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Abstract. We use statistical model selection criteria and Avramov’s (2002)

Bayesian model averaging approach to analyze the sample evidence of

stock market predictability in the presence of model uncertainty. The

empirical analysis for the Swiss stock market is based on a number of

predictive variables found important in previous studies of return

predictability. We find that it is difficult to discard any predictive variable

as completely worthless, but that the posterior probabilities of the

individual forecasting models as well as the cumulative posterior

probabilities of the predictive variables are time-varying. Moreover, the

estimates of the posterior probabilities are not robust to whether the

predictive variables are stochastically detrended or not. The decomposi-

tion of the variance of predicted future returns into the components

parameter uncertainty, model uncertainty, and the uncertainty attributed to

forecast errors indicates that the respective contributions strongly depend

on the time period under consideration and the initial values of the

predictive variables. In contrast to AVRAMOV (2002), model uncertainty

is generally not more important than parameter uncertainty. Finally, we

demonstrate the implications of model uncertainty for market timing

strategies. In general, our results do not indicate any reliable out-

of-sample return predictability. Among the predictive variables, the

dividend–price ratio exhibits the worst external validation on average.

Again in contrast to AVRAMOV (2002), our analysis suggests that the

out-of-sample performance of the Bayesian model averaging approach is

not superior to the statistical model selection criteria. Consequently,

model averaging does not seem to help improve the performance of the

resulting short-term market timing strategies.

1. Introduction

Recent advances in asset pricing theory and the

mounting empirical evidence of stock market pre-

dictability seem to have persuaded the majority of

researchers to abandon the constant expected re-

turns paradigm. The time variation and predictabil-

ity of excess returns, labeled as a ‘‘new fact in

finance’’ by COCHRANE (1999), is so widely ac-

cepted that it has generated a new wave of con-

ditional asset pricing and portfolio choice models

[see, e.g., BRENNAN et al. (1997), CAMPBELL

and VICEIRA (1999, 2002), BARBERIS (2000),

and XIA (2001)]. At the same time, however, there

is less consensus on what drives this predictabil-

ity. BEKAERT (2001) differentiates between three

possibilities: it may reflect time-varying risk pre-

miums (which he calls the ‘‘risk view’’), it may

reflect irrational behavior on the part of market

participants (the ‘‘behavioral view’’), or it may sim-

ply not be present in the data – a statistical fluke due

to poor statistical inference (the ‘‘statistical view’’).

Of course, whether stock market predictability is

consistent with market efficiency can only be in-

terpreted in conjunction with an intertemporal

equilibrium model of the economy. All theoretical

attempts at interpretation of predictability will

thus be model-dependent, and hence inconclusive.

Nevertheless, recent advances in asset pricing theory

seem to demonstrate that a certain degree of time-

varying expected returns is necessary to reward

investors for bearing certain dynamic risks associ-

ated with the business cycle. Loosely, it is claimed
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that the equity premium rises during an economic

slow-down and falls during periods of economic

growth, so that expected returns and business con-

ditions move in opposite directions [see, e.g., FAMA

and FRENCH (1989), CHEN (1991), FAMA

(1991), and FERSON and HARVEY (1991)].

However, certain aspects of the empirical research

on stock market predictability remain controver-

sial. Specifically, considering the long list of au-

thors criticizing the statistical methodologies in

the literature about return predictability, it seems

that the statistical view gains increasing credibil-

ity. Indeed, a number of recent contributions sug-

gest that any evidence of return predictability may

have more to do with poorly behaved test statistics

than with stock market predictability.[1] Properly

adjusting for small sample biases, near unit roots,

and other statistical issues associated primarily

with long-horizon regressions weakens and often

reverses many of the standard conclusions.

Moreover, existing equilibrium pricing theories

are not explicit about the predictive variables. The

reported empirical evidence of return predictabil-

ity is thus subject to data-over fitting concerns.

For example, BOSSAERTS and HILLION (1999),

NEELY and WELLER (1999), and particularly

GOYAL and WELCH (2003a,b) conclude that

even their best prediction models have no out-of-

sample forecasting power and fail to generate ro-

bust results that outperform simple unconditional

benchmark models. In addition, the multiplicity of

potential predictive variables makes the empirical

evidence difficult to interpret: we may find a pre-

dictive variable statistically significant based on

a particular collection of predictive variables and

sample period, but often not based on a competing

specification or time period.

A recent surge of research has thus increased at-

tention to parameter and model uncertainty, and their

implications for optimal portfolio choice. In partic-

ular, the perspective of a Bayesian investor (who

uses the sample evidence to update prior beliefs

about the regression parameters and models) seems

to be particularly suitable to deal with parameter and

model uncertainty. We follow this literature and

critically apply statistical model selection criteria as

well as AVRAMOV’s (2002) Bayesian model

averaging approach to analyze stock market pre-

dictability, model uncertainty, and their implica-

tions for short-term market timing strategies.

Based on Swiss stock market data from 1975 to

2002, we show that it is difficult to discard any

predictive variable as completely worthless, but

that the posterior probabilities of the individual

forecasting models as well as the cumulative

posterior probabilities of the predictive variables

are time-varying. Moreover, the estimates of the

posterior probabilities are not robust to whether

the predictive variables are stochastically de-

trended or not. The decomposition of the variance

of predicted future returns into the components

parameter uncertainty, model uncertainty, and the

uncertainty attributed to forecast errors indicates

that the respective contributions strongly depend

on the time period under consideration and the

initial values of the predictive variables. In con-

trast to AVRAMOV (2002), model uncertainty is

generally not more important than parameter

uncertainty. From investment management per-

spectives, our results do not indicate any reliable

out-of-sample return predictability. Among the

predictive variables, the dividend–price ratio ex-

hibits the worst out-of-sample forecasting ability

on average. Furthermore, the inclusion of more

than one predictive variable rather deteriorates

the out-of-sample performance of the forecasting

models. Finally, again in contrast to AVRAMOV

(2002), our analysis shows that the out-of-sample

performance of the Bayesian model averaging ap-

proach is not superior to the statistical model

selection criteria. Thus, model averaging does not

seem to help improve the performance of the

resulting short-term market timing strategies.

The remainder of the paper proceeds as follows.

The next section summarizes the statistical model

selection criteria and AVRAMOV’s (2002) Baye-

sian model averaging approach, including the

Bayesian weighted predictive distribution and the
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corresponding variance decomposition. Section 3

contains the empirical results using data from the

Swiss stock market. Section 4 concludes.

2. Return Predictability and Model Uncertainty

Suppose that future excess returns on an equity port-

folio are predictable using a simple linear regression

specification. Given a set of M predictive variables,

there are 2M competing predictive regression specifi-

cations. Each of these are then given by

et ¼ �j þ b0j xj;t�1 þ �j;t; ð1Þ

where et denotes the continuously compounded ex-

cess return over month t, j is a model-specific

indicator, and xj,t–1 a model-unique subset of n pre-

dictive variables. We may further assume that xj,t is

normally distributed with conditional mean zero and

standard deviation sj,x.

The parameter n ranges between zero and M.

When n = 0, returns are assumed to be indepen-

dently and identically distributed (i.i.d.), i.e., et =

aiid + xiid,t. In this case, the constant may be inter-

preted as a constant risk premium. In contrast,

when n = M, all M predictive variables are sus-

pected relevant.

Given a set of M predictive variables, model un-

certainty corresponds to the uncertainty about the

true predictive regression specification. Of course,

in large samples, all M predictive variables may

be included in an all-inclusive regression specifi-

cation. In this case, those predictive variables with

no predictive power will have slope-coefficient

estimates converging to zero, their true values.

However, the available time series is often lim-

ited, especially so when the ultimate purpose is to

obtain the model with the best external validity. A

rolling scheme, for example, that fixes the size of

the estimation window and therefore drops distant

observations as recent ones are added, limits the

available time series by construction. Consequently,

the common predictive regression paradigm offers

only little help in identifying the true set of pre-

dictive variables.

2.1 Statistical Model Selection Criteria

To start with, we apply a number of commonly

adopted statistical model selection criteria to de-

termine the best model among the set of all com-

peting regression specifications. The ultimate

purpose of these statistical model selection criteria

is to avoid model over fitting, i.e., to retain only

those models that have maximum external validity

instead of minimum in-sample forecast errors. In

our context of stock market predictability, this

means that the preferred model should have the

best out-of-sample forecasting performance.

Following BOSSAERTS and HILLION (1999), we

use the following five statistical model selection

criteria to select among the set of 2M linear re-

gression specifications: the adjusted R2, Akaike’s

information criterion [AIC; AKAIKE (1974)],

Schwarz’s criterion [BIC; SCHWARZ (1978)],

the Fisher information criterion [FIC; WEI

(1992)], and the posterior information criterion

(PIC; PHILLIPS and PLOBERGER (1996)). While

the first three model selection criteria are chosen on

the basis of their popularity, the Fisher and pos-

terior information criteria are chosen because of

their robustness to unit-root non-stationarities

[BOSSAERTS and HILLION (1999, p. 409)].

The adjusted R2 is well-known. Formally, to de-

fine the other criteria, we write the sample of ex-

cess returns and predictive variables as

e0 ¼ e1 � � � eT½ � and

Xj ¼
1 x0j;0

..

. ..
.

1 x0j;T�1

0
B@

1
CA;

ð2Þ
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respectively, and the sum of squared regression

errors by

SSEj ¼ e� Xj X0jXj

� ��1
X0je

� �T

� e� Xj X0jXj

� ��1
X0je

� �

ð2Þ

Akaike’s information criterion is then given by

AICj ¼ T ln SSEj

�
T

� �
þ 2 nþ 1ð Þ; ð4Þ

and Schwarz’s criterion by

BICj ¼ T ln SSEj

�
T

� �
þ ln Tð Þ nþ 1ð Þ: ð5Þ

For the Fisher and posterior information criteria,

we may define model M to be the all-inclusive

model. We then have for the Fisher information

criterion

FICj ¼ SSEj
T

T � nþ 1ð Þ þ
SSEM

T � M þ 1ð Þ

� ln

X0jXjj j
SSEj

T � nþ 1ð Þ

0
B@

1
CA ð6Þ

and the posterior information criterion

PICj ¼ SSEM
SSEj

SSEM
� 1

� �

þ SSEM

T � M þ 1ð Þ

� ln

X0jXjj j
SSEM

T � M þ 1ð Þ

0
@

1
A ð7Þ

In each case, the regression specification is chosen

that minimizes the respective criterion function

(BOSSAERTS and HILLION [1999, Appendix A,

equations (5) to (8)].

Overall, thus, statistical model selection criteria

use a specific criterion to select a single regression

specification. They then operate as if the chosen

model were the ‘‘true’’ regression specification.

To put it differently, implementing statistical

model selection criteria is identical to the assump-

tion that the selected regression specification is

the ‘‘true’’ one with a unit probability, and that

all other competing models are completely worth-

less. In essence, thus, model uncertainty is actual-

ly ignored. In contrast, the following Bayesian

model averaging approach recently proposed by

AVRAMOV (2002) averages over the dynamics

implied by the set of all 2M competing predictive

regression specifications and therefore integrates

model uncertainty in a more sensible way.

2.2 The Bayesian Model Averaging Approach

Specifically, the Bayesian model averaging ap-

proach computes posterior probabilities for all

2M competing predictive regression specifications

and then uses these probabilities as weights on

the individual models to obtain a single composite

weighted forecasting model.

We refer to AVRAMOV (2002) for the full de-

rivation and note that the posterior probability of

model j, denoted Mj, is given by

p Mjjz
� �

¼
p zjMj

� �
p Mj

� �
PPPPPPPPPPPPPPPPPPPP2M

i¼1 p zjMj

� �
p Mj

� � ; ð8Þ

where z is the data observed by the investor up

until the start of his planning horizon, p(Mj) is the

prior probability of Mj (which is at the discretion

of the investor), and p(z | Mj) is the marginal like-

lihood of Mj given by

pðz Mj

�� �
¼
‘ qj; z; Mj

� �
p qj Mj

��� �

p qj z; Mj

��� � ; ð9Þ

with p(qj | Mj) and p(qj | z, Mj) the joint prior and

posterior distributions of the model-specific param-

(3)
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eters, ‘(qj, z, Mj) the likelihood function pertain-

ing to Mj, and, finally, qj = (aj, bj, sj,x) the set of

regression parameters.

AVRAMOV (2002, equation 10) shows that the

log marginal likelihood is given by

ln p z Mj

��� �
¼ � T

2
ln �ð Þ þ Tj;0 � n� 1

2

� ln Tj;0s2
� �

�
T*

j � n� 1

2

� ln Sj

� �

� ln *
Tj;0 � n� 1

2

� �� �

þ ln *
T*

j � n� 1

2

 ! !

� nþ 1

2
ln

T*
j

Tj;0

 !
; ð10Þ

where

Sj ¼ T*
j s2 þ b��2
� �

� T

T*
j

Tj;0 b�� b�� bxx0j
	 


þ e0Xj

� �

� X0jXj

� ��1
Tj;0 b�� b�� bxx0j �T þ X0j e
h �

;
�

and

b�� ¼ 1

T

XT

t¼1
et; s2¼ 1

T

XT

t¼1
et � b��ð Þ2;

bxxj ¼
1

T

XT�1

t¼0
xj;t:

ð12Þ

Note that G(y) stands for the Gamma function

evaluated at y. T is the actual sample size and

T*j = T + Tj,0, where Tj,0 determines the strength

of the informative prior.[2]

For the i.i.d. model (n = 0), we simply have Siid =

T*iids2.

Given these posterior probabilities, AVRAMOV

(2002) proposes the cumulative posterior proba-

bilities of the predictive variables to summarize

the weight of the respective predictive variables in

the weighted forecasting model. Cumulative pos-

terior probabilities are computed as A0P, where A

is a (2M, M) matrix representing all forecasting

models by zeros and ones, designating exclusions

and inclusions of predictive variables, respective-

ly, and the (2M, 1) vector P contains the posterior

probabilities. Thus, cumulative posterior probabil-

ities indicate the probabilities that each of the

predictive variables appears in the weighted fore-

casting model.

2.2.1 The Bayesian Weighted
Predictive Distribution

Let z0j,t = [et x0j,t] denote the data-generating

process corresponding to model j and assume that

the evolution of z0j,t is given by

zj;t ¼ aj þ Bjxj;t�1 þ xj;t; ð13Þ

with xj,t ~ i.i.d. N(0, Vj). The Bayesian weighted

predictive distribution of cumulative excess

returns averages over the model space and also

integrates over the posterior distribution that

summarizes parameter uncertainty about the

VAR parameters qj = (aj, bj, sj,x). According to

AVRAMOV (2002, equation 19), it is given by

p eT!Tþt zjð Þ¼
X2M

j¼1
p Mj zj
� �

XXp eT!Tþt qj; z; Mj

�� ��

� p qj z; Mj

��� �
dqj; ð14Þ

where t is the planning horizon in months and

eT!Tþt � eTþ1 þ eTþ2 þ . . .þ eTþt . Since an an-

alytical solution for the integral in equation (14)

does not exist when t > 1, the empirical imple-

mentation is based on Monte Carlo integration.

(12)

(11)
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First, a model Mj is drawn with probability p(Mj | z).

Second, we sample from the posterior distribution

by first drawing from the marginal p(V –1
j | z), a

Wishart distribution. Then, given Vj, we draw Cj =

[aj
0Bj
0] from the conditional p(Cj | Vj, z), a multi-

variate Normal distribution. Repeating this many

times gives an accurate representation of the

posterior distribution. Third, for each draw of aj,

Bj and Vj from the posterior p(aj, Bj, Vj | z), we

sample from the Normal distribution with mean

vector

mj;T!Tþt ¼ taj þ t � 1ð ÞBj;0aj

þ t � 2ð ÞB2
j;0aj þ . . .þ Bt�1

j;0 aj

þ B1
j;0 þ B2

j;0 þ . . .þ Bt
j;0

� �
zj;T;

ð15Þ

and variance matrix

Vj;T!Tþt ¼Vj þ Ij þ Bj;0

� �
Vj IjþBj;0

� �T
þ Ij þ Bj;0 þ B2

j;0

� �
Vj

� Ij þ Bj;0 þ B2
j;0

� �T
þ . . .þ

þ Ij þ Bj;0 þ B2
j;0 þ . . .þ Bt�1

j;0

� �

�Vj Ij þ Bj;0 þ B2
j;0 þ . . .þ Bt�1

j;0

� �T
;

ð16Þ

with Bj,0 = [0 Bj] and 0 a (n + 1,1) vector of zeros.

This gives a large sample of the predictive dis-

tribution p eT!Tþt zjð Þ.[3] The Bayesian weighted

predictive distribution of cumulative excess returns

may be used to compute the optimal allocation to

equities when taking stock market predictability,

parameter uncertainty, and model uncertainty into

account, or, as below, to decompose the variance of

the predicted returns into parameter uncertainty,

model uncertainty, and the uncertainty attributed to

forecast errors.

2.2.2 Variance Decomposition

Based on the weighted predictive distribution

given in equation (14), AVRAMOV (2002) shows

that predicted future returns are subject to three

sources of uncertainty: (i) parameter uncertainty,

(ii) model uncertainty, and (iii) the uncertainty

attributed to forecast errors. In particular, AVRA-

MOV [2002, equation (25)] shows that the

variance of the predicted excess returns can be

decomposed as

Var eT!Tþt zjð Þ ¼
X2M

j¼1
p Mj zj
� ��

E jj

� �

þVar lj

� �þ E jj

� �
� ell

� �2�
;

ð17Þ

where E(jj) and Var(lj) are the two variance

components attributed to forecast errors and pa-

rameter uncertainty, respectively, and jj and lj

denote the first elements of the variance matrix

and the mean vector given in equations (15) and

(16), respectively. The model uncertainty compo-

nent is then given by

X2M

j¼1
p Mj zj
� �

E jj

� �
� ell

� �2

; ð18Þ

where

ell ¼
X2M

j¼1
p Mj zj
� �

E lj

� �
ð19Þ

is the predicted mean of cumulative excess re-

turns that averages across model-specific predicted

means using posterior probabilities as weights

[AVRAMOV 2002, equation (26)]. The empirical

section following below quantifies these three risk

components for planning horizons of one month,

t = 1.
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3. Empirical Results

The following empirical examination analyzes stock

market predictability, model uncertainty, and their

implications for the corresponding market timing

strategies. It also compares the out-of-sample per-

formance of the statistical model selection criteria

with the Bayesian model averaging approach.

3.1 The Data and Preliminary Evidence

Our investment universe consists of monthly

observations on continuously compounded excess

stock market returns (including dividends) over

January 1975 through December 2002.

In deciding which predictive variables to include,

attention was given to those variables found im-

portant in previous studies of return predictability.

CAMPBELL and SHILLER (1988b) and FAMA

and FRENCH (1988, 1989), for example, are

among the first who document that the dividend

yield and particularly the dividend–price ratio on

aggregate stock portfolios predict future (long-

horizon) (stock market) returns. Other examples of

predictive variables include short-term interest

rates [e.g., CAMPBELL (1991)], yield spreads

between long-term and short-term interest rates

and between low- and high-quality bond yields

[e.g., KEIM and STAMBAUGH (1986) and

FAMA and FRENCH (1989)], stock market vola-

tility [e.g., FRENCH et al. (1987) and GOYAL

and SANTA-CLARA (2003)], Eurodollar-U.S.

Treasury (TED) spread [e.g., FERSON and

HARVEY (1993)], book-to-market ratios [e.g.,

KOTHARI and SHANKEN (1997) and PONTIFF

and SCHALL (1998)], dividend–payout and price–

earnings ratios [e.g., LAMONT (1998) and

CAMPBELL and SHILLER (1988a)], and more

complex measures based on analysts’ forecasts

[LEE et al. (1999)]. Recently, BAKER and

WURGLER (2000) have shown that the share of

equity in new finance is a negative predictor of

future equity returns. LETTAU and LUDVIGSON

(2001) find evidence of predictability using a

consumption-wealth ratio, the level of consump-

tion relative to income and wealth.

Of course, there is a natural concern about col-

lective ‘‘data-snooping’’ by a series of researchers

[LO and MACKINLAY (1990), FOSTER et al.

(1997), and FERSON et al. (2003, 2004)]. How-

ever, most of this research is based on U.S. data

and, to our knowledge, there is no study for the

Swiss stock market that uses data covering the

period starting in 1975 up to and including the recent

bear market.

In what follows, each of the 2M competing pre-

dictive regression specifications considered thus

retains a unique subset of the following M = 7

predictive variables: (i) dividend–price ratio, log

(DPR), (ii) earnings-price ratio, log (EPR), (iii)

term spread (TERM), (iv) nominal one-month

Swiss interbank rate (IR), (v) realized stock mar-

ket volatility, log (VOLA), (vi) U.S. TED spread

(TED), and, finally, (vii) U.S. default risk spread

(DEF).[4]

Motivated by the recent contributions by FERSON

et al. (2003, 2004), a second subset includes the

same M = 7 predictive variables, transformed as

x*t�1 ¼ xt�1 �
1

12

X12

t¼1
xt�1�t ð20Þ

We thus subtract a backward one-year moving

average of past values from the prevailing value of

the predictive variable to get a ‘‘stochastically

detrended’’ time series that is equivalent to a tri-

angularly weighted moving average of past changes

in the predictive variable, where the weights de-

cline as one moves back in time. While this sto-

chastic detrending method has already been used

by CAMPBELL (1991) and HODRICK (1992),

FERSON et al. (2003, 2004) show that this is the

most practically useful insurance against spurious

regression bias. Since most of the above predictive

variables are either manifestly non-stationary (real-

ized stock market volatility is the exception), or, if

not, their behavior is close enough to unit-root non-
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stationarity for small-sample statistics to be affected,

it is interesting to compare the characteristics of

these two data subsets.

To start with, Table 1 shows the slope coefficients

obtained by regressing continuously compounded

monthly excess returns on an intercept and all

lagged predictive variables described above (the

all-inclusive regression specification). The top row

uses the full sample of monthly data from January

1975 to December 2002. Estimates for two sub-

samples are indicated below. The first subsample

uses data from January 1975 to December 1988,

covering the first half of the total time period, the

second subsample is based on data from January

1989 to December 2002, covering the second half

of the full sample.

Table 1 shows mixed evidence of return predict-

ability. Over the full sample period, only the term

spread is statistically significant, and the adjusted

R2 is very low. When the predictive variables are

stochastically detrended, the adjusted R2 is even

negative. From 1975 to 1988, the earnings-price

ratio is highly significant and the adjusted R2 is

6.02%; but again, the evidence of return pre-

dictability is modest when the variables are sto-

chastically detrended. Over the recent subsample,

however, a number of predictive variables is sta-

tistically significant and the adjusted R2s are

somewhat more than 6%, irrespective of whether

the predictive variables are stochastically detrended

or not. Finally, the combined significance of the

dividend–price ratio and the earnings-price ratio is

difficult to judge. Depending on the time period

under consideration and whether they are stochas-

tically detrended or not, the respective estimated

slope coefficients vary widely.

3.2 Posterior Probabilities of Forecasting Models

The consideration of all possible predictive regres-

sion specifications in the presence of the above

seven predictive variables requires the comparison

of 27 = 128 models. Equation (10) shows how to

Table 1: Multiple Regressions of Monthly Excess Returns on Predictive Variables: The All-Inclusive
Regression Specifications

DPR EPR TERM IR VOLA TED DEF Adj. R2

1975:01 – 2002:12

SD j0.003 0.002 *0.016 0.012 j0.003 0.006 j0.003 0.26%
0.003 j0.003 j0.003 j0.005 j0.003 0.002 0.003 j0.50%

1975:01 – 1988:12

SD j0.002 ***0.013 0.004 0.002 j0.006 0.001 0.003 6.07%
0.000 0.004 0.004 0.002 j0.006 j0.001 0.005 0.05%

1989:01 – 2002:12

SD ***0.038 j0.026 j0.002 j0.015 j0.000 ***0.014 *j0.010 6.95%
0.009 *j0.013 *j0.015 *j0.013 0.001 ***0.013 j0.003 6.24%

Note:
The table exhibits the slope coefficients obtained by regressing continuously compounded monthly excess returns on a constant and all

seven predictive variables (the all-inclusive model). The set of predictive variables includes: dividend–price ratio (DPR), earnings-price ratio

(EPR), term spread (TERM), one-month Swiss interbank rate (IR), realized stock market volatility (VOLA), U.S. TED spread (TED), and

U.S. default risk spread (DEF), as well as the corresponding stochastically detrended variables (SD). Estimates are given for three different

time periods. The top two rows use data from January 1975 to December 2002. Estimates for the two subsamples are shown below. The

first subsample uses data from January 1975 to December 1988; the second subsample is based on the time period from January 1989 to

December 2002. *,**,*** indicate p-values less than 10%, 5%, 1% (using White standard errors). All predictive variables are standardized

with mean zero and variance one.
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compute the marginal likelihood for every model,

and equation (8) weights the marginal likelihood

by the model prior probability and normalizes the

result to obtain the model posterior probability. As

in AVRAMOV (2002), prior probabilities, p(Mj),

are allocated equally across models.[5]

Table 2 displays cumulative posterior probabili-

ties, A0P.

Over the whole sample period, the cumulative

posterior probabilities range from 47.32% for the

U.S. default risk spread to 69.62% for the term

spread, suggesting that the U.S. default risk spread

and the term spread should appear in the weighted

return-forecasting model with probabilities of

47.32% and 69.62%, respectively. However, when

the predictive variables are stochastically detrended,

the cumulative posterior probabilities are less dis-

persed and the term spread no longer receives the

highest weight. In contrast, the highest cumulative

posterior probability is associated with the U.S.

default risk spread, and only the dividend–price ratio

receives less weight than the term spread. Further-

more, it seems that posterior probabilities are not

very stable over time. For example, from 1975 to

1988, the earnings-price ratio receives the highest

cumulative posterior probability of 89.57%, which is

significantly above 50% at the 10% significance

level. The earnings-price ratio is thus much more

important than the dividend–price ratio with a

cumulative posterior probability of only 42.16%.

Recently, it is the U.S. TED spread that exhibits the

highest cumulative posterior probability of 77.47%.

But again, mirroring the findings summarized in

Table 1, these results change fundamentally when

the predictive variables are stochastically detrended.

Figure 1 shows the posterior probabilities for each

of the 128 predictive regression specifications. The

graph on the left plots posterior probabilities for

the regression specifications that retain the original

predictive variables against posterior probabilities

obtained for the set of stochastically detrended

variables, using data from 1975 to 2002. The graph

on the right plots posterior probabilities calculated

over the period from 1975 to 1988 against posterior

probabilities estimated with data from 1989 to

2002, using the original, i.e., not stochastically

Table 2: Cumulative Posterior Probabilities

DPR EPR TERM IR VOLA TED DEF

1975:01 – 2002:12

SD 47.42% 47.40% 69.62% 57.16% 52.26% 52.91% 47.32%
48.02% 51.56% 48.74% 52.60% 54.54% 49.86% 55.99%

1975:01 – 1988:12

SD 42.16% *89.57% 41.63% 40.74% 49.58% 40.14% 41.60%
49.42% 50.70% 50.53% 48.35% 61.34% 47.65% 57.48%

1989:01 – 2002:12

SD 68.95% 57.65% 51.34% 50.98% 45.53% 77.47% 60.76%
48.33% 66.99% 52.50% 50.81% 43.51% 83.42% 44.36%

Note:
The table displays cumulative posterior probabilities for the seven predictive variables. The set of predictive variables includes: dividend–

price ratio (DPR), earnings-price ratio (EPR), term spread (TERM), one-month Swiss interbank rate (IR), realized stock market volatility

(VOLA), U.S. TED spread (TED), U.S. default risk spread (DEF), as well as the corresponding stochastically detrended variables (SD).

Estimates are given for three different time periods. The top row uses monthly data from January 1975 to December 2002. Estimates for

the two subsamples are showed below. The first subsample uses monthly data from January 1975 to December 1988; the second

subsample is based on the time period from January 1989 to December 2002. A Monte Carlo analysis tests whether the Bayesian

approach is able to recover the data-generating process correctly and whether the cumulative posterior probabilities are significantly

different from 0.5. *,**,*** indicate p-values less than 10%, 5%, 1%.
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detrended, predictive variables. Both graphs reveal

that the resulting posterior probabilities are very

unstable, both regarding whether the predictive

variables are stochastically detrended or not and

the time period under consideration. Compared

to the original predictive variables, the posterior

probabilities associated with the stochastically

detrended variables are more equally spread across

the regression specifications. Furthermore, the

regression specifications with the highest (lowest)

posterior probabilities over the first time period

are often among the regression specifications with

the lowest (highest) posterior probabilities over the

second sample period.

To summarize, in contrast to AVRAMOV (2002),

who considers a subset of 14 predictive variables

and uses U.S. data from 1953 to 1998, our results

show smaller differences between the cumulative

posterior probabilities for our set of predictive

variables. Thus, we do not conclude that only one

or at most two predictive variables are retained as

useful in the highest-probability models, and that

the other predictive variables are discarded as worth-

less. Moreover, which of the predictive variables

receives the highest cumulative probability is highly

dependent on the time period under consideration

and whether they are stochastically detrended or not.

3.3 Variance Decomposition

As described above, we perform the variance de-

composition of predicted future returns into the

components parameter uncertainty, model uncer-

tainty, and the uncertainty attributed to forecast

errors. In contrast to AVRAMOV (2002), where

the variance decomposition is solely based on the

full sample and a single set of predictive variables,

xj,T, equal to actual end-of-sample realizations,

our approach, based on the two following schemes,

is more dynamic.

The first, the rolling scheme [see, e.g., AKGIRAY

(1989)], fixes the estimation window size and

drops distant observations as recent ones are ad-

ded. The model parameters are thus first estimated

with data from 1 to k, next with data from 2 to

Figure 1: Posterior Probabilities

The graph on the left plots posterior probabilities for the models that retain the original predictive variables against posterior probabilities

obtained for the set of stochastically detrended predictive variables. Posterior probabilities are estimated over the full time period from 1975

to 2002. The graph on the right plots posterior probabilities calculated over the period from 1975 to 1988 against posterior probabilities using

monthly data from 1989 to 2002 (with original predictive variables).
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k + 1, . . . , and finally with data from T–k to T–1.

In our case with k = 60 months, the variance

decomposition is thus performed 276 times and

each is based on realizations of the predictive

variables at the end of the respective rolling

sample. The second scheme, the recursive [see,

e.g., FAIR and SHILLER (1990)], uses all avail-

able data in the sense that the variance decompo-

sition is first estimated based on data from 1 to k,

next with data from 1 to k +1, . . . , and finally from

1 to T – 1. This again gives a total of 276 variance

decompositions with both parameter estimates and

initial values of the predictive variables changing

over time. Our dynamic approach thus corresponds

to the out-of-sample analysis following below and

is much more appropriate for investors ultimately

concerned with the out-of-sample performance

of corresponding market timing strategies than

AVRAMOV’s (2002) static approach.[6]

Figure 2 shows the resulting time series of the

contributions of the three components to the over-

all uncertainty about predicted returns. The plan-

Figure 2: Variance Decomposition: Rolling and Recursive Scheme

The graphs show the resulting time series of the contributions of the three components to the overall uncertainty about predicted returns:

Uncertainty attributed to forecast errors, parameter uncertainty, and model uncertainty (bold). The top two graphs are based on the original

predictive variables. The graphs on the left use the rolling scheme with k = 60 months, the graph on the right the recursive scheme. The first

estimates are thus available for January 1980. The graphs on the bottom are based on the stochastically detrended variables. For each

sample period, the number of simulations is 50 per regression specification. The planning horizon is one month.
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ning horizon is one month (t = 1). Based on our

Swiss stock market data, the results indicate that

the variance decomposition is highly dependent on

the time period under consideration and the initial

values of the predictive variables. Still, the

contribution of the uncertainty attributed to fore-

cast errors is by far the most important. This is

especially true in the case of the recursive scheme,

where both the parameter and model uncertainty

components practically disappear over time (i.e.,

with the increasing sample size). In contrast to

AVRAMOV (2002), however, model uncertainty

is generally not more important than parameter

uncertainty. On average, the respective contribu-

tions are 4.85% and 11.48% for the rolling

scheme, and 1.82% and 3.96% for the recursive

scheme. Whether the predictive variables are sto-

chastically detrended or not does not seem to make

any significant difference to the variance decompo-

sition. The average values are basically the same:

3.12% and 9.24% for the rolling scheme, and 0.87%

and 2.86% for the recursive scheme, respectively.

We would thus not generally claim that model

uncertainty is larger than parameter uncertainty.

The next section explores the out-of-sample pre-

dictive ability of the Bayesian model averaging

approach and compares it to the forecasting power

of the statistical model selection criteria.

3.4 External Validation: Out-of-Sample Evidence

Formal model selection criteria try to determine

the linear regression specification with the best

external validation. To verify whether they indeed

pick models with external validity, we test their

out-of-sample forecasting power and compare it to

the corresponding out-of-sample performance of

the Bayesian model averaging approach. After all,

even the most sophisticated trader could only have

used prevailing information to estimate his mod-

els, not the entire sample period.

In particular, we consider the following predic-

tive regression specifications: the i.i.d. model (his-

torical mean as forecast, n = 0), the seven models

that include only one of the seven predictive

variables to the forecasting model (n = 1), and

the all-inclusive model (n = M = 7). We then

consider the external validity of the five statisti-

cal model selection criteria discussed above (ad-

justed R2, AIC, BIC, FIC, and PIC), the Bayesian

weighted model, a model that weights all possible

regression specifications equally, and, finally, a

model suggested by ENGSTROM (2003), which

we combine with the Bayesian model averaging

approach.

In brief, while pointing out the conditional rela-

tionship between the equity premium and the

dividend–price ratio, ENGSTROM (2003) argues

that ‘‘unconditional’’ predictive regression speci-

fications may be misspecified and have almost no

power against the specific form of predictability

suggested by reasonable treatments of risk. He

shows that a very general model of risk implies an

intrinsically time-varying relationship between the

dividend–price ratio and the conditional equity

premium, and that the coefficient on the dividend–

price ratio represents a conditional covariance

between the stochastic discount factor and future

pricing kernels and dividend growth. Thus, as a

quick and easy first check for state dependence

of this quantity, he suggests to model the time-

varying coefficient on the dividend–price ratio as

a non-stochastic, affine function of a set of predic-

tive variables such as

et ¼ �þ �t�1DPRt�1 þ �t

¼ �þ �0 þ b0j xj;t�1

� �
DPRt�1 þ �t; ð21Þ

where xj,t–1 represents the set of predictive vari-

ables that are expected to drive conditional ex-

pectations in the economy. Again, however, the

‘‘true’’ set of the predictive variables is unknown.

Therefore, the combination of ENGSTROM’s

(2003) contribution with the Bayesian model

averaging approach is only straightforward.
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Overall, we thus examine the out-of-sample

performance of 17 different forecasting models.

While we focus on monthly observations, our

analysis is both based on the rolling and recursive

schemes described above. A first set of results is

based on k = 60 months. This gives a total of 276

monthly out-of-sample observations, from January

1980 to December 2002.

Tables 3 and 4 display the following statistics to

analyze the properties of the monthly out-of-

sample return forecasts and the respective forecast

errors: the information coefficient, the regression

coefficients of a Mincer–Zarnowitz regression,

the root mean squared error (RMSE), the number

of negative return forecasts, and the number of

months where a statistical model selection cri-

terion retains the i.i.d. no predictability model.

The information coefficient is simply the cor-

relation coefficient between the predicted one-

period-ahead excess returns and the subsequently

realized excess returns [see, e.g., GRINOLD and

KAHN (2000)]. The Mincer–Zarnowitz regression

[MINCER and ZARNOWITZ (1969)] is a regres-

sion of the realization on the forecast

etþ1 ¼ �þ �Et etþ1ð Þ þ �t: ð22Þ

If the forecast is optimal with respect to the in-

formation used to construct it, the null hypothesis

is k = 0 and n = 1.[7]

To save space, we only report the results of the

original predictive variables. The corresponding

Table 3: Bayesian Model Averaging: External Validity Based on the Rolling Scheme

IC

Mincer–Zarnowitz

RMSE NoNF NoIIDConstant k Slope n

IID j0.0015 0.0043 **j0.0120 0.0489 0.1667 –
DPR j0.0088 0.0046 ***j0.0430 ***0.0496 0.2899 –
EPR 0.0374 0.0031 ***0.1643 ***0.0494 0.2246 –
TERM 0.0520 0.0027 ***0.2270 ***0.0492 0.2572 –
IR 0.0503 0.0025 ***0.2088 ***0.0495 0.2283 –
VOLA j0.0467 0.0062 ***j0.2755 ***0.0496 0.2283 –
TED 0.0200 0.0038 ***0.0923 ***0.0494 0.2862 –
DEF j0.0026 0.0043 ***j0.0146 ***0.0493 0.3732 –
ALL j0.0671 *0.0057 ***j0.1547 ***0.0543 0.3370 –
Adj. R 2

j0.0698 *0.0063 ***j0.1791 ***0.0537 0.2862 0.0109
AIC j0.0203 0.0050 ***j0.0566 ***0.0524 0.2138 0.0725
BIC j0.0337 0.0055 ***j0.1207 ***0.0511 0.2065 0.3297
FIC j0.0667 *0.0058 ***j0.1608 ***0.0539 0.3225 0.0000
PIC j0.0667 *0.0058 ***j0.1608 ***0.0539 0.3225 0.0000
BAYES j0.0414 0.0057 ***j0.1678 ***0.0506 0.2391 –
EQ j0.0288 0.0053 ***j0.1276 ***0.0501 0.2282 –
ENG-BAYES j0.0479 *0.0059 ***j0.1955 ***0.0506 0.2318 –

Note:
The table displays several statistics examining the properties of the out-of-sample monthly return forecasts and the respective forecast

errors generated by a number of different predictive regression specifications. They include the i.i.d. model (IID), the 7 forecasting models

that include only one of the following predictive variables: dividend–price ratio (DPR), earnings-price ratio (EPR), term spread (TERM),

one-month Swiss interbank rate (IR), realized stock market volatility (VOLA), U.S. TED spread (TED), U.S. default risk spread (DEF), and

the all-inclusive model (ALL). In addition, the table also shows the results for the five statistical model selection criteria (Adj. R 2, AIC, BIC,

FIC, and PIC), the Bayesian model averaging approach (BAYES), the model that weights all possible regression specifications equally

(EQ), and, finally, the model suggested by ENGSTROM (2003), enhanced with the Bayesian model averaging approach (ENG-BAYES).

The information coefficient (IC), the Mincer–Zarnowitz regression, and the root mean squared error (RMSE) are described in the text.

NoNF denotes the number of negative forecasts (in percentages) and NoIID denotes the number of months where a statistical selection

criterion retains the i.i.d. no predictability model (in percentages). The rolling scheme fixes the estimation window size (k = 60 months) and

drops distant observations as recent ones are added. Results are based on monthly observations from January 1980 to December 2002

(276 monthly observations). *,**,*** indicate p-values less than 10%, 5%, 1%.
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results of the stochastically detrended variables

are qualitatively the same and do not affect our

overall conclusions in any regard.

Table 3 presents the results for the rolling scheme.

In general, the results are disappointing and dis-

play quite undesirable properties. The information

coefficients are generally small, often even nega-

tive (but never significantly different from zero

at conventional significance levels). This is par-

ticularly true for the all-inclusive model and the

adjusted R2, FIC and PIC model selection criteria

(the latter two obviously retain the same models).

The Bayesian weighted model is somewhat better,

but still worse than AIC, BIC, and the models

that include only one predictive variable (with

the realized stock market volatility as excep-

tion). Estimates of the slope coefficients of the

Mincer–Zarnowitz regressions are far from n = 1;

estimates are generally close to zero and even

negative in a lot of cases. The RMSE are lowest

for the unconditional i.i.d. model and generally

increase with the number of predictive vari-

ables included in the regression specification.

The DIEBOLD and MARIANO (1995) statistics

indicate that all of the reported out-of-sample

RMSE performances are statistically significantly

different from the i.i.d no predictability model.

They thus all significantly underperform the pre-

vailing mean model. With respect to the number

of negative return forecasts (in percentages),

usually more than 20% of the predicted excess

returns are negative. While this may be expected

for linear regression specifications, it should

nevertheless be of some concern, as the expected

Table 4: Bayesian Model Averaging: External Validity Based on the Recursive Scheme

IC

Mincer–Zarnowitz

RMSE NoNF NoIIDConstant k Slope n

IID *j0.1029 **0.0275 **j4.0596 0.0486 0.0000 –
DPR j0.0745 *0.0051 ***j0.4207 ***0.0499 0.5181 –
EPR 0.0022 0.0042 ***0.0114 ***0.0494 0.3986 –
TERM j0.0092 0.0048 **j0.0819 ***0.0489 0.0906 –
IR j0.0495 0.0073 ***j0.4041 ***0.0492 0.0290 –
VOLA j0.0812 *0.0107 ***j1.2399 ***0.0488 0.0652 –
TED j0.0768 *0.0089 ***j0.7574 ***0.0491 0.0000 –
DEF j0.0625 0.0084 **j0.8664 ***0.0488 0.0543 –
ALL j0.0965 *0.0054 ***j0.4152 ***0.0508 0.3913 –
Adj. R2

j0.0465 *0.0054 ***j0.2068 ***0.0502 0.2790 0.3116
AIC j0.0505 *0.0053 ***j0.2109 ***0.0504 0.3406 0.0000
BIC j0.0239 0.0049 ***j0.1173 ***0.0497 0.2717 0.3297
FIC j0.0855 *0.0058 ***j0.4050 ***0.0504 0.3188 0.0000
PIC j0.0855 *0.0058 ***j0.4050 ***0.0504 0.3188 0.0000
BAYES j0.0777 *0.0059 ***j0.4302 ***0.0499 0.3261 –
EQ j0.0945 **0.0067 ***j0.6641 ***0.0596 0.2862 –
ENGjBAYES j0.0896 *0.0060 ***j0.5002 ***0.0500 0.3478 –

Note:
The table displays several statistics examining the properties of the out-of-sample monthly return forecasts and the respective forecast

errors generated by a number of different predictive regression specifications. They include the i.i.d. model (IID), the 7 forecasting models

that include only one of the following predictive variables: dividendjprice ratio (DPR), earningsjprice ratio (EPR), term spread (TERM),

one-month Swiss interbank rate (IR), realized stock market volatility (VOLA), U.S. TED spread (TED), U.S. default risk spread (DEF), and

the all-inclusive model (ALL). In addition, the table also shows the results for the five statistical model selection criteria (Adj. R2, AIC, BIC,

FIC, and PIC), the Bayesian model averaging approach (BAYES), the model that weights all possible regression specifications equally

(EQ), and, finally, the model suggested by ENGSTROM (2003), enhanced with the Bayesian model averaging approach (ENGjBAYES).

The information coefficient (IC), the MincerjZarnowitz regression, and the root mean squared error (RMSE) are described in the text.

NoNF denotes the number of negative forecasts (in percentages) and NoIID denotes the number of months where a statistical selection

criterion retains the i.i.d. no predictability model (in percentages). The recursive scheme uses all available data. Results are based on

monthly observations from January 1980 to December 2002 (276 monthly observations). *,**,*** indicate p-values less than 10%, 5%, 1%.
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market risk premium should actually be positive

[(BOUDOUKH et al. (1993), and CAMPBELL

and THOMPSON (2005)]. A small number of

months where a statistical model selection criteri-

on retains the i.i.d. no predictability model may

indicate the existence of return predictability.

While FIC and PIC never decide against predict-

ability, the adjusted R2 criterion, AIC and espe-

cially BIC retain in up to 30% of the months the

prevailing mean model. Finally, the performance

of ENGSTROM’s (2003) model, enhanced with

the Bayesian model averaging approach, is gener-

ally no better than all the other forecasting models.

The results given in Table 4 for the recursive

scheme are of a similar magnitude. In brief, none

of the forecasting models detect reliable out-of-

sample predictability, they all display a rather poor

out-of-sample performance. While the RMSE sta-

tistics are somewhat better compared to the rolling

scheme, the information coefficients are generally

much worse.

In addition, Table 5 also reports the average

values for each of the 7 predictive variables.

Average values are computed as A0P/(2M/2), where

the vector A is defined as previously and the

(2M,1) vector P contains the respective statistic.

The most interesting result of Table 5 is the poor

average performance of the dividend–price ratio.

In both cases of the rolling and the recursive

scheme, it exhibits the worst out-of-sample pre-

dictive ability.

GOYAL and WELCH (2003a,b) suggest another

way to look at the results. They suggest a simple,

recursive residuals (out-of-sample) graphical ap-

proach to evaluating the forecasting ability of the

predictive regression specifications. Their simple

graphical diagnostic plots the cumulative sum-

squared forecast error from the unconditional i.i.d.

model minus the cumulative sum-squared forecast

error from the respective predictive regression

specification

Net� SSE tð Þ ¼
Xt

t¼1
SEiid

t � SEt; ð23Þ

where SEt is the squared out-of-sample forecast

error in month t. Thus, Figure 3 makes it easy to

understand the relative performance of the differ-

ent forecasting models. A positive value indicates

that the regression specification has outperformed

the prevailing mean model so far: its forecast error

is lower than the one of the unconditional moving

average equity premium in a given month.

Figure 3 confirms the results of Tables 3 and 4,

and shows that all regression specifications,

including the statistical model selection criteria

and the Bayesian model averaging approach,

practically never outperform the prevailing mean

model.

Table 5: Average Values for the Predictive Variables

Rolling Scheme

NoNF

Recursive Scheme

NoNFIC RMSE IC RMSE

DPR j0.0473 0.0519 0.2810 j0.0964 0.0505 0.3941
EPR j0.0289 0.0518 0.2679 j0.0625 0.0503 0.3720
TERM j0.0243 0.0518 0.2907 j0.0654 0.0500 0.3418
IR j0.0258 0.0518 0.2955 j0.0728 0.0501 0.3312
VOLA j0.0262 0.0520 0.3036 j0.0741 0.0502 0.3555
TED j0.0168 0.0517 0.3160 j0.0701 0.0502 0.3514
DEF j0.0222 0.0516 0.3111 j0.0729 0.0501 0.3547

Note:
The table displays average values of the information coefficient (IC), the root mean squared error (RMSE), and the number of negative

return forecasts (in percentages) for the following set of predictive variables: dividend–price ratio (DPR), earnings–price ratio (EPR), term

spread (TERM), one-month Swiss interbank rate (IR), realized stock market volatility (VOLA), U.S. TED spread (TED), and U.S. default

risk spread (DEF). The results are based on the rolling (with k = 60 months) and the recursive scheme and include monthly observations

from January 1980 to December 2002 (276 observations).
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We also explored the robustness of our conclu-

sions to different values of k, the length of the

rolling scheme. Figure 4 shows the information

coefficients and the RMSE for different values

of k, starting from k = 24 to k = 60 (the above

benchmark case). The two graphs on the left plot

the average values for each of the seven predictive

variables. The graphs on the right show the aver-

age values for different values of n, the number of

predictive variables retained in the regression spe-

cifications. It seems that our original choice of

k = 60 is probably not optimal, at least not with

respect to the information coefficient. Smaller

values of k may promise better results, but the in-

formation coefficients remain rather modest even

then. With respect to the RMSE, however, the

specification of the rolling scheme with k = 60 is

quite optimal. After all, since it is not a priori clear

whether the information coefficient or the RMSE

is a more important criterion for the performance

of corresponding market timing strategies, we

may just conclude that investors should avoid the

dividend–price ratio as predictive variable and should

retain only a small number of predictive variables.

Figure 3: Cumulative Relative Out-of-Sample, Sum-Squared Forecast Error Performance

This figure plots the cumulative relative out-of-sample, sum-squared error performance, as described in the text. The graphs on the left

show the results for the forecasting models that retain only one predictive variable and the all-inclusive specification (ALL, bold). The graphs

on the right display the results for the five model selection criteria (Adj. R2, AIC, BIC, FIC, and PIC) and the Bayesian model averaging

approach (BAYES, bold). Both the rolling (with k = 60) and recursive scheme include monthly observations from January 1980 to

December 2002 (276 observations).
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In sum, thus, consistent with the results of

BOSSAERTS and HILLION (1999), NEELY

and WELLER (1999), GOYAL and WELCH

(2003a,b), and SCHWERT (2003), who conclude

that the out-of-sample predictive ability of the

dividend price ratio and the other predictive vari-

ables is abysmal, and, in the words of Schwert,

disastrous, our results in Tables 3, 4, and 5 do

not show any reliable out-of-sample return pre-

dictability. Among the predictive variables, the

dividend price ratio exhibits the worst out-of-

sample forecasting ability on average. Moreover,

the inclusion of more than one predictive variable

rather deteriorates the out-of-sample performance

of the forecasting models. Finally, in contrast to

AVRAMOV (2002), our analysis shows that the

out-of-sample performance of the Bayesian model

averaging approach is not generally superior to the

statistical model selection criteria.

4. Conclusion

We implement statistical model selection criteria

and AVRAMOV’s (2002) Bayesian model aver-

aging approach to analyze the sample evidence of

Figure 4: Optimal Length of the Rolling Scheme

The graphs plot the information coefficients and the root mean squared error (RMSE) for different values of k, starting from k = 24 to k = 60

(the above benchmark case). The two graphs on the left plot the average values for each of the seven predictive variables. The graphs on

the right show the average values for different values of n, the number of predictive variables retained in the regression specifications. The

bold lines represent overall averages.
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stock market predictability. Based on Swiss stock

market data, we obtain the following general re-

sults. First, the posterior probabilities of the in-

dividual forecasting models and the cumulative

posterior probabilities are not constant through

time. Second, the estimates of the posterior prob-

abilities are not robust to whether the predictive

variables are stochastically detrended or not. Third,

the contributions of parameter uncertainty, model

uncertainty, and the uncertainty attributed to fore-

cast errors are dependent on the time period under

consideration and the initial values of the predic-

tive variables. Thus, model uncertainty is not more

important than parameter uncertainty. Fourth, from

an investment management perspective, our results

do not indicate any reliable out-of-sample return

predictability. Among the predictive variables, the

dividend price ratio exhibits the worst out-of-

sample forecasting ability on average.[8]

Moreover, the inclusion of more than one predic-

tive variable rather deteriorates the out-of-sample

performance of the forecasting models. Finally, our

analysis shows that the out-of-sample performance

of the Bayesian model averaging approach is not

generally superior to the statistical model selection

criteria. These results are robust with respect to

the length of the rolling window and the use of

quarterly and half-yearly data instead of the

monthly data.[9]

The poor external validity of all the predictive

regression specifications may indicate model non-

stationarity: the parameters of the best prediction

model change over time. It is still an open question

why this might be. One potential explanation is

that the correct regression specification is actually

nonlinear, while statistical model selection criteria

and the Bayesian model averaging approach chose

exclusively among linear models.[10]

Still, statistical model selection criteria pick the

best linear prediction model, and the Bayesian

model averaging approach averages over the

dynamics implied by the set of all these possible

regression specifications. So the poor out-of-

sample performance of the predictive regression

models really raise questions about the predictive

variables’ role in these models. Consequently,

attempting to fit more complicated models such as

multiple-beta, conditional APT-type models, might

seem a futile exercise, especially when parameter

and model risk are taken into account. Overall, it

thus seems very questionable whether a (business

cycle-related) time-varying equity premium can

be predicted using simple regression techniques

and whether the respective results should be con-

sidered as a serious input for corresponding short-

term market timing strategies.
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ENDNOTES

[1] See, e.g., AMIHUD and HURVICH (2004),

FERSON et al. (2003), TOROUS et al. (2004),

and VALKANOV (2003). REY (2003a,b) pro-

vides an overview.

[2] KANDEL and STAMBAUGH (1996) and AVRA-

MOV (2002) show that a reasonable value for

the prior sample size increases as the model

contains more predictive variables. We follow

them and take 50 observations per parameter,

i.e., Tj,0 = T0(n + 1) with T0 = 50. Our conclusions

are robust to different specifications of the

hypothetical prior size (T0 = 25 or T0 =100).

[3] A more detailed description of this algorithm is

given in BARBERIS (2000). An alternative

algorithm, which is potentially more efficient

when there is a large number of assets and

predictive variables, is proposed in AVRAMOV

(2002).

[4] The dividend–price ratio/earnings-price ratio is

measured as the sum of dividends/earnings

paid on the index over the previous year, divided

by the current level of the index. The term

spread is the difference between the (log)

nominal yield on long-term government bonds

provided by IMF and the (log) nominal three-

month Swiss interbank rate. Realized stock

market volatility is calculated as suggested by

GOYAL and SANTA-CLARA (2003), using with-

in-month daily return data for each month. The

U.S. TED spread is the difference between

(log) three-month Eurodollar rates and (log)

three-month Treasury Bill rates, provided by the

Federal Reserve Board of Governors. Finally,

the U.S. default risk spread is formed as the

difference in annualized (log) yields of Moody’s

Baa and Aaa rated bonds.

[5] See BRANDT (2004) for a critical comment

about evenly distributed prior probabilities

across all models.

[6] The consideration of a number of initial values

(and parameter estimates) is more important

than varying the strength of the informative

prior, T0. As in AVRAMOV (2002), the results

(not reported) indicate that the variance de-

composition is not highly sensitive to different

values of T0.

[7] We do not adjust the t-statistics for error in the

estimation of the parameters of the prediction

model [see, e.g., BOSSAERTS and HILLION

(1999)].

[8] BOUDOUKH et al. (2004) show that the divi-

dend price ratio process changed remarkably

during the 1980’s and 1990’s, but that the total

payout ratio (dividends plus repurchases over

price) changed very little. Hence, they conclude

that the decline in the predictive power of the

dividend price ratio in recent U.S. data is vastly

overstated. The lack of data makes the respec-

tive analysis impossible for the Swiss stock

market, however.

[9] The corresponding results are available from

the author upon request.

[10] A recent contribution by CAMPBELL and

THOMPSON (2005) shows that the imposition

of sensible restrictions with respect to the signs

of the coefficients and the return forecasts

improve the out-of-sample predictive power. A

discussion of those arguments as well as an

empirical verification for the Swiss stock market

are postponed for future research.

[1]
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