
Vis Comput (2008) 24: 859–870
DOI 10.1007/s00371-008-0286-0

O R I G I NA L A RT I C L E

Real-time crowd motion planning

Scalable Avoidance and Group Behavior

Barbara Yersin · Jonathan Maïm · Fiorenzo Morini ·
Daniel Thalmann

Published online: 7 August 2008
© Springer-Verlag 2008

Abstract Real-time crowd motion planning requires fast,
realistic methods for path planning as well as obstacle avoid-
ance. In a previous work (Morini et al. in Cyberworlds In-
ternational Conference, pp. 144–151, 2007), we introduced
a hybrid architecture to handle real-time motion planning
of thousands of pedestrians. In this article, we present an
extended version of our architecture, introducing two new
features: an improved short-term collision avoidance algo-
rithm, and simple efficient group behavior for crowds. Our
approach allows the use of several motion planning algo-
rithms of different precision for regions of varied interest.
Pedestrian motion continuity is ensured when switching be-
tween such algorithms. To assess our architecture, several
performance tests have been conducted, as well as a subjec-
tive test demonstrating the impact of using groups. Our re-
sults show that the architecture can plan motion in real time
for several thousands of characters.

Keywords Crowds · Real-time · Motion planning · Groups

1 Introduction

Realistic real-time motion planning for crowds has become
a fundamental research field in the Computer Graphics com-

B. Yersin (�) · J. Maïm · F. Morini · D. Thalmann
IC ISIM VRLAB, Station 14, 1015 Lausanne, Switzerland
e-mail: barbara.yersin@epfl.ch

J. Maïm
e-mail: jonathan.maim@epfl.ch

F. Morini
e-mail: fiorenzo.morini@gmail.com

D. Thalmann
e-mail: daniel.thalmann@epfl.ch

munity. The simulation of urban scenes, epic battles, or other
environments that show thousands of people in real time re-
quire fast and realistic crowd motion. Domains of applica-
tion are vast: video games, psychological studies, and archi-
tecture, to name a few. In this paper, we present an improved
architecture offering a hybrid, scalable solution for real-time
motion planning of thousands of characters in complex en-
vironments. Moreover, to improve crowd behavior, a simple
and efficient approach to simulate small groups of pedestri-
ans is introduced.

In our perspective, crowds are formed by thousands of in-
dividuals that move in a bounded environment. Each pedes-
trian wants to reach his individual goal in space, avoiding
obstacles, and remaining close to his friends or family. Peo-
ple perceive their environment, and use this information to
choose the shortest path in time and space that leads to their
goal. Emergent behaviors can also be observed in crowds,
e.g., in places where the space is small and very crowded,
people form lanes to maximize their speed. Also, when dan-
gerous events occur, pedestrians tend to react in very chaotic
ways to escape.

Planning crowd motion in real time is a very expen-
sive task, which can be divided into three distinct parts:
path planning, obstacle avoidance, and group cohesion. Path
planning consists in finding the best way to reach a goal. The
path selection criteria are the avoidance of congested zones,
and minimization of distance and travel time. Path planning
must also offer a variety of paths to spread pedestrians in the
whole scene. Obstacles to avoid can either be other pedes-
trians or objects that compose the environment. The goal
of each individual is to inhibit collisions with such obsta-
cles. As for groups, they are very often represented by 2
to 4 pedestrians walking side by side, and avoiding sepa-
ration as well as inter-collision. In the context of real-time

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159154457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:barbara.yersin@epfl.ch
mailto:jonathan.maim@epfl.ch
mailto:fiorenzo.morini@gmail.com
mailto:daniel.thalmann@epfl.ch

860 B. Yersin et al.

simulations, all three aspects of motion planning need to be
addressed efficiently to produce believable results.

Multiple motion planning approaches for crowds have
been introduced. As of today, several fast path planning
solutions exist. Dynamic avoidance and high-level group
behaviors, however, remain expensive tasks. Agent-based
methods offer realistic pedestrian motion planning, espe-
cially when coupled with global navigation. This approach
gives the possibility to add individual and cognitive behav-
iors to each agent, but becomes too expensive for large
crowds. Potential field approaches handle long- and short-
term avoidance. Long-term avoidance predicts possible col-
lisions and inhibits them. Short-term avoidance intervenes
when long-term avoidance cannot prevent a collision. These
methods offer less believable results than agent-based ap-
proaches, because they do not provide the possibility to in-
dividualize each pedestrian behavior. However, they have
much lower computational costs.

In this paper, we detail our improved architecture that re-
alistically handles crowd motion planning in real time. Our
approach provides a complete solution for all three aspects
of crowd motion, i.e., path planning, obstacle avoidance, and
group behavior. To obtain high performance, our approach is
scalable: we divide the scene into multiple regions of vary-
ing interest, defined at initialization and modifiable at run-
time. According to its level of interest, each region is ruled
by a different motion planning algorithm. Zones attracting
the user attention exploit accurate methods, while compu-
tation time is saved with less expensive algorithms in other
regions. Our architecture also ensures that no visible distur-
bance is generated when switching from one algorithm to
another.

Results show that we can simulate up to 10,000 pedes-
trians in real time with a large variety of goals. Also, small
groups are created and their members keep close to each
other, as in reality. Finally, the possibility to introduce and
interactively modify the regions of interest in a scene allows
the user to choose the performance and distribute compu-
tation time accordingly. We illustrate in Fig. 1 pedestrians
taking advantage of our architecture to plan their motion in
two environments.

Overview In this paper, we first introduce related work
in Sect. 2. Then, in Sect. 3, we describe our architecture,
and how we exploit it to distribute regions of three different
levels of interest. In Sect. 4, the integration of the various
approaches employed and the optimizations applied to keep
high frame rates are detailed. Section 5 is dedicated to our
high-level group behavior algorithm. In Sect. 6, we show
our results in terms of performance as well as subjective in-
dividual ratings in different conditions and environments to
assess our architecture. Finally, limitations and future work
are discussed in Sect. 7.

2 Related work

Crowd behavior and motion planning are two topics that
have long been studied in fields such as Robotics and Soci-
ology. More recently, however, and due to the technological
improvements, these domains have aroused the interest of
the Computer Graphics community as well.

The first studied approach, i.e., agent-based, represents a
natural way to simulate crowds as independent individuals
interacting with each other. Such algorithms usually handle
short distance avoidance, in which navigation remains local.
Reynolds [24] proposed to use simple rules to model crowds
and groups of interacting agents. Musse and Thalmann [17]
used sociological concepts in order to simulate relationships
among virtual humans. Niederberger and Gross [18] intro-
duced a generic system for autonomous and reactive agents,
organized in hierarchical groups. Shao and Terzopoulos [26]
used perceptual, behavioral, and cognitive models to simu-
late individuals. Heïgeas et al. [4] introduced a model based
on cellular automata and the physical properties of the envi-
ronment, while Kirchner and Shadschneider [10] used static
potential fields to rule a cellular automaton. Metoyer and
Hodgins [15] proposed an avoidance algorithm based on
a Bayesian decision process. Nevertheless, the main prob-
lem with agent-based algorithms is their low performance.
With these methods, simulating thousands of pedestrians in
real time requires the use of particular machines support-
ing heavy parallelizations [25]. Moreover, such approaches

Fig. 1 Pedestrians using our
hybrid motion planning
architecture to reach their goal,
avoid each other, and form small
groups (Left) in a large
landscape of fields, and (Right)
in a city environment

Real-time crowd motion planning 861

forbid the construction of autonomous adaptable behaviors,
and can only manage crowds of pedestrians with local ob-
jectives.

To solve the problems inherent in local navigation, some
behavioral approaches have been extended with global nav-
igation. Bayazit et al. [1] stored global information in
nodes of a probabilistic roadmap to handle navigation,
and introduced simple rules in order to manage groups.
Sung et al. [27] first introduced an architecture for devel-
oping situation-based crowd behavior, including groups.
They later combined probabilistic roadmaps with motion
graphs to find paths and animations to steer characters to a
goal [28]. Lau and Kuffner [12] used precomputed search
trees of motion clips to accelerate the search for the best
paths and motion sequences to reach an objective. Lamarche
and Donikian [11] used automatic topological model ex-
traction of the environment for individual navigation. An-
other method, introduced by Kamphuis and Overmars [9],
allowed a group of agents to maintain a given cohesion
while trying to reach a goal. Although these approaches
offer appealing results, they are not fast enough to simu-
late thousands of pedestrians in real time. Loscos et al. [14]
presented a behavioral model based on a 2D map of the en-
vironment. Their method is suited for simulating wandering
crowds, but does not provide high level control on pedes-
trian goals. Pettré et al. [21, 22] presented a novel approach
to automatically extract a topology from a scene geome-
try and handle path planning using a navigation graph (see
Fig. 2 (left)). The main advantage of this technique is that it
handles uneven and multi-layered terrains. Nevertheless, it
does not treat inter-pedestrian collision avoidance. Finally,
Helbing et al. [5, 6] used agent-based approaches to han-
dle motion planning, but mainly focused on emergent crowd
behaviors, in particular scenarios.

Another approach for motion planning is inspired from
fluid dynamics. Such techniques use a grid to discretize the
environment into cells. Hughes [7, 8] interpreted crowds as
density fields to rule the motion planning of pedestrians. The
resulting potential fields are dynamic, guiding pedestrians
to their objective, while avoiding obstacles. Chenney [2] de-
veloped a model of flow tiles that ensures, under reasonable

conditions, that agents do not require any form of collision
detection at the expense of precluding any interaction be-
tween them. More recently, Treuille et al. [29] proposed re-
alistic motion planning for crowds. Their method produces
a potential field that provides, for each pedestrian, the next
suitable position in space (a waypoint) to avoid all obstacles.

Compared to agent-based approaches, these techniques
allow to simulate thousands of pedestrians in real time, and
are also able to show emergent behaviors. However, they
produce less believable results, because they require as-
sumptions that prevent treating each pedestrian with indi-
vidual characteristics. For instance, only a limited number
of goals can be defined and assigned to sets of pedestrians.
The resulting performance depends on the size of the grid
cells and the number of sets.

More recently, techniques using real captured data have
emerged [13, 19]. Also, hybrid approaches have been pro-
posed. Pelechano et al. [20] combined psychological, phys-
iological, and geometrical rules with physical forces to sim-
ulate dense crowds of autonomous agents. In a recent work,
Morini et al. [16] introduced a hybrid architecture offer-
ing a scalable solution for real-time crowd motion planning.
Based on a navigation graph, the environment is divided
into regions of varying interest. In regions of high interest,
a potential field-based approach is exploited. Since poten-
tial fields are used only locally, motion is planned for many
more sets and with finer grid cells than with an algorithm
purely based on potential fields. In other regions, motion
planning is ruled by a navigation graph and a short-term col-
lision avoidance algorithm.

In this paper, we fully detail this hybrid architecture and
its implementation. Moreover, significant improvements are
introduced: an efficient and more realistic short-term avoid-
ance algorithm as well as a new and simple approach to in-
troduce small group behaviors within a moving crowd.

3 Architecture

The foundation of our architecture is based on navigation
graphs, automatically extracted from the mesh of an arbi-
trary environment [21]. This approach has the advantage of

Fig. 2 (Left) A navigation
graph composed of a single
navigation flow (in blue)
connecting two distant vertices
(in green). The navigation flow
is composed of three paths that
can be followed in either
direction (red arrows). Two
edges are also represented as
gates (in yellow). (Right) Grid
placed on top of the graph. Only
cells within a vertex that is part
of a path stay active (in green)

862 B. Yersin et al.

robustly handling path planning. Vertices represent cylindri-
cal zones of the walkable space, while edges are the gates
where pedestrians can cross the space from one vertex to
another. To connect two distant vertices, it is possible to cre-
ate a navigation flow, composed of a set of varied paths. An
example is shown in Fig. 2 (left). Thanks to this approach,
pedestrian spreading is ensured. During simulation, pedes-
trians are assigned one navigation flow, and one direction.
When they reach an extremity of the flow, they reverse their
direction, and choose a new path, minimizing their travel
time, e.g., avoiding congested areas. Vertices offer a suit-
able structure of the walkable space; they can be exploited
to classify different regions of the scene. For instance, Pettré
et al. [21, 22] used them to define several levels of simula-
tion, each updated at different frequencies.

The goal of our architecture is to handle thousands
of pedestrians in real time. We thus exploit the above-
mentioned vertex structure to divide the environment into
regions ruled by different motion planning techniques. We
classify these regions with a level of interest. The most inter-
esting zones are ruled by realistic but expensive techniques,
while others use simpler and faster solutions. Regions of in-
terest (ROI) can be defined in any number and anywhere in
the walkable space with high-level parameters, modifiable
at runtime. Such flexibility is indeed desirable: it allows the
user to first choose the wanted performance, and then dis-
tribute ROI, i.e., computation time, as wished.

By defining three different ROI, we obtain a simple and
flexible architecture for realistic results: ROI 0 is composed
of vertices of high interest, ROI 1 regroups vertices of low
interest, and ROI 2 contains all other vertices, of no inter-
est. With this classification, it is possible to divide the en-
vironment into many zones, each tagged with the appropri-
ate level. In practice, we position the ROI with respect to
the camera position and field of view. ROI 0 is directly in
front of the camera, and in zones where important events oc-
cur. ROI 1 covers the remaining visible space, while ROI 2
includes all vertices outside the view frustum. Note that
this choice is arbitrary, and that our architecture is versatile
enough to satisfy any other environment decomposition.

For regions of no interest (ROI 2), path planning is ruled
by the navigation graph. Pedestrians are linearly steered to
the list of waypoints on their path edges. To use the minimal
computation resources, obstacle avoidance is not handled.

Path planning in regions of low interest (ROI 1) is also
ruled by the navigation graph. To steer pedestrians to their
waypoints, an approach similar to Reynolds’ is used [24].
Obstacles are avoided, thanks to a new agent-based short-
term algorithm (see Sect. 4.4), providing efficient and more
realistic results than our previous approach [16].

In the regions of high interest (ROI 0), path planning
and obstacle avoidance are both ruled by a potential field-
based algorithm, similarly to Treuille et al. [29]. Compared

to agent-based approaches, potential fields are less expen-
sive, and still offer results more realistic than the ones of
ROI 1 and ROI 2, because collision avoidance is planned
in the long term. Nevertheless, in certain situations, this ap-
proach fails to avoid collisions. To overcome this problem,
the same short-term algorithm as in ROI 1 is also activated
in ROI 0.

Group behavior is an additional layer of the architecture
that can be used in order to simulate pedestrians walking
with friends or family. This algorithm, detailed in Sect. 5 is
purely based on the edition of pedestrian waypoints. Thus,
it can be used for all ROI introduced above.

An important concern when dealing with regions ruled by
different motion planning algorithms is to keep smooth and
unnoticeable transitions at their borders. The way we place
ROI implicitly solves this issue. Firstly, ROI 2 is always out-
side the view frustum, and thus does not require any specific
attention. Secondly, passing the borders between ROI 0 and
ROI 1 is always smooth, because they both use the same
short-term avoidance algorithm.

4 Implementation

In this section, we present the details of our hybrid architec-
ture implementation. We mainly focus on the initialization
and runtime operations to construct and manage the scal-
able crowd motion planning. Firstly, in Sect. 4.1, the initial-
ization phase is detailed, i.e., the grid construction over the
graph space, the initialization of the structure of neighbor
cells and of the ROI. Then, we describe our runtime pipeline,
composed of five stages: the classification of graph vertices
in correct ROI (Sect. 4.2), the potential field computation
(Sect. 4.3), our short-term avoidance computation algorithm
(Sect. 4.4), the pedestrian steering phase (Sect. 4.5), and fi-
nally, the continuity maintenance between grid and naviga-
tion graph (Sect. 4.6). Generating and handling small mov-
ing groups also require specific operations at initialization
and runtime. We cover these steps in Sect. 5.

4.1 Initialization

First of all, for the given environment, a navigation graph
is generated, and navigation flows created. We maintain a
list of all active vertices, i.e., vertices belonging to at least
one path. The others are discarded, since no pedestrian will
ever pass through them during simulation. Then, a grid is
disposed on the scene, its size limited by the bounding rec-
tangle containing all graph vertices. This grid is composed
of an array of cells, each containing the link to its neighbor
cells, and intrinsic parameters used to compute the potential.

Many of the cells that compose the grid are not needed
in the simulation, because they represent zones that are not

Real-time crowd motion planning 863

covered by graph vertices, and thus indicate static obsta-
cles. Moreover, some vertices are not used by any naviga-
tion flow, and are not exploited by pedestrians, as illustrated
in Fig. 2 (right). Thus, for each cell, we test whether its cen-
ter is inside a vertex that composes a path; if not, the cell
is deactivated. The main advantage of this preprocess is the
reduction of the number of cells in which the potential field
computation is necessary. Finally, each cell is linked to its
active neighbors only.

4.2 Classification of vertices in ROI

To define a ROI, the user specifies three parameters: a po-
sition, a radius, and a level of interest. All vertices whose
center is contained within this region are assigned the speci-
fied level. These parameters can be modified at any moment,
implying a re-classification of vertices.

In our practical use of ROI, we create three lists corre-
sponding to our three levels of interest. At runtime, we first
automatically detect vertices that are outside the view frus-
tum, and put them into the list with the lowest level of in-
terest (ROI 2). We then iterate over the remaining vertices,
testing whether they are inside ROI 0. If it is the case, the
vertex is classified as of high interest and put in the corre-
sponding list. Otherwise, it is put in the remaining list, of
low interest (ROI 1). In the next two sections, we detail how
pedestrian motions are planned in ROI 0 and ROI 1.

4.3 Potential field computation

To accelerate the potential field computation, it is possible
to group pedestrians, as suggested by Treuille et al. [29]. It
is important here to note that the term “group” can be con-
fusing when used on the one hand for potential field compu-
tation, and on the other hand, to describe grouping behaviors
within the crowd. In order to avoid ambiguity in the remain-
ing of the paper, the term “set” is used to describe pedestri-
ans with the same goal. We refer to “groups” as small teams
of pedestrians walking together. For the set creation, pedes-
trians in ROI 0 sharing the same navigation flow and direc-
tion, i.e., having the same goal, are brought together in one
set. Thus, there are two sets for each of these navigation
flows. Sets are recomputed at each time step, to correctly
classify pedestrians that change ROI.

Once the sets are created, a potential field is computed
for each of them. At the goal, the potential is set to 0, and
increased over the grid. Given the potential gradient, each
pedestrian is assigned a new waypoint, corresponding to the
center of a neighbor cell. For further details on the poten-
tial field computation, see [29]. Taking advantage of our ar-
chitecture, we introduce a technique to reduce the compu-
tation time. Actually, the potential field is only required in
regions of high interest (ROI 0). These regions cover part of

Fig. 3 Potential is computed for vertices either in ROI 0 (in red) or
identified as subgoals (in yellow). The final goal is displayed in green.
Potential starts in the central cells of the subgoals with an approximated
value

the scene, and thus part of the grid. By computing the po-
tential only for the cells located inside ROI 0, we can dras-
tically decrease computation time. However, goals are often
outside these regions, and thus, it is impossible to initiate
the potential computation. For each set, we therefore create
subgoals, situated just outside ROI 0, as shown in Fig. 3. We
use the navigation flow structure to identify them: for every
path of every flow leaving ROI 0, the first vertex met in the
direction of the goal is a subgoal. The potential computation
is initiated in the central cell of every subgoal, and spread
over all cells inside ROI 0. To obtain the same behavior as
if the potential was computed all over the grid, we do not
initiate the potential of the subgoal cells to 0, but approxi-
mate it. For each subgoal cell c inside subgoal vertex vc, the
potential φc is computed as:

φc = C ·
∑

v ∈P(vc)

(v.density + 1) · v.radius (1)

where v is a vertex of path P(vc), starting at vc and lead-
ing to the final goal. The density of v is given by the num-
ber of pedestrians in it per square meter. Thus, the contribu-
tion to the potential of each vertex v is defined as its radius,
weighted by its degree of occupation. To avoid a null contri-
bution from an empty vertex, we always add 1 to the com-
puted density. Constant C is used to weight the sum so that
values for φc are in the same range as if the potential was
computed from the goal. Note that vertex vc may be part of
several paths at the same time. In this case, we compute (1)
for each path, and assign the lowest result to φc .

4.4 Improved short-term avoidance algorithm

In this section, we introduce our improved short-term avoid-
ance algorithm, based on the assumptions that pedestrians
mostly want to first maximize their speed and then to mini-
mize detours.

This algorithm employs the grid cells to efficiently avoid
local inter-pedestrian collisions in both ROI 0 and ROI 1.
Particularly, in ROI 0, it complements the potential field ap-
proach, which may fail when the available space is too small
and too crowded.

864 B. Yersin et al.

Note that the presented method is generic and adjustable
to fit special requirements. For instance, if no implementa-
tion of a potential field approach is available, this algorithm
could be adapted to predict possible collisions up to sev-
eral meters ahead. Thus, it can perfectly be used as an in-
termediate or replacement solution for long-term and short-
term avoidance methods. Its implementation is summarized
in Algorithm 1 and further detailed below.

To find pedestrians that can potentially collide, we take
advantage of the grid structure covering the whole environ-
ment: at runtime, every pedestrian in ROI 0 or ROI 1 is regis-
tered in its current grid cell, as shown in Algorithm 1, line 3.
In this way, we can reduce the search for possible collisions
to a small set of neighbor cells. Although this simplifica-
tion does not cut down the order of complexity in O(n2), it
significantly decreases n, as compared to a brute force ap-
proach [23].

Once pedestrians are registered in their current cell, we
proceed in three important steps. Firstly, we identify cells
ahead of the pedestrian, depending on its speed and direc-
tion. Secondly, a security check is performed for pedestrians
in a certain range of cells. Finally, an emergency avoidance
is performed if the pedestrians are closer than an emergency
threshold β .

Find cells ahead For each pedestrian p in ROI 0 or ROI 1,
we identify cells in its forward direction. This is achieved by
defining three different vectors (line 7): fp directly in front
of p, lp to its left, and rp to its right. The front vector is
filled with cells as follows:

fp[i] = getCell(c.pos + i · c.w · p.fwd) (2)

where c.pos is the center position of cell c in which the cur-
rent pedestrian p is situated. The normalized vector p.fwd
represents p’s current forward direction, and c.w is the
width of a generic cell. Similarly, the vectors lp and rp are
filled:

lp[i] = getCell(c.pos + l · c.w + i · c.w · p.fwd), (3)

rp[i] = getCell(c.pos − l · c.w + i · c.w · p.fwd), (4)

where l is the normalized vector perpendicular to p.fwd on
its left-hand side. The number of cells used to fill the vectors
is arbitrary. In our implementation, we opted for vectors of
variable size, depending on the pedestrian’s speed. Thus, a
slow pedestrian looks less far ahead than a fast one. These
filled vectors form a corridor always pointing in the for-
ward direction of the pedestrian. An example is illustrated
in Fig. 4, where the identified cells ahead of the pedestrian
are highlighted. Note that inactive cells are not taken into
account when filling the vectors.

Algorithm 1 Improved short-term avoidance algorithm

Fig. 4 A corridor of cells where the pedestrian looks for potential col-
lisions. Yellow cells are in its front vector, green ones in its left vector,
and red ones in its right vector. The number of cells depends on the
speed of the pedestrian

Security check Once the cells to check have been identi-
fied, care is taken to prevent collisions. This is achieved as
detailed in Algorithm 1: at line 14, we iterate over cells in
front of p, starting from the second one, i.e., fp[1]. We con-
sider security checks in fp[0] unnecessary, because neigh-
bors within this cell will require an emergency collision
avoidance, which is treated below. For each of these front
cells, if a neighbor pedestrian pneighbor exists, an interme-
diate waypoint p.intwp, preceding p’s original waypoint is
introduced to prevent the collision. The intermediate way-
point is either set to the right or to the left of p (line 16),
depending on two conditions:

Real-time crowd motion planning 865

1. Is p.intwp in the same general direction as the original
waypoint p.wp? We do not want the pedestrian to per-
form a U-turn. This condition is tested against both pos-
sibilities lp[i − 1] and rp[i − 1]:
(p.wp − p) · (p.intwp − p) > 0.0

2. Is pneighbor rather on p’s left side? This condition allows
to find the fastest way to avoid pneighbor:
[
(pneighbor − p) × p.fwd

] · y < 0.0

Condition 1 has precedence: if the left alternative returns
true while the right one returns false, then p will go left to-
wards lp[i − 1]. However, if the results of Condition 1 are
the same for both the left and right alternatives, then the re-
sult of Condition 2 determines the solution: p will go to-
ward rp[i − 1] if false, or toward lp[i − 1] if true. Finally,
on line 18, p is slowed down to correctly avoid its neighbor.
When the collision avoidance is over, the speed will increase
again in order to maximize the pedestrian’s progress.

Emergency check An emergency avoidance is sometimes
required when the previous approaches (potential fields, se-
curity check) fail. Such emergency cases also happen in re-
ality, when people bump into each other because of a wrong
evaluation of distance or speed. To prevent virtual pedestri-
ans from passing through each other, we check in cells close
around p that a minimum distance is always respected. This
is shown in lines 5 to 12 in Algorithm 1. First of all, note that
the check is performed over the two first rows of cells for all
three vectors, i.e., fp[0,1], lp[0,1], rp[0,1] (line 8). Then,
for each pedestrian registered in these cells, if the distance
between p and pneighbor is smaller than a constant value β ,
both characters are moved away from each other, as if bump-
ing against each other. Finally, in line 12, we avoid unneces-
sary detours by removing the intermediate waypoint if there
was one, since it is no longer accurate: both pedestrians have
been pushed away, and the situation has changed.

To keep the algorithm fast, we alternate the tasks of sub-
scribing pedestrians in their cells and the actual avoidance:
the pedestrians are registered in their cell every other time
step (line 1), while the search for potential collisions and
their avoidance is achieved at the next time step (line 4).
Given the low distance covered by a pedestrian in such a
short time lapse, the algorithm robustness is guaranteed.

4.5 Steering

Both navigation graph and potential field approaches pro-
vide waypoints which pedestrians must reach. A smooth
steering algorithm is necessary to obtain a fluid movement
toward these points. Reynolds’ seek behavior [24] has the
advantage of producing a believable steering toward a tar-
get point in space. We use this model for pedestrians of both
ROI 0 and ROI 1, and a linear steering in ROI 2.

Fig. 5 (Left) In graph space, the path followed by the pedestrian is the
right one. (Right) In grid space, the potential field is lower on the left
path. High potential is represented in light green and low potential in
dark blue

4.6 Continuity maintenance

In our architecture, we use two approaches based on dif-
ferent spaces: a navigation graph composed of vertices and
edges, and a grid of cells. This duality brings up two issues
when switching from one space to the other. More precisely,
when a pedestrian passes from ROI 0 to ROI 1.

The first issue arises when a pedestrian enters the active
grid space (ROI 0). Its position is then only updated in the
grid, but no longer in the graph. It implies that this character
stays registered in the same vertex while progressing in the
grid. Thus, its next waypoint on the graph also remains the
same. When the pedestrian eventually exits ROI 0, it turns
back to meet the graph waypoint it has long since passed. To
avoid this, we update the pedestrian position in the graph,
even in ROI 0: if a pedestrian enters this region, we keep
track of its distance to its next graph waypoint. When the
distance is under a given threshold, the pedestrian is regis-
tered in the next vertex.

The second issue occurs when two or more paths of the
same navigation flow are present in ROI 0. Since path plan-
ning in that area is ruled by the potential field, a pedestrian
chooses the path where the potential is the lowest, as in
Fig. 5 (right). However, this path does not necessarily corre-
spond to the one it is registered to in the graph (Fig. 5 (left)).
In the worst case, the pedestrian becomes completely lost
when exiting ROI 0: it is within a vertex that does not belong
to the path it should follow. To solve this problem, when a
pedestrian exits ROI 0, we test whether it still is on the same
graph path. If not, we look for a new path using this vertex
and register the pedestrian to it.

5 Group behavior

Section 4 details how our scalable motion planning architec-
ture handles individuals in different ROI. However, in our
everyday life, it is rare to observe people in an urban scene
walking all by themselves. Indeed, it is easy to notice that

866 B. Yersin et al.

pedestrians often evolve in groups of 2 or more. For this
reason, we introduce an additional and optional layer to the
architecture detailed in Sect. 4. Our algorithm is completely
based on the update of pedestrian waypoints, similarly to
the short-term avoidance approach. This choice is based on
several criteria: firstly, all the motion planning algorithms
used in this architecture are waypoint-based, which makes
our grouping scalable to all ROI. Secondly, using a potential
field to steer pedestrians close to each other is not possi-
ble; it would require a potential field computation for each
small group, instead of each set, as introduced in Sect. 4.3.
Moreover, it would not solve the scalability issue for ROI 1
and ROI 2.

At initialization, groups are created in the numbers and
sizes provided by the user. Typically, they are composed of 2
to 5 pedestrians. For each of these groups, the first member
is identified as the leader. The followers are assigned to the
same path flow as the leader, they are registered in the same
initial vertex, at the same speed. Note that special care is
taken not to use the same human template twice in the same
group in order to avoid a too important feeling of resem-
blance. Each created group is assigned a unique ID, and is
stored as a list containing all its members’ IDs.

At runtime, several consecutive operations are called.
First, the waypoint of each pedestrian is updated according
to its ROI if necessary. Then, the short-term avoidance is
handled, potentially introducing an intermediate waypoint
to prevent collisions. This algorithm remains the same for
groups, except that members of a same group do not trigger
a security avoidance. Otherwise, it would imply that group
members try to avoid each other and remain together at the
same time. The emergency check however is kept in order
to inhibit inter-penetration. Once the short-term avoidance
is achieved, groups are handled on an extra layer.

Speed adaptation For group members to stay close to each
other, it is important that they react to the others’ behavior.
We start by computing the distance between them projected
on the leader’s forward vector:

leader.fwd · distance(leader, follower). (5)

This value provides the distance between the members in
the direction of the leader’s forward vector. If this distance is
larger than a given threshold (in our implementation: 0.5 m),
then the follower is too far behind and needs to catch up. The
speed of the leader is thus decreased, while the follower’s
one is increased. On the other hand, if the result of (5) is
smaller than the negative threshold (−0.5 m), the leader ac-
celerates while the follower slows down. In the case where
the distance is within the correct range, care is taken that
both speeds are set to the same intermediate value. This is
how we ensure that two members of a group remain at the
same level. In order for their lateral distance to remain small,
their waypoints are updated.

Waypoint modification It is important to note that in ROI 1,
we only update the pedestrian’s gate waypoints, i.e., way-
points situated on the intersection of two vertices. An inter-
mediate waypoint that may be introduced during a security
check is not modified. Thus, if two group members get dan-
gerously near other pedestrians, they can separate to prevent
a collision. They will get back close to each other by the
time they reach their next gate waypoint. In ROI 0, the sys-
tem is slightly different. At all times, the follower’s way-
point is updated to be set close to the leader’s (in a neigh-
bor cell). However, if a security avoidance happens, then,
similarly to ROI 1, waypoints are modified according to the
algorithm of Sect. 4.4. Thus, group members can become
separated. Once the potential collision is avoided, the fol-
lower’s next waypoint is set back next to the leader’s. In
ROI 2, no short-term avoidance is performed, and members
of the same group have the same speed and their waypoints
are set close to each other on the vertice gates.

Note that for groups of 2 members, it is important that
both members adapt their speed to stay together. In larger
groups, however, we do not update the leader’s speed ac-
cording to the other members’ positions. We then consider
that the leader sets the pace and followers adapt their speeds
to catch up.

6 Results and discussion

Our performance tests have been run with an Athlon64
4000+, with 2 GB RAM and two NVidia 6800 ultra in SLI
mode. For these tests, pedestrians have no grouping behav-
ior, and are represented with two human templates using
several textures, and exploiting color variety techniques [3].
They are rendered as impostors, and use a walk animation,
sampled at a frequency of 20 Hz. Note that in the follow-
ing performance tests, we observe interesting emergent be-
haviors, e.g., lane formations or panic effects, that make the
crowd motion planning more realistic. The tests described
below are illustrated in the first accompanying video.

We use a city pedestrian area (Fig. 1 (right)) to test the
performance of our motion planning architecture, compared
with our implementation of the purely potential field-based
approach [29]. In this scene, the camera position is fixed at a
predefined position. For our tests, we define three regions in
the environment. The one with the highest level of interest
(ROI 0) has a radius of 15 m, and is static, in the center of the
scene. The remaining space inside the view frustum is of low
interest (ROI 1), and the other zones are classified in ROI 2.
We have tested the efficiency of both approaches with cells
of 3 × 3 m2, and an increasing number of pedestrians and
sets, starting from 2 sets and 200 pedestrians up to 12 sets,
totaling 1200 characters. Figure 6 shows the results of this
comparison. The performance of our approach logically de-
creases with the increasing number of sets, but much more

Real-time crowd motion planning 867

slowly than with the purely potential field-based approach.
There are two reasons. Firstly, our technique only computes
the potential field in a limited region of high interest (ROI 0).
Secondly, only a subset of the total number of sets passes
in this region, minimizing the number of potential fields to
compute. This test has also been performed with the ROI 0
dynamically moving on the city place (demonstrated in the
first accompanying video). Even so, the obtained results re-
main similar to those shown in Fig. 6.

Our second test is achieved with 10,000 pedestrians in
a large scene with 12 navigation flows, i.e., 24 sets, spread
over the whole environment, as demonstrated in Fig. 1 (left).
For this scenario, the ROI are placed according to the camera
position. If the camera moves, the regions are also displaced.
The cell size is set to 4 × 4 m2, and the performance reaches
20 fps.

The third scenario uses the same city pedestrian area as in
the first test, extended with several surrounding streets and
buildings. There are 5000 pedestrians and some cars on the
roads, as illustrated in Fig. 7 (left). Each cell of the grid cov-
ers a 3 × 3 m2 area. Since the user attention is mainly drawn
by the threatening cars, a region of high interest (ROI 0) is

Fig. 6 Comparison between our approach and our implementation of
the approach of Treuille et al. [29] for a varying number of sets, each
composed of 100 pedestrians

set around each of them. Moreover, to make pedestrians flee
potential collisions, a high discomfort and speed increase
are set in front of the cars, as in [29]. As a result, pedes-
trians close to a car are always in a region of high interest,
and thus ruled by a potential field. In front of cars particu-
larly, the pedestrians flee the zone of danger, demonstrating
an emergent panic behavior. The remaining visible environ-
ment is classified as a region of low interest (ROI 1), so that
pedestrians still take care to avoid each other, while the zone
outside the view frustum is set as of no interest (ROI 2). The
resulting fps varies between 15 and 30, depending on the
number of visible cars (1 to 3), and the size of their sur-
rounding ROI 0 (10 to 15 m radius). We note that the use of
a single walk animation in our companion video generates
foot sliding artifacts when pedestrians greatly increase their
speed. However, we do not focus on the character animation
accuracy, but rather on the global crowd behavior.

Finally, we have tested the frame rate evolution with a
fixed number of 24 sets and an increasing number of pedes-
trians. The test has been conducted in a large scene with
cells of 3 × 3 m2, and 1 to 5 distinct ROI 0, each of a
15 m radius. For the remaining of the scene, ROI 2 is not
exploited; all vertices are classified as ROI 1. During the
test, the scene and pedestrian rendering are deactivated to
analyze the sole motion planning cost. The results, in Fig. 8,
show that even with 5 distinct ROI 0, our architecture man-
ages the motion planning of 10,000 pedestrians at interactive
frame-rates (between 10 and 15 fps). Note that the increas-
ing number of pedestrians does not influence the potential
computation, which is more sensible to the number of sets,
as much as the short-term avoidance, which has a complex-
ity in O(n2).

In order to assess our implementation of small group be-
haviors, we have created eight short movies that have been
shown to twelve subjects with no Computer Graphics back-
ground. Four of the movies represent a pedestrian city cen-
ter (Fig. 1 (right)), while the other four were shot in a Hal-
loween theme park (Fig. 7 (right)). For these environments,
each of the four movies has a specific scenario: alone, where
pedestrians only walk by themselves; small, where pedes-
trians are in groups of 2 only; large, for large groups of 3

Fig. 7 (Left) A city scene
where pedestrians avoid a car
surrounded by a ROI 0.
(Right) A Halloween theme
park visited by families

868 B. Yersin et al.

Fig. 8 Performance for 24 sets with an increasing number of pedes-
trians (no rendering). 1 to 5 ROI 0 of a 15 m radius each are placed in
the scene, while the remaining space is entirely in ROI 1

to 4 people; and mix for a varied distribution of size from 1
to 4 group members. Note that the second video accompa-
nying this paper is an illustrative montage based on the ones
used for testing.

We asked the twelve subjects to watch the videos and
pay particular attention to the pedestrians and their behavior.
They were all shown the eight videos of 30 seconds each in
different order to avoid a bias in the answers. After each
viewing, several questions were asked:

• Indicate what you like/dislike about this scene.
• Who are these people and what are they doing?
• Do they look sympathetic?
• Do you feel at ease?

We intentionally hid the topic of the study and asked ques-
tions not directly concerning the groups to get a feeling of
subjects’ reactions, and to see if they would notice the differ-
ent scenarios. In the movies, the human templates used were
3 adult women, 2 adult men and 1 boy. Rendering variety
techniques were employed to further diversify the crowd [3].

Contrary to our expectations, only a small number of sub-
jects directly noticed that the size of groups was changing
with the videos. However, through naive comments, they
showed that the feeling was different for changing scenar-
ios. For the city center, in the alone scenario, people found
that pedestrians looked stressed out, in a hurry, going to
work. Especially concerning the child template, some peo-
ple wondered where his parents were, or assumed he was go-
ing home from school. Several people thought that the child
was in fact a person of short stature when no adult was ac-
companying him. However, when groups were introduced,
the subjects talked about an easy-going ambiance, less strict.
The few lonely pedestrians in the mix scenario were going to
work, the groups were visitors, tourists, families, or friends
shopping together. In the Halloween theme park, the same

type of comments were observed. In the alone scenario, peo-
ple thought that the point of view was close to the exit. Peo-
ple noticing lonely children expressed the same feeling as in
the city. In the grouped scenarios, pedestrians were seen as
shoppers, families and friends, or visitors. In the mix sce-
nario, pedestrians walking alone were interpreted as park
staff. These results show that it is possible to completely
modify a scene atmosphere by introducing groups of differ-
ent sizes.

7 Conclusion and future work

This paper presents a hybrid architecture allowing realistic
real-time crowd motion planning for thousands of pedestri-
ans. Our approach is scalable; it is possible to divide the
scene into regions and exploit different motion planning al-
gorithms according to their level of interest. The architec-
ture flexibility allows the user to determine the performance
he wishes and to select and distribute the regions of interest
(ROI) accordingly. Also, we show that it is possible to insert
an additional and scalable layer to simulate small groups of
pedestrians.

Our implementation employs an accurate potential field-
based method for pedestrians in ROI 0. A simple and ef-
ficient short-term avoidance algorithm is exploited in both
ROI 0 and ROI 1, thus ensuring no noticeable transition at
region borders. Results show that it is possible to simulate
over 10,000 characters in real time, while defining many
more sets than in a purely potential field-based approach.
Realism is further demonstrated with observable emergent
behaviors, like lane formations and panic escape. Finally,
a simple study has been conducted in order to assess our
group implementation, and shows that such an addition of-
fers a larger variety of interpretations, and a more sympa-
thetic ambiance in the scenes.

There are some limitations to our architecture. Firstly, in
too crowded narrow environments, severe bottlenecks may
appear, making the use of our potential field-based approach
a waste of computational time. However, it is possible to en-
force a low level of interest in these regions, e.g., ruled by
the short-term avoidance algorithm introduced in this paper.
Another limitation is our set-based approach: we are con-
strained to assign general goals for sets of pedestrians. One
goal per pedestrian would be too prohibitive for real-time
applications. Yet, we note that our architecture can handle
many more sets than previous potential field-based methods.
This is mainly due to our massive reduction of the number
of cells in which the potential is actually computed, and im-
plies the possibility to refine the grid for more accurate re-
sults.

An interesting lead for future work is to investigate agent-
based algorithms to improve pedestrian behaviors, and pos-
sibly merge them with our ROI architecture. Moreover,

Real-time crowd motion planning 869

based on our study, we have gathered many interesting leads
to improve group behaviors: care should be taken when
choosing group members to improve realism, e.g., a busi-
nessman wandering with a casually clothed person may
raise questions, children should be accompanied with at
least one adult, etc. Also, interactions between group mem-
bers and among different groups should be introduced. For
instance, children should occasionally look at their parent,
group members should talk to each other, people from differ-
ent groups could show interest in their surroundings, maybe
recognize other people from time to time and wave.

Acknowledgements We would like to thank Mireille Clavien for
her exceptional work on designing the virtual humans and the scenes.
Many thanks to Helena Grillon for proofreading this paper. This project
has been sponsored by the Swiss National Research Foundation.

References

1. Bayazit, O.B., Lien, J.M., Amato, N.M.: Better group behaviors
in complex environments using global roadmaps. In: ICAL 2003,
pp. 362–370 (2003)

2. Chenney, S.: Flow tiles. In: SCA’04, pp. 233–242 (2004)
3. de Heras Ciechomski, P., Schertenleib, S., Maïm, J., Maupu, D.,

Thalmann, D.: Real-time shader rendering for crowds in virtual
heritage. In: VAST’05, pp. 1–8 (2005)

4. Heïgeas, L., Luciani, A., Thollot, J., Castagné, N.: A physically-
based particle model of emergent crowd behaviors. In: Graphicon
(2003)

5. Helbing, D., Molnár, P., Schweitzer, F.: Computer simulations of
pedestrian dynamics and trail formation. In: Evolution of Natural
Structures, pp. 229–234 (1994)

6. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features
of escape panic. Nature 407(6803), 487–490 (2000)

7. Hughes, R.L.: A continuum theory for the flow of pedestrians.
Transp. Res. Part B Methodol. 36(29), 507–535 (2002)

8. Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech.
35(1), 169–182 (2003)

9. Kamphuis, A., Overmars, M.H.: Finding paths for coherent groups
using clearance. In: SCA’04, pp. 19–28 (2004)

10. Kirchner, A., Shadschneider, A.: Simulation of evacuation
processes using a bionics-inspired cellular automaton model for
pedestrian dynamics. Physica A 312(1–2), 260–276 (2002)

11. Lamarche, F., Donikian, S.: Crowd of virtual humans: a new ap-
proach for real time navigation in complex and structured environ-
ments. Comput. Graph. Forum 23(3), 509–518 (2004)

12. Lau, M., Kuffner, J.J.: Precomputed search trees: Planning for in-
teractive goal-driven animation. In: SCA’06, pp. 299–308 (2006)

13. Lee, K.H., Choi, M.G., Hong, Q., Lee, J.: Group behavior from
video: A data-driven approach to crowd simulation. In: SCA’07
(2007)

14. Loscos, C., Marchal, D., Meyer, A.: Intuitive crowd behaviour in
dense urban environments using local laws. In: TPCG’03, p. 122
(2003)

15. Metoyer, R.A., Hodgins, J.K.: Reactive pedestrian path following
from examples. In: CASA’03, p. 149 (2003)

16. Morini, F., Yersin, B., Maïm, J., Thalmann, D.: Real-time scalable
motion planning for crowds. In: Cyberworlds International Con-
ference, pp. 144–151 (2007)

17. Musse, S.R., Thalmann, D.: A model of human crowd behav-
ior: Group inter-relationship and collision detection analysis. In:
Eurographics Workshop on Computer Animation and Simulation
(1997)

18. Niederberger, C., Gross, M.H.: Hierarchical and heterogeneous re-
active agents for real-time applications. Comput. Graph. Forum
22(3), 323–331 (2003)

19. Paris, S., Pettré, J., Donikian, S.: Pedestrian steering for crowd
simulation: A predictive approach. In: Eurographics’07 (2007)

20. Pelechano, N., Allbeck, J., Badler, N.: Controlling individual
agents in high-density crowd simulation. In: SCA’07 (2007)

21. Pettré, J., de Heras Ciechomski, P., Maïm, J., Yersin, B., Laumond,
J.P., Thalmann, D.: Real-time navigating crowds: scalable simu-
lation and rendering. J. Vis. Comput. Animat. 17(3–4), 445–455
(2006)

22. Pettré, J., Grillon, H., Thalmann, D.: Crowds of moving objects:
Navigation planning and simulation. In: ICRA’07 (2007)

23. Reynolds, C.W.: Flocks, herds and schools: A distributed be-
havioral model. In: SIGGRAPH’87, pp. 25–34 (1987). DOI:
http://doi.acm.org/10.1145/37401.37406

24. Reynolds, C.: Steering behaviors for autonomous characters
(1999)

25. Reynolds, C.: Big fast crowds on ps3. In: Sandbox’06: Proceed-
ings of the 2006 ACM SIGGRAPH Symposium on Videogames,
pp. 113–121 (2006)

26. Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: SCA’05,
New York, NY, USA, pp. 19–28 (2005)

27. Sung, M., Gleicher, M., Chenney, S.: Scalable behaviors for crowd
simulation. Comput. Graph. Forum 23(3), 519–528 (2004)

28. Sung, M., Kovar, L., Gleicher, M.: Fast and accurate goal-directed
motion synthesis for crowds. In: SCA’05, pp. 291–300 (2005)

29. Treuille, A., Cooper, S., Popovic, Z.: Continuum crowds. In:
SIGGRAPH’06, pp. 1160–1168 (2006). DOI: http://doi.acm.org/
10.1145/1179352.1142008

Barbara Yersin is a research as-
sistant and PhD candidate at VR-
LAB, EPFL. She receives her Mas-
ter Degree in Computer Science at
EPFL in 2005, after performing her
Master Project at the Université de
Montréal. Her main interests are
in real-time applications, particu-
larly crowd simulations. The sub-
ject of her PhD Thesis is the real-
time motion planning and behavior
of crowds of virtual humans.

Jonathan Maïm is a research as-
sistant and PhD candidate at VR-
lab at the Swiss Federal Institute
of Technology in Lausanne (EPFL).
In April 2005, he receives a Master
Degree in Computer Science from
EPFL after achieving his Master
Project at the University of Mon-
tréal. His research efforts are con-
centrated on building an architec-
ture for simulating real-time crowds
of thousands of realistic virtual hu-
mans.

http://doi.acm.org/10.1145/37401.37406
http://doi.acm.org/10.1145/1179352.1142008
http://doi.acm.org/10.1145/1179352.1142008

870 B. Yersin et al.

Fiorenzo Morini is a research as-
sistant at the University of Applied
Sciences of Southern Switzerland
(SUPSI). In February 2007, he re-
ceives a Master Degree in Computer
Science from EPFL, after having
completed his Master Project in the
field of avoidance in virtual crowds.
His research interests focus on real-
time avoidance algorithms applied
to large groups of virtual humans.

Daniel Thalmann is Professor and
Director of The Virtual Reality Lab
(VRlab) at EPFL, Switzerland. He
is a pioneer in research on Vir-
tual Humans. Daniel Thalmann has
been Professor at The University
of Montreal and Visiting Professor/
Researcher at CERN, University of
Nebraska, University of Tokyo, and
National University of Singapore.
He is the President of the Swiss As-
sociation of Research in Informa-
tion Technology and one Director
of the European Research Consor-
tium in Informatics and Mathemat-

ics (ERCIM). He is coeditor-in-chief of the Journal of Computer An-
imation and Virtual Worlds, and member of the editorial board of
6 other journals. Daniel Thalmann was member of numerous Program
Committees, Program Chair and CoChair of several conferences. He
has also organized 5 courses at SIGGRAPH on human animation and
crowd simulation. Daniel Thalmann has published numerous papers in
Graphics, Animation, and Virtual Reality. He is co-editor of 30 books,
and co-author of several books including “Crowd Simulation”, pub-
lished in 2007 by Springer. He received his PhD in Computer Science
in 1977 from the University of Geneva and an Honorary Doctorate
(Honoris Causa) from University Paul-Sabatier in Toulouse, France,
in 2003.

	Real-time crowd motion planning
	Abstract
	Introduction
	Overview

	Related work
	Architecture
	Implementation
	Initialization
	Classification of vertices in ROI
	Potential field computation
	Improved short-term avoidance algorithm
	Find cells ahead
	Security check
	Emergency check

	Steering
	Continuity maintenance

	Group behavior
	Speed adaptation
	Waypoint modification

	Results and discussion
	Conclusion and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

