finite fraction of trades with non-
zero price changes and zero intertrade time interval. As
demonstrated by Figure 2d, this effect is sufficient to ex-
plain the negative peak in the time series of the intertrade
times, reported initially by Preis et al. [5–11].

4 Extension of the analysis beyond
the random walk model

Finally we would like to notice that the range of the ap-
parent power laws and their exponents obtained in the
random walk model (1) do not match quantitatively the
results reported by Preis et al. [5–11]. However, supple-
menting the random walk model with another stylized fact
of real financial time series, it is possible to reproduce
precisely both the quantitative values of the exponents
and the range of scales over which the power laws hold.
To illustrate this result, we will use the quasi-multifractal
process [13,14] that accounts for the heavy tails of price
increments and the long memory of absolute returns. This
model represents price p(t) as

p(t) =
t−1∑

i=0

ξ(i)eω(i), (4)

where ξ(i) are i.i.d. Gaussian N(0, 1) variables and ω(i)
are independent of ξ(i) Gaussian random variables with
zero mean and covariance matrix

Bi,j =
σ2ϕ

2

∫ ∞

0

dx
(
(1 + x)(1 + x + |i − j|))ϕ+1/2

. (5)

Figure 3 presents an example of the simulations of the
quasi-multifractal model (4)–(5) for values of the param-
eters (ϕ = 0.1 and σ2 = 5) that replicate the power laws
found in the volatility patterns of the S&P 500 Stocks doc-
umented in references [5,8,11], with exponents βσ = −0.46
in the range 10−1.7 < ε − 1 < 10−0.4.

5 Conclusion

In summary, we have shown that the definition of price
peaks imposes a condition on the statistics of price change
and of trade volumes that skew their distributions suffi-
ciently to explain the occurrence of power laws in the time
to these peaks, even in the simplest possible model, the
random walk. Though the minimal random walk model
could not reproduce precisely the exact exponents and
ranges of power laws reported by Preis et al. [5–11], more
elaborated models allow to match these values quanti-
tatively. This statement was illustrated with the quasi-
multifractal model [13,14] that accounts for the long-term
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Fig. 3. Log-log plot of the volatility σ2∗(ε) obtained from nu-
merical simulations of the quasi-multifractal model (4)–(5) in-
troduced in references [13,14] with parameters ϕ = 0.1 and
σ2 = 5. The straight line corresponds to the power law with
the exponent βσ = −0.45.

memory and heavy tailed statistics of real price returns.
For the intertrade times, we have shown that the extrema
and power laws can result from the format of transaction
data. We are thus led to conclude that there is no new
“switching” phenomenon, as the power laws are straight-
forward consequences of the selection of biased statistical
subsets of realizations in otherwise featureless processes.
In the switching phenomena reported by Preis et al. [5–11],
there is no more than statistical conditioning and some
correlations.

Conditional statistics are in general far more compli-
cated than unconditional statistics and may lead to quite
non-intuitive results, as we have illustrated here. Nowa-
days, misinterpretations of results obtained from condi-
tional statistics seem to become more and more frequent
in research (especially in complex system sciences) that
relies heavily on data mining and data analysis (see for
instance spurious claims of novel phenomena in the sta-
tistical physics of earthquakes that have been debunked
in [15–17]). The easy access to very large data sets and
the use of large computational power allow researchers
to pose sophisticated questions to data by developing ex-
tremely complex statistical metrics based on conditional
probabilities and averages. Being strongly dependent on
the posed conditions, such metrics may lead to appar-
ent nontrivial results, even in structureless systems, such
as random walks or GBM. The literature has several re-
markable examples on par with the spurious switching
phenomena that we have analyzed in the present paper.
Let us for instance mention another example of misin-
terpretation of the conditional statistics also belonging
to econophysics: Plerou et al. [18] interpreted conditional
probability distributions of price changes as the evidence
for phase transitions in financial markets, when the same
patterns could be found in simple counter-examples us-
ing the trivial GBM [19]. Paying a lot of attention to
the careful implementation of the novel proposed sta-
tistical metric, one could easily neglect the influence of
the complexity of the question asked on the results, thus
increasing the possibility of mistaking spurious effects for
reality. The impact of the complexity and distortions in-
troduced by the conditioning method of analysis should
be always kept in mind. A general approach should follow
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the treatment presented here and in [19] (see also the ad-
monitions in [15–17]), namely always test the effect of con-
ditioning and of new metrics on known data, for instance
standard processes whose properties are well-known. Only
in this way can one disentangle what in the results derives
from the conditioning analysis and what is a real structure
of the data.

We are grateful to G. Harras for useful discussions while
preparing this manuscript.
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