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Abstract The forecast performance of the empirical ESTAR model of Taylor et al.
(2001) is examined for 4 bilateral real exchange rate series over an out-of-sample eval-
uation period of nearly 12 years. Point as well as density forecasts are constructed,
considering forecast horizons of 1 to 22 steps head. The study finds that no forecast
gains over a simple AR(1) specification exist at any of the forecast horizons that are
considered, regardless of whether point or density forecasts are utilised in the eval-
uation. Non-parametric methods are used in conjunction with simulation techniques
to learn about the models and their forecasts. It is shown graphically that the nonlin-
earity in the conditional means (or point forecasts) of the ESTAR model decreases as
the forecast horizon increases. The non-parametric methods show also that the mul-
tiple steps ahead forecast densities are normal looking with no signs of bi-modality,
skewness or kurtosis.

Keywords Purchasing power parity · Regime modelling · Non-linear real exchange
rate models · ESTAR · Forecast evaluation · Density forecasts · Non-parametric
methods

JEL Classification C22 · C52 · C53 · F31 · F47

1 Introduction

The exponential smooth transition autoregressive (ESTAR) model introduced by
Granger and Teräsvirta (1993) and Teräsvirta (1994) into the economics literature
has become the workhorse statistical paradigm for the modelling of real exchange rate

D. Buncic (B)
University of St. Gallen, Institute of Mathematics and Statistics,
Bodanstrasse 6, 9000, St. Gallen, Switzerland
e-mail: daniel.buncic@unisg.ch

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159154445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


400 D. Buncic

data. Nonetheless, despite the noticeable popularity in modelling real exchange rates
within a non-linear ESTAR framework, little work appears to have been done in the
out-of-sample forecast evaluation of these models.1

The broad question of whether non-linear models do provide any significant fore-
cast gains, relative to simple linear models when evaluated out-of-sample, is still a
contentious topic in the academic literature. One of the earliest studies investigat-
ing the forecast performance of non-linear time series models is that of De Gooijer
and Kumar (1992). Their sobering conclusion was that no clear evidence in terms of
out-of-sample forecasting in favour of non-linear models could be found. Since then,
the interest in forecasting economic variables with non-linear time series models and
assessing their performance relative to simple linear models has grown enormously
(see, for example, the studies by Ramsey (1996), Zhang et al. (1998), Lundbergh and
Teräsvirta (2002), Teräsvirta et al. (2005), Teräsvirta (2006), and many others).

Nevertheless, despite the increasing interest in non-linear models for economic
and financial time series in general, there does not appear to be much emphasis in the
existing literature on portraying non-linear models in a way that the forecast improve-
ments over linear models can be easily understood. This seems to be partially due to
the fact that for many non-linear models closed form forecasts are only available at
the one-step ahead horizon, with forecasts beyond one period ahead requiring the use
of numerical techniques. It thus often appears to be the case that, when an applied
forecaster compares the forecasts from linear and non-linear models with statistical
tests, an intuitive feel about the importance of the non-linearity in the model is missing
and it may not be obvious why a particular statistical outcome is arrived at.

The objective of this study is to learn about the forecasts from the popular ESTAR
model for real exchange rates. To this end, I take the well-known empirical ESTAR
model of Taylor et al. (2001) and evaluate its forecast performance relative to a simple
AR(1) specification over an out-of-sample period from January 1997 to June 2008
using the bilateral real exchange rates of the UK, France, Japan and Switzerland vis-à-
vis the US Dollar. The models are assessed using standard tests for point as well as den-
sity forecasts, considering forecast horizons of up to 22 steps ahead. In addition to stan-
dard forecast evaluation tests, the study makes use of simulation and non-parametric
techniques to visualise and to provide an intuitive picture of how the forecasts from the
two competing models differ. The intention here is to use graphical techniques as much
as possible to learn about the models and their forecasts. The empirical ESTAR model
of Taylor et al. (2001) is particularly suitable for a graphical analysis, as it is a simple,
low-dimensional model, relying only on one conditioning variable to form the fore-
cast. In addition, this study is well-known and widely cited in the international finance
literature, receiving well over 400 citations in the Google Scholar citations index.2

1 One notable exception is the study by Rapach and Wohar (2006), who assess the out-of-sample perfor-
mance of the Band-TAR model of Obstfeld and Taylor (1997) as well as the ESTAR model of Taylor et al.
(2001) for four bilateral real exchange rates. The overall conclusion that Rapach and Wohar (2006) arrive at
is that non-linear models do not offer forecast gains at short horizons, but that more accurate point forecasts
at long horizons are possible for some countries.
2 Citation statistics were accessed on July 14th, 2010.
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Since it is often the case that a visual inspection of the forecasts from two com-
peting models is far more informative to the applied forecaster than the outcome of
a statistical test, the aim is to illustrate how simulation and non-parametric methods
can be used to highlight how the forecasts from the two competing models differ, and
hence where one model is likely to perform better than the other. The graphical display
of the conditional means should thus be helpful to applied forecasters who want to
learn about the forecasts from the models and their out-of-sample fit to the data.

The main findings of this study can be summarised as follows. Firstly, the statisti-
cal tests that are conducted provide no evidence to conclude that the ESTAR model
outperforms a simple AR(1) specification at any of the 1–22 steps ahead forecast hori-
zons for all four empirical real exchange rate series that are considered. This outcome
is reached regardless of whether point or density forecasts are used in the evaluation of
the out-of-sample data and regardless of whether a fixed or rolling forecasting scheme
is used.

Secondly, the graphical analysis that is carried out shows that the variation of the
empirical data around the one step ahead point forecasts (or conditional means) of
the two competing models is substantial, making it difficult for a statistical proce-
dure to discriminate between these two models at the of out-of-sample data points
that are available. Furthermore, using simulation and non-parametric techniques, it
is illustrated graphically that the non-linearity in the h step ahead point forecasts of
the ESTAR model decreases monotonically as the forecast horizon increases. These
two results imply that, as no forecast gains are realised at the one step ahead hori-
zon, where the non-linearity in the conditional mean is the strongest, there exists no
potential whatsoever for the fitted ESTAR models to outperform a simple AR(1) at
any of the longer forecast horizon that are considered.

The graphical analysis shows also that the forecast densities of the fitted ESTAR
models are approximately normal looking, without any indication of skewness and/or
kurtosis. This is regardless of the magnitude of the conditioning variable used in the
construction of the forecast densities. When testing the forecast densities, the implica-
tion of this result is that the statistical comparison boils down to one of equal conditional
means and variances. Since the conditional means of the two competing models were
found to be indistinguishable from one another, with similar sized variances, it is easy
to appreciate why the null of equal forecast densities cannot be rejected.

The remainder of the paper is organised in the following sections. Sect. 2 gives a
brief description of the ESTAR model, the data that was used and how the model was
estimated, with a short discussion of the results. In Sect. 3, point and density forecasts
are formed, visualised, statistically tested and discussed. Sect. 4 concludes the study
with a summary of the findings.

2 Model, data and estimation

The non-linear ESTAR model, the empirical data and the estimation method that is
employed in this study are described in this section. Since the model and the data have
been widely used in the literature, and as the estimation approach is considered to be
rather standard, the description is kept to a minimum.
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2.1 The ESTAR model

Taylor et al. (2001) specify the real exchange rate qt to evolve according to the fol-
lowing non-linear stochastic process:

�qt = − (qt−1 − η)Φ (γ, η; qt−1) + σηεt

Φ (γ, η; qt−1) = 1 − exp
{
−γ (qt−1 − η)2

}
(1)

where the error term εt is assumed to be independently and identically distributed,
with zero mean and unit variance.3 The exponential weighting function Φ (γ, η; qt−1)

determines the regime that governs the evolution of qt in (1). In the extreme case, that
is, when Φ (γ, η; qt−1) is either 0 or 1, qt evolves either according to a random walk
process or an equilibrium correcting mechanism, where η is the long-run equilib-
rium level of qt . For all other values of Φ (γ, η; qt−1) , qt evolves as a smooth and
continuous non-linear process with a continuum of regimes.

2.2 Data

As in Taylor et al. (2001), end-of-month nominal exchange rate and CPI data were
obtained from the IMF’s International Financial Statistics database for the US, the
UK, Japan, France, Germany and also for Switzerland over the period from January
1973 to June 2008, yielding 426 observations. The real exchange rates for the UK,
Japan, France, Germany and Switzerland — relative to the US — are constructed
in the standard way as qt ≡ log(CPIhome

t /CPIU S
t St ), where St is the home currency

price of one US Dollar. The series are further normalized to be equal to zero in January
1973. Figure 1 shows a time series plot of these five real exchange rates from January
1973 to June 2008.4

Taylor et al. (2001) originally estimated the ESTAR models over a sample period
from January 1973 to December 1996 for the real exchange rates of the UK, Japan,
France and Germany only. This study extends the available data set by nearly 12 years
to conduct an out-of-sample evaluation of these models. In this analysis, I use the
January 1973 to December 1996 in-sample period to estimate the ESTAR models and
then use the remaining data up to June 2008 to evaluate the models out-of-sample.
I also include the Swiss real exchange rate series in this analysis.5 The reason for
doing this becomes clear when examining the evolution of the five series over the
full sample data. As one can see from Fig. 1, since approximately the beginning

3 One can impose the restriction that εt is Gaussian, however, this is not needed at the estimation stage.
4 The data can be downloaded from http://www.mathstat.unisg.ch/buncic/data/rer_data.xls.
5 The Swiss Franc is one of the seven most heavily traded currencies in the world. Although there are other
heavily traded currencies that could have been included in the forecast evaluation such as, for example, the
Australian, Canadian or the New Zealand Dollars, these are often labelled as commodity currencies, due
to their sensitivity to commodity prices. Since the influence of commodity prices can be fairly severe, it
becomes difficult to identify adjustment due to Purchasing power parity (PPP) deviations or commodity
price movements.
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Fig. 1 Time series plot of the normalised real exchange rates over the period from January 1973 to June
2008. The non-shaded and shaded areas denote the in-sample (January 1973 – December 1996) and out-
of-sample (January 1997 – June 2008) periods, respectively

of 1996 the German and French real exchange rate series start to track one another
extremely closely. This is evidently due to the anticipation of the third stage of the
European Monetary Union (EMU) commencing in January 1999. As the purpose of
this study is to assess how well the fitted non-linear ESTAR models perform over
the out-of-sample period from January 1997 to June 2008, it is somewhat uninfor-
mative and rather repetitive to include both series in the forecast evaluation. For that
reason, I do not report the forecast evaluation results for the German real exchange
rate series.6

2.3 ESTAR estimation and discussion of results

The ESTAR model in (1) can be consistently estimated by standard non-linear least
squares estimation or alternatively, if one is willing to make the assumption that εt is
Gaussian, by maximum likelihood (see Gallant 1987). The parameter estimates of all
five real exchange rate series over the in-sample period from January 1973 to Decem-
ber 1996, together with robust standard errors (SE), the maximum of the log-likelihood
function (L (γ, η) under a Gaussian assumption) and some standard mis-specification
tests are reported in the upper part of Table 1.

It is evident from the results that are reported in Table 1 that the parameter esti-
mates of the UK, German, French and Japanese series correspond very closely to
the values estimated in previous studies (see Table 3 on page 1,029 in Taylor et al.

6 The results for the German series are quantitatively very similar to those for the French series and can
be obtained from the author upon request.
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Table 1 ESTAR and AR(1) in-sample parameter estimates

ESTAR UK Germany France Japan Switzerland

γ 0.5056 0.2933 0.3536 0.1819 0.3742
(SE) (0.0727) (0.2254) (0.2523) (0.1229) (0.2391)
η 0.1125 −0.0115 0.0059 0.5102 0.3142
(SE) (0.4103) (0.0693) (0.0614) (0.0776) (0.0624)
ση 0.033324 0.034502 0.033061 0.033390 0.038275
L (γ, η) 569.99 560.02 572.94 569.42 530.23
LMAR(1) 0.1691 0.1478 0.1561 0.1656 0.0818
[p − value] [0.6812] [0.7009] [0.6930] [0.6843] [0.7751]
LMAR(1−4) 0.1781 0.1750 0.1725 0.1753 0.13386
[p − value] [0.9496] [0.9511] [0.9523] [0.9510] [0.9699]
LMNL3 1.0697 1.1747 1.0856 0.4142 0.9334
[p − value] [0.3623] [0.3197] [0.3554] [0.7429] [0.4248]

AR(1) UK Germany France Japan Switzerland

δ −0.0297 −0.0219 −0.0233 −0.0147 −0.0288
(SE) (0.0199) (0.0157) (0.0166) (0.0096) (0.0154)
μ 0.1759 0.1317 0.1413 0.5981 0.4158
(SE) (0.0756) (0.0992) (0.0891) (0.1907) (0.0864)
σμ 0.033444 0.034640 0.033117 0.033579 0.038385
L (δ, μ) 568.96 558.87 571.78 567.81 529.41

ESTAR and AR(1) parameter estimates over the in-sample period from January 1973 to December 1996.
The maximum of the log-likelihood is denoted by L(·). LMAR(1) and LMAR(1−4) are F−statistics of
Langrange Multiplier (LM) test for first and first to fourth order serial correlation in the residuals, con-
structed as in Eitrheim and Teräsvirta (1996). LMNL3 is the F-statistics for a test for remaining ESTAR
non-linearity (see Eitrheim and Teräsvirta 1996, page 65)

(2001) and Table 1 on page 344 in Rapach and Wohar (2006)). Notice also that the
estimates for the Swiss series are similar in magnitude to those obtained for the
French series and hence fall within the expected range of values found in the lit-
erature.

It should be emphasised that I do not provide any discussion relating to model mis-
specification and/or how the particular form of the ESTAR model specified in (1) was
arrived at, although some test statistics are reported in Table 1. For details pertaining
to these issues I refer the reader to the extensive discussion in Taylor et al. (2001). The
focus of this study is to evaluate the fitted ESTAR model of Taylor et al. (2001) over
the out-of-sample period from January 1997 to June 2008. Although it would have
been possible to calibrate the parameters of the ESTAR model at the values found in
Taylor et al. (2001), I preferred to fit the non-linear models to the data set and use
these in the forecast evaluation. The IMF’s IFS database is highly reliable so that the
in-sample data should correlate strongly with, if not exactly match, the data set used
in Taylor et al. (2001).7

7 Minor differences in the parameter estimates are thus most likely due to different numerical routines or
differences in the convergence criteria.
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3 Forecasts and forecast evaluation

The forecast evaluation exercise focuses on point and density forecasts. Point fore-
casts still appear to be widely used by practitioners as they are easy to implement and
interpret. Nonetheless, point forecasts have the drawback of being least informative
in the sense that they do not provide any indication of the uncertainty surrounding
the forecasts. Probability density forecasts, on the other hand, are the most general
and informative forecasts that can be computed, as the whole forecast density is con-
structed.

The benchmark model that is used in the forecast evaluation exercise is a simple
AR(1) specification for the real exchange rate, parameterised in the standard way as

�qt = δ (qt−1 − μ) + σμεt . (2)

The estimates of the AR(1) model parameters are — for reasons of completeness and
again without any discussion — reported in the lower part of Table 1.

It should be mentioned that the results that are presented below follow the methodo-
logical approach of a “genuine” out-of-sample forecast evaluation. In the terminology
of McCracken and West (2002) this is referred to as a “fixed” forecasting scheme.
That is, I estimate the model parameters over the in-sample period from January 1973
to December 1996 and do not update (or re-estimate) these as new data become avail-
able when constructing the out-of-sample forecasts. Nevertheless, I do also provide
statistical test results based on a recursive forecast scheme, using a rolling window
of T = 287 observations. These additional results are reported and documented in
more detail in the Appendix of the paper.

The reasons for why I implement a fixed forecasting scheme are as follows. Firstly,
the objective of the paper is to use graphical techniques as much as possible to learn
about the models, their forecasts and the data. The intention is to provide the applied
forecaster with some intuition about the non-linearity in the data and about the fit of
the two models to the data. It often appears to be the case that forecast comparisons
involving non-linear models give a sense of a black-box mechanism, leaving the fore-
caster with little appreciation of why one model performs better than the other. In this
context it is not possible to present the conditional means in an intuitive and easily
understood way if one updates the parameters recursively at each out-of-sample data
point, as well over 10 years of out-of-sample data are available, resulting in over 100
conditional means to be displayed for each model. The intuition that one gains from a
visual comparison of the out-of-sample data points to the conditional means implied
by the models would thus be lost.

Secondly, and perhaps more importantly, the unit-root restriction on the inner
regime of the ESTAR model of Taylor et al. (2001) makes the functional form rather
rigid in the sense that many observations at the extremes of qt−1 are needed for any
noticeable changes in the shape of the ESTAR conditional mean to occur. Neverthe-
less, contrary to what is needed and hence to the disadvantage of the ESTAR model,
the out-of-sample observations that are available are rather homogenous and cluster
largely around the centre of the density of qt−1. The combination of these two effects
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results in only marginal variation in the recursively updated parameter estimates and
thus also only small changes in the implied conditional means.

In order to illustrate this point further, consider the scatter plots of all in and out-of-
sample data points and the (one step ahead) conditional means shown in Fig. 2 (these
plots are discussed in more detail in Sect. 3.1.1). Because of the unit-root restriction
in (1), to obtain any noticeable changes in the shape of the conditional mean of the
ESTAR model one would require observations away from the centre of qt−1 and large
positive (negative) responses of �qt when qt−1 is sufficiently smaller (greater) than η.
Notice from Panels (c) and (d) of Fig. 2, nonetheless, that for Japan and Switzerland
nearly all out-of-sample data fall in the inner unit-root regime of the ESTAR model.
The effect of recursively updating the parameter estimates on the shape of the condi-
tional mean is thus most likely negligible. For the UK and France the spread of the
out-of-sample data is noticeably larger than for the Japanese and Swiss real exchange
rate series. But there does not seem to be any indication of an obvious ESTAR model
consistent response of �qt to qt−1, portraying instead random variation across the
0 axis. It seems, therefore, again unlikely that recursively updating the parameter
estimates will lead to any important differences in the conditional means.

To gain some intuition for the above presented argumentation, I show plots of the
recursively estimated γ parameter under an expanding and rolling fixed T = 287
window scenario in Panels (a) and (b) of Fig. 3 over the 138 out-of-sample obser-
vations from January 1997 to June 2008. Notice from the plots in Fig. 3 how small
the changes in the γ parameter estimates are. Under the expanding window shown in
Panel (a), all real exchange rates series except the UK one show very little variation in
the γ estimate. Note that the estimate for the UK series drops somewhat towards the
end of the out-of-sample period, resulting in even weaker non-linearity in the ESTAR
conditional mean. Under the rolling window scheme plotted in Panel (b), a little more
variation is visible for the French and UK series in the second half of the out-of-sam-
ple period, nevertheless for the French series the γ estimate increases only marginally
from below 0.4 to around 0.5, while that of the UK series drops again below 0.5 after a
short increase. Such small changes in γ do not impact on the shape of the conditional
mean in any important way.

Thirdly, because I consider a test of equal mean squared errors (MSE) of two para-
metric models, where the first order optimality conditions are essentially moment
conditions that provide consistent estimates of the model parameters, no adjustments
to the (asymptotic) standard errors in the computation of the Diebold and Mariano
(1995) (DM) test need to be made that would normally arise because of the parame-
ters on which the forecasts are based being sample estimates rather than population
quantities (see pp. 312–313 in McCracken and West 2002, for a more detailed treat-
ment of this result). 8 Also, as analytic (closed form) forecasts from the ESTAR model
are available only at the one step ahead forecast horizon, where multiple steps ahead
forecasts need to be simulated, the computational burden of updating and simulating
a new forecast path for each of the recursively updated parameter estimates under an

8 In the notation of McCracken and West (2002), the term F in equation 14.20 on page 309 is equal to zero
(see also Bao et al. 2007, p. 9).
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(a) (b)

(c) (d)

Fig. 2 One step ahead point forecasts. The thick green and thin blue lines show the one step ahead
conditional forecasts of the ESTAR and AR(1) models, respectively. Red circles are the non-parametric
conditional means, with 95% confidence intervals drawn as blue shading. Grey crosses mark the in-sample
data. Vertical dotted lines are drawn at the 15th and 85th percentiles of qt−1. Black asterisks denote the
out-of-sample data
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(a) (b)

Fig. 3 Recursive estimates of the γ parameter. Panel a shows the estimates under an expanding window,
where one extra observation from the out-of-sample data is included in each updating step. Panel b shows
the estimates under a fixed T = 287 sample size when rolling through the out-of-sample data. At each
updating step, one observation is dropped at the beginning of the sample as each new one is added at the
end

expanding or rolling forecasting scheme can be considerable and in many situations
not practical for an applied forecaster.9

3.1 Point forecasts

Note that under an MSE loss function, the optimal point forecast of the change in
the real exchange rate series, h periods ahead, is IE (�qT +h |	T ), where 	T =
{QT ;M (θ)} is the information set available to the forecasting agent at time T when
the forecast is made, QT is the full history of qt up to time T and M(θ) is the model
with parameters θ used to construct the forecast. The h−step ahead point forecast
IE (�qT +h |	T ) is thus nothing more than the conditional mean of �qt , given qt−h ,
evaluated at the out-of-sample data points of the model under consideration.

3.1.1 Assessing one step ahead point forecasts

How do the conditional means of the competing models differ from one another at
the one step ahead forecast horizon? Before I proceed to provide any formal statistical
evidence to evaluate the out-of-sample forecast performance of the non-linear ESTAR
model relative to the simple AR(1) benchmark, it will be informative to consider an
informal graphical approach to visually compare the one step ahead point forecasts of
the two models. Such an approach has recently been advocated by Pagan (2002) and
Breunig et al. (2003) to learn about models and their fit to data. In this context we can
informally assess one step ahead point forecasts by examining plots of the conditional
means implied by the competing models over all out-of-sample data points.

9 For example, the recursive fixed window results that are reported in the Appendix of the paper require just
under 38 h computation time on a 3 Ghz quad-core processor with a parallel implementation of the forecast
path simulation for each of the four series.
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Figure 2 shows the implied conditional means of the ESTAR and AR(1) models
evaluated at the parameter estimates that are reported in Table 1 for the four real
exchange rate series that are considered in the forecast evaluation. I have also super-
imposed the in-sample as well as the out-of-sample data by means of a scatter plot in
Fig. 2, and additionally graph a non-parametric (NP) estimate of IE (�qt |qt−1) (with
95% confidence bands) to provide a purely data driven measure of IE (�qt |qt−1).10

The dashed vertical lines in Fig. 2 show the 15th and 85th percentiles of the in-sample
values of qt−1.11 The solid vertical line for the UK series in Panel (a) of Fig. 2 marks
the bound on the in-sample data.

What can we see from Fig. 2? Notice initially how the conditional means of the
ESTAR model and the AR(1) differ from one another. For the AR(1) model, adjust-
ment towards its long-run equilibrium occurs at a constant rate over all values of
qt−1, so that it does not matter how far away one is from PPP when adjusting to
any deviations from it. For the ESTAR model, on the other hand, this adjustment is
evidently a non-linear function of qt−1. The speed of adjustment towards PPP thus
increases — with accelerating speed — the further away qt−1 is from η. Never-
theless, despite these important model-specific differences between the conditional
means of the linear and non-linear models, it is evident from Fig. 2 that overall
the variation of the empirical data around the conditional means is fairly substan-
tial, so that a significant portion of the movement in �qt is not explained by the
models.

Notice here also that over the entire out-of-sample period that it was consider,
covering nearly 12 years of data, only for the UK series are there a handful of obser-
vations that fall outside the in-sample data range. There is not a single out-of-sample
data point that falls outside the in-sample data range for the French, Japanese and
Swiss real exchange rate series. What is particularly interesting to see from Panels
(c) and (d) in Fig. 2 is that for the Swiss and Japanese series nearly all of the out-
of-sample observations cluster around the centre of qt−1, that is, in between the 15th
and the 85th percentiles. Recall that in the literature that models real exchange rates
with a threshold type model, i.e. Obstfeld and Taylor (1997), this region coincides
with what is labelled the “inner regime”, where �qt is assumed to be inside the no
adjustment threshold band within which qt follows a random walk process. Given that
the conditional means of the ESTAR and AR(1) models overlap fairly closely over
this range, one can anticipate that statistical tests will have difficulties in decisively
rejecting the (null) hypothesis of no forecast improvement of the ESTAR model over
the AR(1).

Examining the plots of the UK and French real exchange rate series shown in Pan-
els (a) and (b) of Fig. 2, one can notice that the out-of-sample data points show a
somewhat wider dispersion, with a number of them falling outside the 15th to 85th

10 A local linear regression estimator was used to compute the NP conditional means with a Silverman
(1986) rule of thumb plug-in bandwidth (see Pagan and Ullah 1999, p. 104 for details).
11 Note here that the 15th and 85th percentiles were used as the lower and upper bounds on the η parameter
in the initial grid search of the estimation, before a Newton-Raphson type maximisation algorithm was used.
In threshold autoregressive (TAR) models it is commonly required to have at least 15% of the sample data
in each of the two outer regimes (see p. 84 in Franses and van Dijk 2000).
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percentile range. Nonetheless, it is evident also that only very few observations fall
close to the extreme tail ends of the density of qt−1, where the non-linearity in the
conditional means, and hence the forecasts of the ESTAR model, is most pronounced
compared to the linear model. Notice also that the spread of the out-of-sample data
points across the conditional means of the two models is again fairly substantial, so
that one can once again anticipate that it will be difficult for a forecast evaluation test
to differentiate between these two models.

In order to provide some formal statistical evidence of the conjectured forecast
failure of the non-liner ESTAR model at the one step ahead horizon, let the one step
ahead forecast errors of the two competing models be defined as

εE ST AR
T +1|T = �qT + (qT − η)Φ (γ, η; qT ) (3)

and

εAR
T +1|T = �qT − δ (qT − μ) , (4)

where T is the last observation of the in-sample data set. The loss function at time
T + 1 that I employ to assess the models is a squared error loss function formed as

dT +1 ≡ (εAR
T +1|T )2 − (εE ST AR

T +1|T )2. (5)

In order to evaluate the competing models, it is necessary to investigate how likely
it is that the squared error loss dT +1 has a population expectation that is different from
zero. That is, it is necessary to test the null hypothesis

H0 : IE(dT +1) = 0

against the alternative

HA : IE(dT +1) > 0.

Two standard statistical tests are used to assess this. These are the Diebold and Mariano
(1995) (DM) test, using the small sample correction factor of Harvey et al. (1997) and
a weighted version of the DM test, adapted from van Dijk and Franses (2003). The
weighted version of the DM test is designed to give more weight to out-of-sample
observations that fall towards the extremes of the density of qt−1, where the non-line-
arity in the ESTAR model is at its strongest.12 It should thus be more apt in picking up
forecast gains stemming from non-linearity in the tails of qt−1. I should stress that the
use of the DM test is valid as the two competing models are not nested. A restriction
of γ = 0 makes the ESTAR model a random walk process rather than an AR(1).

12 See van Dijk and Franses (2003) for the computational details of the weighted version of the test.
The weights ωT +1 were computed as 1 − f̂ (qT +1)/max[ f̂ (qT +1)] where f̂ (qT +1) is a non-parametric
estimate of the density function of qT +1, evaluated at the out-of-sample data points. A Gaussian kernel
with a plug-in bandwidth were used to compute f̂ (qT +1).

123



Understanding forecast failure of ESTAR models 411

Table 2 Unweighted and weighted DM test results for one step ahead point forecasts

DM statistic UK France Switzerland Japan

d −3.37 × 10−5 9.68 × 10−6 9.71 × 10−7 −1.59 × 10−6

(SE) (2.51 × 10−5) (2.08 × 10−5) (1.41 × 10−5) (8.87 × 10−6)

[t − statistic] [−1.3406] [0.4645] [0.0688] [−0.1792]
ωd −2.32 × 10−5 6.66 × 10−6 3.51 × 10−7 −1.05 × 10−6

(SE) (1.78 × 10−5) (1.47 × 10−5) (6.08 × 10−6) (1.31 × 10−6)

[t − statistic] [−1.3048] [0.4538] [0.0577] [−0.8013]

Standard (d) and weighted (ωd) Diebold and Mariano (1995, DM) test statistics. Standard errors (SE) are
of the Newey and West (1987, NW) type. d was calculated as the arithmetic mean of dT +1 ≡ (εAR

T +1|T )2 −
(εE ST AR

T +1|T )2 over the out-of-sample data, with εAR
T +1|T and εE ST AR

T +1|T being the one step ahead forecast
errors from the AR(1) and ESTAR models, respectively. The small sample correction factor of Harvey
et al. (1997) was used in the construction of both test statistics. ωd was computed as the arithmetic mean
of ωT +1dT +1, where ωT +1 = 1 − f̂ (qT +1)/max[ f̂ (qT +1)] and f̂ (qT +1) is an estimate of the density
function of qT +1, evaluated at the out-of-sample data points. A Gaussian kernel and a ‘plug in’ bandwidth
were used to compute the density estimate (see Silverman 1986)

The DM test results for the one step ahead point forecasts are reported in Table 2
below. These tests confirm the impressions that were formed from the visual inspec-
tion of the implied conditional means in Fig. 2. All null hypotheses of equal forecast
performance cannot be rejected for any of the four empirical series that are considered
in the forecast evaluation, at any conventional significance levels and regardless of
whether a weighted or an unweighted version of the DM test is used. Notice that the
t−ratios remain well below unity in absolute value, suggesting that this is a fairly
strong failure to reject the null hypothesis. Notice also that for the UK and Japanese
series, the DM test statistic is, in fact, negative, indicating that the ESTAR model
generates larger forecast errors than the AR(1) model. Overall, it can thus be con-
cluded that it is highly unlikely that the ESTAR models that are considered here can
outperform a simple AR(1) forecast at the one step ahead horizon.

3.1.2 Assessing multiple steps ahead point forecasts

How likely is it for the non-linear ESTAR model to generate any gains when forming
a multiple periods ahead point forecast? We can again informally answer this ques-
tion by looking at how different the implied conditional means of the ESTAR and
AR(1) models are from one another. Moreover, since we saw that the non-linearity
in the conditional means of the ESTAR models was quite mild at the one step ahead
horizon, given the variation in the empirical data, it will be interesting to observe graph-
ically how the non-linearity in the conditional mean changes as the forecast horizon
increases. It should be clear that, because the ESTAR models that were estimated
here are stable and stationary, the h step ahead conditional mean should converge to
the unconditional mean of �qt , as h goes to infinity. As the same holds true for the
AR(1) model, one can expect the difference between the forecasts of the two models
to disappear as h increases.

Constructing multiple step ahead forecasts for the AR(1) model is straight forward
and can be computed recursively in closed form. For the ESTAR model, nevertheless,
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this is not possible as it is necessary to integrate out non-linear transformations of
all future shocks, therefore requiring numerical techniques. The approach that is em-
ployed here is Monte Carlo (MC) integration (cf. Franses and van Dijk 2000, Sect. 3.5).
To implement this, I simulate a large number of pseudo realisations of qT +h, ∀h > 1,
conditional on qT , using the following recursion

q̃ j
T +1|T = qT − (

qT − η
)
Φ(γ, η; qT ) + σηε̃

j
T +1

q̃ j
T +2|T = q̃ j

T +1|T − (q̃ j
T +1|T − η)Φ(γ, η; q̃ j

T +1|T ) + σηε̃
j
T +2

...

q̃ j
T +h|T = q̃ j

T +h−1|T − (q̃ j
T +h−1|T − η)Φ(γ, η; q̃ j

T +h−1|T ) + σηε̃
j
T +h . (6)

The realisation q̃ j
T +h|T is thus the j thh step ahead pseudo value of qT +h , given qT and

shock sequence {ε̃ j
T +i }h

i=1. The h step ahead point forecasts can then be approximated

by computing the arithmetic mean over the J simulated q̃ j
T +h|T entries, that is, one

computes

IE J (q̃T +h|T ) = J−1
J∑

j=1

q̃ j
T +h|T (7)

which will have the property that limJ→∞ IE J (q̃T +h|T ) = IE(qT +h |qT ). To get the
conditional mean for the changes in the qt series, one simply constructs IE(�qT +h |qT )

as IE J (q̃T +h|T ) − IE J (q̃T +h−1|T ).
Although it is appropriate to employ this approach to generate multiple steps ahead

forecasts of �qt , one drawback when computing the conditional means for visualisa-
tion purposes is that the quantity IE(�qT +h |qT ) will only be available at the empirical
out-of-sample data points. A useful alternative approach that can be employed here
to obtain the h step ahead implied conditional mean of qt is to simulate a large num-
ber of realisations of qt from the ESTAR model in (1) and then use non-parametric
methods to compute IE(�qt |qt−h) directly on the simulated data. The benefit of this
approach lies in its ease of implementation and its ability to cover an arbitrary range
of values of qt . This way one can evaluate forecasts at a sufficient number of points
over a given interval so that a line can be drawn to examine IE(�qt |qt−h) graph-
ically. As with the visualisation at the one step ahead horizons discussed in Sect.
3.1.1, any non-linearities in the conditional forecasts should then be identifiable from
the plots of the non-parametric estimates of IE(�qt |qt−h). In order to illustrate how
this approach can be implemented to examine the non-linearity of multiple steps
ahead forecasts, 1 million observations of qt were simulated from (1), calibrated at
the parameter estimates of the UK series that are provided in Table 1. The εt were
drawn from a standard normal distribution.13 A grid of 1,000 equally spaced points

13 One could also use a non-parametric bootstrap and re-sample the empirical residuals of the UK series
if one finds the normality assumption to be too restrictive. However, since there are only 287 in-sample
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(a) (b)

Fig. 4 Conditional means corresponding to h step ahead forecast. These were obtained as non-parametric
estimates of the conditional mean from 1 million simulated pseudo observations from the ESTAR model
of Taylor et al. (2001) at the parameter values of the UK series. The conditional mean IE(�qt |qt−k ) was
computed over 1,000 equally spaced grid points in the interval [min (qt ) , max (qt )]

in the interval [min (qt ) , max (qt )] was used to compute and plot the non-parametric
estimate of IE(�qt |qt−h).14 Note that the reason why the parameter settings of the
UK series was chosen is that it yields the largest estimate of the transition function
parameter γ . Recall that, given the range of the transition variable, the strength of
the non-linearity in the ESTAR model is governed by the size of the γ parameter,
where values close to 0 indicate weaker non-linearity and larger ones stronger non-
linearity. To visualise how the non-linearity changes at different forecast horizons, I
plot IE(�qt |qt−h) for two sets of forecast horizons. These are h = [1, 2, 3, 5, 6] and
h = [7, 10, 14, 18, 22] in Panels (a) and (b) of Fig. 4, respectively. Notice from Panel
(a) of Fig. 4 that the non-linearity in the forecasts is strongest at the one step ahead
horizon, that is, when h = 1. Both, the curvature, as well as the steepness, of the
conditional means decreases at the transition points as the forecast horizon increases.
For longer horizons shown in Panel (b) of Fig. 4, it is evident that for forecasts of 10
steps ahead or longer (i.e., when h ≥ 10) no visual signs of non-linearity remain to
be seen.

data points and a fairly large number of draws are needed, it was preferred to generate the εt sequence
parametrically from a standard normal density.
14 The min (qt ) and max (qt ) values are those of the full sample data.
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Why might one find this information useful? If the non-linearity in the conditional
mean of the ESTAR model decreases monotonically as the forecast horizon increases,
being the strongest at the one step ahead horizon, than it seems highly unlikely that
any statistical tests evaluating the performance of the ESTAR model at longer forecast
horizons will reject the null hypothesis of equal forecast accuracy. We can remind
ourselves here again of the results obtained from the plots of the one step ahead con-
ditional forecasts shown in Fig. 2. Recall that not only was the difference between
the conditional means of the competing models fairly small, but that the spread of
the data around the conditional means was also substantial, so that it was impossible
to statistically discriminate between the ESTAR and AR(1) models at the one step
ahead out-of-sample data points. Since the non-linearity in the forecasts decreases as
h increases, converging to the unconditional mean of �qt , and since the variation of
the data around the conditional means remains fairly large, one should be convinced
that no possibility exists for the considered ESTAR models to outperform the AR(1)
models at any forecast horizon.

I can once again provide some formal statistical evidence in support of this con-
jecture by computing the weighted DM test for multiple step ahead forecasts con-
sidering horizons h = [2, 3, 5, 6, 7, 10, 14, 18, 22]. The results of this test are re-
ported in Table 3 below.15 The multiple steps ahead point forecasts from the ES-
TAR model — necessary to compute the DM test statistic — were constructed from
the recursive scheme that was outlined in (6), where J was set to 10,000 and the
ε̃

j
T +h were drawn from a standard normal distribution. It is evident form the re-

sults reported in Table 3 that the statistical tests confirm the conjectured failure of
the ESTAR model. The null hypothesis of equal forecast accuracy cannot be re-
jected at any conventional significance levels and forecast horizon that were con-
sidered. Notice that for the UK series, the test statistic yields negative values which
in some cases are large enough to suggest that the AR(1) model provides forecast
gains over the non-linear model. Despite these results, however, it should be kept in
mind here that the forecasts that the linear and non-linear models generate are very
similar at higher forecast horizons. To see how similar they in fact are, regardless of
their statistical significance, I show plots of the 10 step ahead point forecasts for all
four series in Fig. 5.16 Notice how closely the conditional means of the competing
models overlap, especially over intervals where the bulk of the out-of-sample data
fall.

15 The reason why only the results of the weighted DM test are reported here is purely to avoid repetition
and to allow any potential non-linearity in the tails of qt to be weighted favourably in the evaluation of the
test. There is, nevertheless, qualitatively no difference in the results between the unweighted and weighted
versions of the DM test, as both indicate a rather strong non-rejection of the null hypothesis.
16 The contents of the plot are the same as in Fig. 2. The ESTAR conditional mean (solid green line) was
computed non-parametrically from 1 million simulated draws. Fig. 5 also shows a scatter of the 10 step
ahead conditional forecast constructed with the recursive scheme outlined in (6). These are superimposed
onto the solid green line with black circles to show how they compare to one another.
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Table 3 Weighted DM test results for multiple step ahead point forecasts

DM statistic h UK France Switzerland Japan

ωd 2 −1.74 × 10−5 6.80 × 10−6 −1.07 × 10−6 −1.17 × 10−6

(SE) (1.25 × 10−5) (1.35 × 10−5) (5.35 × 10−6) (1.37 × 10−6)

[t − statistic] [−1.3991] [0.5021] [−0.2003] [−0.8544]
ωd 3 −1.60 × 10−5 3.34 × 10−6 −1.99 × 10−6 −1.44 × 10−6

(SE) (8.70 × 10−6) (1.20 × 10−5) (5.24 × 10−6) (1.55 × 10−6)

[t − statistic] [−1.8420] [0.2779] [−0.3789] [−0.9292]
ωd 5 −7.84 × 10−6 2.32 × 10−6 1.18 × 10−6 −8.85 × 10−7

(SE) (3.90 × 10−6) (1.02 × 10−5) (4.52 × 10−6) (9.86 × 10−7)

[t − statistic] [−2.0083] [0.2288] [0.2613] [−0.8979]
ωd 6 −4.39 × 10−6 9.68 × 10−7 1.80 × 10−6 5.89 × 10−7

(SE) (2.89 × 10−6) (9.20 × 10−6) (3.76 × 10−6) (1.00 × 10−6)

[t − statistic] [−1.5161] [0.1051] [0.4792] [0.5858]
ωd 7 −3.20 × 10−6 4.38 × 10−6 1.39 × 10−6 4.55 × 10−7

(SE) (2.30 × 10−6) (7.78 × 10−6) (3.73 × 10−6) (9.53 × 10−7)

[t − statistic] [−1.3896] [0.5629] [0.3725] [0.4774]
ωd 10 −2.65 × 10−6 2.59 × 10−7 −1.86 × 10−6 2.86 × 10−7

(SE) (9.40 × 10−7) (6.63 × 10−6) (3.04 × 10−6) (8.02 × 10−7)

[t − statistic] [−2.8219] [0.0391] [−0.6113] [0.3573]
ωd 14 −1.48 × 10−6 −6.98 × 10−7 −2.11 × 10−6 4.80 × 10−7

(SE) (9.78 × 10−7) (4.46 × 10−6) (2.29 × 10−6) (7.13 × 10−7)

[t − statistic] [−1.5170] [−0.1565] [−0.9221] [0.6732]
ωd 18 −1.39 × 10−6 −3.08 × 10−6 −1.84 × 10−6 2.81 × 10−7

(SE) (7.89 × 10−7) (3.93 × 10−6) (1.98 × 10−6) (3.34 × 10−7)

[t − statistic] [−1.7564] [−0.7843] [−0.9306] [0.8413]
ωd 22 −6.10 × 10−7 −1.82 × 10−6 −1.16 × 10−6 −1.09 × 10−7

(SE) (5.88 × 10−7) (3.40 × 10−6) (1.33 × 10−6) (3.05 × 10−7)

[t − statistic] [−1.0378] [−0.5347] [−0.8718] [−0.3581]

Weighted version of the DM test statistic ωd and its standard error (SE) for multiple step ahead point
forecasts. The statistics were computed as documented in Table 2

3.2 Density forecasts

Density forecasts play a fundamental role in the finance literature. In risk manage-
ment, for example, density forecasts form a building block for risk measures such as
value-at-risk and expected shortfall. As it is often reported in the literature that non-lin-
ear models can generate highly skewed and/or bi-modal forecast densities, especially
when considering forecasts multiple periods ahead (cf. Lundbergh and Teräsvirta 2002,
p. 505), it is important to analyse how the conditional forecast densities of the fitted
ESTAR and AR(1) models differ from one another. Understanding these differences
will be of particular interest to a practitioner who relies on forecasts of the conditional
distributions to price financial derivatives in risk management scenarios. Throughout
this section, I will once again employ informal graphical techniques extensively to
provide an intuitive visual assessment of the forecast densities. As in the previous sec-
tion, formal statistical tests are then used to supplement and validate any conjectures
drawn from the visual assessment.
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(a) (b)

(c) (d)

Fig. 5 10 step ahead point forecasts. The contents are the same as in Fig. 2. Black circles are superimposed
onto the NP conditional mean (solid green line) to mark the 10 step-ahead conditional forecast computed
from the recursive scheme outlined in (3) to facilitate the comparison to the NP conditional mean computed
directly from 1 million simulated ESTAR realisations

123



Understanding forecast failure of ESTAR models 417

3.2.1 Assessing one step ahead density forecasts

In the given context, i.e., under the assumption that the εt are distributed as a standard
normal random variable, it is trivial to compute the one step ahead forecast densities
for the AR(1) and ESTAR models. These are, respectively

f AR
T,1 (�qT +1) = N

(
δ (qT − μ) , σ 2

μ

)
(8)

and

f E ST AR
T,1 (�qT +1) = N

(
− (qT − η)Φ(γ, η; qT ), σ 2

η

)
, (9)

where N(a, b) denotes the Gaussian density function with location and scale param-
eters a and b, respectively.

Notice from (8) and (9) that, because the same functional form for the density of the
stochastic process is assumed, a comparison of the one step ahead forecast densities
reduces to one of equal conditional means if σ 2

η = σ 2
μ, and therefore boils down to

an evaluation of the point forecasts as in Sect. 3.1. A statistical test of equal density
forecasts should, therefore, lead to the same qualitative conclusion as a test of equal
conditional means. Although it is not clear whether the population quantities are such
that σ 2

η = σ 2
μ, it is evident from the estimates of σ 2

η and σ 2
μ reported in Table 1 that the

difference between the sample quantities is very small. It can therefore be conjectured
that there exists very little evidence to suggest that the forecast densities of the AR(1)
and ESTAR models differ from one another at the one step ahead horizon, given that
the conditional means were found to be statistically indistinguishable in Sect. 3.1 and
that the differences between sample quantities of σ 2

η and σ 2
μ are very small.

This conjecture can be tested formally by comparing the performance of the two
density forecasts f AR

T,1 (�qT +1) and f E ST AR
T,1 (�qT +1) relative to the true, but unob-

served, density of �qT +1. The statistical approach implemented here is a logarithmic
scoring rule that is based upon the difference of the Kullback–Leibler information
criterion (KLIC) of the competing density forecasts, which has the interpretation of
a goodness of fit test (see Mitchell and Hall 2005; Bao et al. 2007; Amisano and
Giacomini 2007). Taking the difference of the KLICs of the competing densities
ensures that the term involving the true but unknown density of �qT +1 drops out, so
that the comparison based on the KLICs boils down to a comparison of the logarithmic
scores.17

The idea behind the comparison of the logarithmic scores is to give a higher (lower)
score to a density forecast if a given out-of-sample observation falls within a high (low)
probability region. The density forecast that yields the highest average score is then
preferred. The difference between the average scores can be tested statistically by

17 The use of the term score here should not be confused with the first order condition in Maximum
Likelihood estimation, which is often referred to as the Score (or Fisher Score).
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defining the (log) score difference

d S
T +1 = log f E ST AR

T,1 (�qT +1) − log f AR
T,1 (�qT +1) (10)

and evaluating the null hypothesis of equal average scores by means of a DM type test
as in Sect. 3.1. Given that both forecast densities follow a Gaussian distribution, (10)
reduces to

d S
T +1 = − log

(
ση

σμ

)
− 1

2

⎡
⎣

(
εE ST AR

T +1|T
ση

)2

−
(

εAR
T +1|T
σμ

)2
⎤
⎦ (11)

which can then be used to compute the average score over the out-of-sample observa-
tions and to construct the corresponding DM test of equal density forecasts.18

The results of the DM test of equal density forecasts at the one step ahead horizon
are reported in the first row of Table 4. Recall here that the preferred model is the one
that yields, on average, the highest log score. Since d S

T +1 in (10) is written in such
a way that the AR(1) log density is subtracted from the ESTAR log density, I again
form the null hypothesis of equal density forecasts as

H0 : IE(d S
T +1) = 0

against the alternative

HA : IE(d S
T +1) > 0

to test for the superiority of the ESTAR models’ density forecasts. A significantly
large positive value of the out-of-sample average of d S

T +1 would thus suggest that the
ESTAR density outperforms the simple AR(1). Nevertheless, notice from the results
of this test reported in Table 4 that all t−statistics with positive entries remain well
below one, while those of the UK and Japanese series even yield negative entries.
We can conclude here, therefore, that no statistical evidence exists to suggest that the
densities differ from one another at the one step ahead horizon.

3.2.2 Assessing multiple steps ahead density forecasts

For the AR(1) model, multiple steps ahead density forecasts are available in closed
form, given the assumption that the εt are distributed as a standard normal random
variable. The h step ahead forecast density takes the form

f AR
T,h (�qT +h) = N

(
δρ(h−1) (qT − μ) ,

[
σ 2

μ + σ 2
μδ2

(
1 − ρ2

)
(

1 − ρ2(h−1)
)])

(12)

18 Notice here, that, as discussed before, when ση = σμ , then the first term involving the logs disappears,
and the second term becomes (2σ 2

μ)−1[(εAR
T +1|T )2 − (εE ST AR

T +1|T )2]. This is thus a scaled version of the DM
test of equal conditional means given previously in (5).
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Table 4 DM test statistic for multiple step ahead density forecasts

DM statistic h UK France Switzerland Japan

d S 1 −1.33 × 10−2 5.63 × 10−3 9.94 × 10−4 −5.89 × 10−4

(SE) (1.13 × 10−2) (9.49 × 10−3) (4.81 × 10−3) (4.61 × 10−3)

[t − statistic] [−1.1803] [0.5934] [−0.2067] [−0.1279]

d S 2 −4.19 × 10−2 4.20 × 10−2 2.22 × 10−2 −2.54 × 10−2

(SE) (3.39 × 10−2) (3.63 × 10−2) (2.15 × 10−2) (7.73 × 10−2)

[t − statistic] [−1.2369] [1.1556] [1.0342] [−0.3285]
d S 3 −2.97 × 10−2 3.41 × 10−2 1.90 × 10−2 −1.73 × 10−2

(SE) (2.68 × 10−2) (3.51 × 10−2) (2.08 × 10−2) (3.19 × 10−2)

[t − statistic] [−1.1111] [0.9721] [0.9141] [−0.5436]
d S 5 −1.24 × 10−2 2.69 × 10−2 1.51 × 10−2 −1.18 × 10−1

(SE) (1.93 × 10−2) (3.45 × 10−2) (2.05 × 10−2) (1.69 × 10−1)

[t − statistic] [−0.6444] [0.7777] [0.7359] [−0.7002]
d S 6 −7.64 × 10−3 2.33 × 10−2 1.30 × 10−2 2.16 × 10−2

(SE) (1.74 × 10−2) (3.25 × 10−2) (2.00 × 10−2) (2.95 × 10−2)

[t − statistic] [−0.4401] [0.7162] [0.6506] [0.7318]
d S 7 −1.10 × 10−3 2.25 × 10−2 6.77 × 10−3 1.16 × 10−2

(SE) (1.61 × 10−2) (3.10 × 10−2) (1.97 × 10−2) (2.91 × 10−2)

[t − statistic] [−0.0684] [0.7234] [0.3437] [0.3971]
d S 10 1.07 × 10−3 1.30 × 10−2 2.83 × 10−3 −1.38 × 10−1

(SE) (1.28 × 10−2) (2.81 × 10−2) (1.77 × 10−2) (1.79 × 10−1)

[t − statistic] [0.0833] [0.4642] [0.1605] [−0.7683]
d S 14 5.38 × 10−3 6.92 × 10−3 −1.75 × 10−4 −1.40 × 10−2

(SE) (1.20 × 10−2) (2.45 × 10−2) (1.48 × 10−2) (5.40 × 10−2)

[t − statistic] [0.4500] [0.2824] [−0.0118] [−0.2599]
d S 18 5.09 × 10−3 5.16 × 10−3 −4.30 × 10−3 −2.75 × 10−2

(SE) (9.65 × 10−3) (2.11 × 10−2) (1.32 × 10−2) (5.86 × 10−2)

[t − statistic] [0.5271] [0.2442] [−0.3267] [−0.4692]
d S 22 2.00 × 10−3 1.26 × 10−3 −5.14 × 10−3 −4.60 × 10−2

(SE) (8.51 × 10−3) (1.77 × 10−2) (1.08 × 10−2) (7.63 × 10−2)

[t − statistic] [0.2346] [0.0708] [−0.4750] [−0.6025]
The DM test statistic d S on the log score difference and its standard error (SE) for multiple step ahead
density forecasts. The DM statistics were computed as documented in Table 2, using the correction factor
of Harvey et al. (1997)

where ρ = δ + 1 and σ 2
μ + σ 2

μδ2

(1−ρ2)
is the unconditional variance of the �qt process in

(2). For the ESTAR model, nevertheless, no closed form is available so that it is again
necessary to resort to the recursive simulation scheme of (6) to construct the h step
ahead pseudo values q̃T +h|T . These can then be used with non-parametric methods to
get an estimate of the forecast density. That is, given the sequence of pseudo realisations
{q̃ j

T +h|T }J
j=1 we can obtain an approximation of the h step ahead forecast density from

the ESTAR model by constructing �q̃ j
T +h|T = q̃ j

T +h|T − q̃ j
T +h−1|T ,∀ j = 1, ..., J

generated from (6) and then compute the density estimate of f E ST AR
T,h (�q̃T +h|T )

non-parametrically. The kernel density estimate can then be utilised for visualisation
purposes and to compute the average of the log score in the DM test.
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One drawback with this approach when considering informal graphical methods
is that one will again only be able to visualise the h step ahead density at the actual
out-of-sample values that are conditioned upon. It will thus not be possible to get
a feel for how the forecast density changes as the size of the conditioning variable
changes, unless there is substantial variation in the actual out-of-sample observations.
To illustrate this, consider the plot of the 10 step ahead conditional point forecasts for
the Japanese series shown in Panel (c) of Fig. 5. Notice that the out-of-sample values
of the conditioning variable denoted by the black asterisks cluster largely around a
value of 0.5. If we use the Monte Carlo scheme of (6) to generate 10,000 paths from
each of the given qT to compute the forecast density, we will not know whether the
forecast density takes on a different shape when qT is closer to the extreme tail ends
of either 0 or 1.

A more informative approach is to simulate a large number of draws from the
ESTAR models in (1) and then compute an estimate of the conditional density of
�qt |qt−h directly using non-parametric methods. That is, compute

f̂ N P (�qt |qt−h) = f̂ N P (�qt , qt−h)

f̂ N P (qt−h)
, (13)

where f̂ N P (·) is a non-parametric estimate of the density. The values of qt−h that are
conditioned upon could then be chosen to be some percentiles of interest of qt−h .

In order to illustrate how the conditional density estimate f̂ N P (�qt |qt−h) can be
visualised, I simulate 1 million draws from the ESTAR model in (1) under the param-
eter settings of the UK series and set the conditioning values at the 5th, 25th, 50th,
75th and 95th percentiles of qt−h . A Gaussian kernel and a plug in bandwidth that
is proportional to the covariance matrix of (�qt qt−h)′ were used to construct the
bivariate density estimates (see Scott 1992). Plots of the estimates of the conditional
densities of f N P (�qt |qt−h),∀h = [2, 3, 5, 6, 7, 10, 14, 18, 22] are shown in Fig. 6.
What is particularly interesting to notice from Fig. 6 is that there is no obvious visual
indication of skewness or bi-modality in the forecast densities. This is regardless of
the forecast horizon considered and the conditioning values from which the forecasts
were initiated. Two other features that are interesting to observe from Fig. 6 are the
lack of a visual widening in the spread of the forecast densities as h increases and
the close overlap of the forecast densities at the different percentiles of qt−h . Both of
these are due to the weak correlation between �qt and qt−1, or alternatively, the high
persistence in qt .

The easiest way to see why this is the case, consider the AR(1) representation for
�qt in (2) to be the true process for �qt . If δ = 0, then �qt and qt−1 are uncorrelated
and hence independently distributed so that f (�qt |qt−h) = f (�qt ) ∼ N(0, σ 2

μ).
Thus for all conditioning values of qt−h the location of f (�qt |qt−h) is at 0. Simi-
larly, the spread of the density at the different forecast horizons will be fixed at σ 2

μ.
Although it is clear here that �qt and qt−1 are not independent processes as they were
simulated from the ESTAR model in (1), it is evident from Fig. 6 how closely the
densities overlap at the different conditioning values of qt−h and how the spread in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Multiple step ahead density forecasts of the ESTAR model. These were constructed non-paramet-
rically from 1 million simulated realisations of the ESTAR model in (1) at the parameter values of the
UK series. Gaussian univariate and bivariate kernels were used, together with plug in bandwidths that are
proportional to the covariance matrix of the data (see Scott 1992)

the densities remains observationally constant. This is indicative of a relatively weak
non-linear relationship between �qt and qt−1.

Before I proceed to provide some formal statistical evidence to support any of the
conjectures, it will be useful here to do a side-by-side comparison of the forecast
densities of the two competing models. As we have ruled out that the shape of the
ESTAR forecast density changes at different conditioning values of qT , we can choose
a fixed value of qT and plot the forecast density fT,h(�qT +h) for the AR(1) together
with the simulated density estimate from the ESTAR model at the forecast horizons
of interest to us. Such a comparison is shown in Fig. 7, again only for the UK series
to avoid unnecessary repetition. The conditioning value used here for qT is approxi-
mately 0.5 (the November 2007 value), which is the (full sample) maximum value of
qT . The ESTAR forecast densities plotted in Fig. 7 were computed from the 10,000
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 Comparison of the multiple step ahead density forecasts of the AR(1) and ESTAR models for the
UK real exchange rate series. The AR(1) densities were calculated from (2). The ESTAR densities were
computed non-parametrically, using the 10,000 recursively constructed pseudo draws from (3). The condi-
tioning value of qT is approximately 0.5 (November 2007 value) from which the forecasts were initiated

pseudo observations {q̃ j
T +h|T }J

j=1 outlined in (6), using again standard kernel density
estimation methods.

The comparison of the multiple step ahead densities plotted in Fig. 7 shows a
number of notable features. Although these were partially discussed and hence are
expected, it is nevertheless informative to outline these once again, however, with a
visual reference to Fig. 7. Firstly, notice that at the 2–7 step ahead forecast horizon the
densities are somewhat offset and do not overlap, nevertheless, there is no indication
of a markedly different shape or spread of these densities. Evidently, the densities
do not overlap as the two models’ forecasts of the conditional means differ from one
another. For example, at the 2 step ahead horizon, the ESTAR and AR(1) models
predict mean changes of about −0.025 and −0.012, respectively. The conditioning
value of qT ≈ 0.5 for November 2007 was particularly chosen here to amplify this
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difference in the location of the forecast densities. Secondly, notice how there is no
obvious visual increase in the spread of the densities as h increases from 2 to 22.
For the AR(1) model, where an analytic expression for the forecast standard error is
available, the values range narrowly between 33.4590 × 10−3 and 33.6246 × 10−3

at horizons 2 and 22, respectively. With the unconditional standard error of �qt under
the AR(1) specification in (2) being 33.6952 × 10−3 (the limit at the h step horizon
as h → ∞), it is clear that the overall increase in the spread is very small, so that any
differences are hard to identify visually from Fig. 7.

Formal statistical test results of equal h step ahead average density log scores are
reported in Table 4. The unweighted version of the DM test was used in the compu-
tation of the log score difference in Table 4, again employing the correction factor of
Harvey et al. (1997). For all four series of interest — at all forecast horizons that were
considered — the null hypothesis of equal average log scores cannot be rejected at
any conventional significance levels. Hence, no evidence seems to exist to indicate
that the considered ESTAR model generates any forecast gains over a simple AR(1)
specification, regardless of whether point or density forecasts are utilised.

4 Conclusion

This study assessed the forecast performance of the widely cited ESTAR model of
Taylor et al. (2001) over the out-of-sample period from January 1997 to June 2008.
More specifically, point and density forecasts were constructed and evaluated for four
empirical real exchange rate series, using a simple AR(1) as the benchmark model.
Throughout the study heavy use of graphical methods was made in conjunction with
simulation and non-parametric techniques. This was done to supplement the standard
formal statistical tests in the analysis and evaluation of the forecasts, and to learn about
the models and their fit to the data.

The statistical test results in this study show that there exist no forecast gains from
utilising a non-linear ESTAR model over a simple AR(1) specification at any of the
1–22 steps ahead forecast horizon that were considered. This holds true for conditional
mean (or point) forecasts, as well as for density forecasts, employing either a fixed
or rolling window forecasting scheme. Graphical methods that are utilised through-
out the paper show that the non-linearity in the one step ahead point forecasts of the
ESTAR model is relatively weak, given the variation in the empirical data, and that it
decreases monotonically as the forecast horizon increases. Therefore, as no forecast
gains are realised at the one step ahead horizon, there exists no potential whatsoever
for any forecast gains to be realised at longer horizons. The graphical analysis shows
also that the forecast densities are approximately normal looking without any signs of
skewness or kurtosis.

On a broader level, it is interesting to observe from the graphical analysis that over
the total of 35 years of real exchange rate data that were utilised, a significant propor-
tion of the variation of the empirical series around the conditional means still remains
unexplained. One might feel therefore that a non-linear specification as embodied in
the ESTAR model is still short of being satisfactory in explaining the PPP puzzles
raised by the international finance literature.
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Appendix

A Forecast evaluation based on a rolling window scheme

The results presented below are based on a rolling forecasting scheme, where the
sample size is fixed at T = 287 and the parameter estimates are updated as new data
become available. That is, we get the first set of parameter estimates based on a sample
from 1 to T , and proceed to forecast 1–22 steps ahead, then we get the second set of
parameter estimates based on a sample running from 2 to T + 1, and again forecast
1–22 steps ahead and so on.

The results of the DM test that are reported below in Table A.5 make use of the
asymptotics presented in Giacomini and White (2006). These tests are based on the
weighted and unweighted versions of the DM test that are described in the main
part of the paper in Sect. 3. Note that this is still an unconditional test of predictive
ability.

The results of the rolling window forecasting scheme with recursively updated
parameters presented in Table A.5 are qualitatively in line with the results of the DM
tests provided in Table 2. For all four real exchange rate series, the null hypothesis of
equal forecast performance cannot be rejected at any conventional significance levels,
again regardless of whether a weighted or unweighted version of the DM test is used.
It is again evident that the rejections are fairly strong in the sense that the t−statistics
remain well below 1 in absolute value and are once again negative and sizable for the
UK series.

Table A.5 Unweighted and weighted DM test results for one step ahead point forecasts based on a rolling
fixed T = 287 window

DM statistic UK France Switzerland Japan

d −2.00 × 10−5 8.01 × 10−6 3.26 × 10−6 3.93 × 10−7

(SE) (1.40 × 10−5) (8.98 × 10−6) (6.94 × 10−6) (8.75 × 10−6)

[t − statistic] [−1.43427] [0.8921] [0.4694] [0.0449]
ωd −1.21 × 10−5 5.42 × 10−6 9.75 × 10−7 −7.81 × 10−7

(SE) (8.21 × 10−6) (6.53 × 10−6) (2.77 × 10−6) (1.68 × 10−6)

[t − statistic] [−1.4742] [0.8324] [0.3519] [−0.4652]

Standard (d) and weighted (ωd) Diebold and Mariano (1995, DM) test statistics. Standard errors (SE) are
of the (Newey and West, 1987, NW) type. d was calculated as the arithmetic mean of dT +1 ≡ (εAR

T +1|T )2 −
(εE ST AR

T +1|T )2 over the out-of-sample data, with εAR
T +1|T and εE ST AR

T +1|T being the one step ahead forecast
errors from the AR(1) and ESTAR models, respectively. The small sample correction factor of Harvey
et al. (1997) was used in the construction of both test statistics. ωd was computed as the arithmetic mean
of ωT +1dT +1, where ωT +1 = 1 − f̂ (qT +1)/max[ f̂ (qT +1)] and f̂ (qT +1) is an estimate of the density
function of qT +1, evaluated at the out-of-sample data points. A Gaussian kernel and a ‘plug in’ bandwidth
were used to compute the density estimate (see Silverman 1986)
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Table A.6 Weighted DM test results for multiple step ahead point forecasts based on a rolling fixed
T = 287 window

DM statistic h UK France Switzerland Japan

ωd 2 −1.69 × 10−5 5.14 × 10−6 −9.28 × 10−7 −1.46 × 10−6

(SE) (2.41 × 10−5) (2.24 × 10−5) (9.30 × 10−6) (2.56 × 10−6)

[t − statistic] [−0.7028] [0.2298] [−0.0998] [−0.5696]
ωd 3 −1.70 × 10−5 3.89 × 10−6 −2.30 × 10−6 −1.30 × 10−6

(SE) (1.44 × 10−5) (1.85 × 10−5) (8.63 × 10−6) (2.90 × 10−6)

[t − statistic] [−1.1795] [0.2107] [−0.2670] [−0.4467]
ωd 5 −8.92 × 10−6 3.22 × 10−6 1.58 × 10−6 −7.85 × 10−7

(SE) (5.92 × 10−6) (1.69 × 10−5) (7.25 × 10−6) (1.69 × 10−6)

[t − statistic] [−1.5078] [0.1908] [0.2174] [−0.4638]
ωd 6 −4.56 × 10−6 2.04 × 10−6 2.40 × 10−6 6.28 × 10−7

(SE) (4.25 × 10−6) (1.63 × 10−5) (6.59 × 10−6) (1.52 × 10−6)

[t − statistic] [−1.0718] [0.1252] [0.3648] [0.4141]
ωd 7 −3.62 × 10−6 4.23 × 10−6 2.32 × 10−6 3.75 × 10−7

(SE) (3.59 × 10−6) (1.42 × 10−5) (7.01 × 10−6) (1.62 × 10−6)

[t − statistic] [−1.0065] [0.2980] [0.3312] [0.2309]
ωd 10 −3.09 × 10−6 2.03 × 10−6 −2.22 × 10−6 3.62 × 10−7

(SE) (1.54 × 10−6) (1.07 × 10−5) (5.12 × 10−6) (1.42 × 10−6)

[t − statistic] [−2.0010] [0.1896] [−0.4333] [0.2554]
ωd 14 −1.21 × 10−6 −2.43 × 10−7 −2.18 × 10−6 4.22 × 10−7

(SE) (1.60 × 10−6) (7.12 × 10−6) (4.16 × 10−6) (1.28 × 10−6)

[t − statistic] [−0.7512] [−0.0341] [−0.5236] [0.3297]
ωd 18 −1.33 × 10−6 −3.00 × 10−6 −1.52 × 10−6 2.45 × 10−7

(SE) (1.45 × 10−6) (7.11 × 10−6) (2.84 × 10−6) (5.83 × 10−7)

[t − statistic] [−0.9213] [−0.4210] [−0.5337] [0.4196]
ωd 22 −8.20 × 10−7 −1.85 × 10−6 −9.65 × 10−7 −1.10 × 10−7

(SE) (1.04 × 10−6) (6.67 × 10−6) (2.32 × 10−6) (4.54 × 10−7)

[t − statistic] [−0.7883] [−0.2780] [−0.4157] [−0.2431]

Weighted version of the DM test statistic ωd and its standard error (SE) for multiple step ahead point
forecasts. The statistics were computed as documented in Table A.5

In order to avoid repetition, I again present results for multiple steps ahead forecasts
from the rolling window forecasting scheme with recursively updated parameters only
for the weighted version of the DM test. These test results are shown in Table A.6
below.

Looking over these results it becomes evident that as with the rolling window
one step ahead out-of-sample forecast comparison, there are qualitatively no dif-
ferences in the results when compared to the fixed forecasting scheme. The overall
hypothesis of no forecast gains cannot be rejected in favour of the non-linear ESTAR
model.
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