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On the Quasi-Static Evolution of
Nonequilibrium Steady States

Walid K. Abou Salem

Abstract. The quasi-static evolution of steady states far from equilibrium is
investigated from the point of view of quantum statistical mechanics. As a
concrete example of a thermodynamic system, a two-level quantum dot cou-
pled to several reservoirs of free fermions at different temperatures is con-
sidered. A novel adiabatic theorem for unbounded and nonnormal generators
of evolution is proven and applied to study the quasi-static evolution of the
nonequilibrium steady state (NESS) of the coupled system.

1. Introduction

Recently, there has been substantial progress in understanding and rigorously prov-
ing the asymptotic convergence (as time t → ∞) of a state of a thermodynamic
system, say one composed of a finitely extended system coupled to one or more
thermal reservoir, to a steady state, both in equilibrium [6, 8, 9, 14, 15, 19, 20] and
far from equilibrium [10, 16, 21, 22, 26, 27] from the point of view of quantum sta-
tistical mechanics. After the state of a certain thermodynamic system reaches a
steady state, it is natural to ask how the state will evolve if the system is perturbed
slowly over time scales that are large compared to a generic relaxation time of the
system, and how much the state of the system will be close to the instantaneous
(non)equilibrium steady state.

This question was first addressed in [1], where the isothermal theorem, an
adiabatic theorem for states close to thermal equilibrium, has been proven, and
applications of this theorem to reversible isothermal processes have been discussed.
Here, we pursue this question further by investigating the quasi-static evolution of
states far from equilibrium from the point of view of quantum statistical mechanics.

According to the spectral approach to nonequilibrium steady states (NESS),
the latter corresponds to a zero-energy resonance of the (adjoint of the)
C-Liouvillean; (see [16, 21, 22]). Since the C-Liouvillean is generally nonnormal
and unbounded, we prove an adiabatic theorem for generators of evolution that
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are not necessarily bounded or normal. This theorem can be extended to study
the adiabatic evolution of quantum resonances. [2]

As a concrete example of a thermodynamic system, we consider a system
composed of a two-level quantum system coupled to several fermionic reservoirs
at different temperatures (for example, a quantum dot coupled to electrons in
several metals). We apply the general adiabatic theorem to study the adiabatic
evolution of the NESS for this system. The main ingredients of our analysis are
an adiabatic theorem for nonnormal and unbounded generators of evolution, a
concrete representation of the fermionic reservoirs (Araki–Wyss representation [4]),
the spectral approach to NESS using C-Liouvilleans, and complex deformation
techniques as developed in [12, 14–16].

The organization of this paper is as follows. In Section 2, we state and prove
a general adiabatic theorem (Theorem 2.2). This is the key result of this section,
which we apply in the subsequent sections to study the quasi-static evolution of
nonequilibrium steady states. In Section 3, we discuss the concrete physical model
we consider: a two level quantum system coupled to several fermionic reservoirs
at different temperatures.1 In Section 4, we study the C-Liouvillean correspond-
ing to the coupled system using complex deformation techniques (Theorem 4.3),
and recall the relationship between the NESS and a zero-energy resonance of the
C-Liouvillean (Corollary 4.4). In Section 5, we apply Theorem 2.2 to study the
adiabatic evolution of the NESS of the coupled system. The main result of this sec-
tion is Theorem 5.1. We also remark on the strict positivity of entropy production
in the quasi-static evolution of NESS, and on a concrete example of the isothermal
theorem [1]. Some technical details and proofs are collected in an Appendix.

2. A general adiabatic theorem

So far, adiabatic theorems that are considered in the literature deal with generators
of evolution which are self-adjoint; (see for example [5]). This is expected, since
the generator of dynamics in quantum mechanics, the Hamiltonian, is self-adjoint.
However, for systems out of equilibrium, a generally nonnormal and unbounded
operator, the so called C-Liouvillean, can be used to generate an equivalent dy-
namics on a suitable Banach space. Since we are interested in studying the quasi-
static evolution of NESS, it is useful to prove an adiabatic theorem for nonnormal
generators of time evolution. This is what is done in this section.

Consider a family of closed operators {A(t)}, t ∈ R+, acting on a Hilbert
space H.We make the following assumptions onA(t) in order to prove the existence
of a time evolution and to prove an adiabatic theorem. All of these assumptions
will be verified in the applications which are considered in the subsequent sections.
(A1) A(t) is a generator of a contraction semi-group for all t ∈ R+.
(A2) A(t) have a common dense domain D ⊂ H for all t ∈ R+.

1The analysis can be directly generalized to the case when the small system is coupled to several
bosonic reservoirs by using methods developed in [21, 22].
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(A3) For z ∈ ρ(A(t)), the resolvent set of A(t), let R(z, t) := (z−A(t))−1. Assume
that R(−1, t) is bounded and differentiable as a bounded operator on H, and
that A(t)Ṙ(−1, t) is bounded, where the (̇) stands for differentiation with
respect to t. Moreover, assume that for every ε > 0, −ε ∈ ρ(A(t)).

Let U(t) be the propagator that satisfies

∂tU(t)ψ = −A(t)U(t)ψ , U(t = 0) = 1 , (1)

for t ≥ 0; ψ ∈ D. We have the following result.

Lemma 2.1. Suppose that assumptions (A1)–(A3) hold. Then the propagator U(t)
satisfying (1) exists and is unique, and ‖U(t)ψ‖ ≤ ‖ψ‖, for ψ ∈ D.

The result of Lemma 2.1 is standard, and it follows from assumptions (A1)–
(A3) above and Theorem X.70 in [24].2

Assume that A(t) ≡ A(0) for t ≤ 0, and that it is perturbed slowly over a
time τ such that A(τ)(t) ≡ A(s), where s := t/τ ∈ [0, 1] is the rescaled time. The
following additional two assumptions are needed to prove an adiabatic theorem.

(A4) The eigenvalue λ(s) ∈ σ(A(s)) is isolated and simple, such that

dist
(
λ(s), σ

(
A(s)

)\{λ(s)}
)
> d ,

where d > 0 is a constant independent of s ∈ [0, 1], and λ(s) is continuously
differentiable in s ∈ [0, 1].

(A5) The projection onto λ(s),

Pλ(s) :=
1

2πi

∮

γλ(s)

R(z, s)dz , (2)

where γλ(s) is a contour enclosing λ(s) only, is twice differentiable as a
bounded operator.

Note that, since λ(s) is simple, the resolvent of A(s) in a neighborhood N of
λ(s) contained in a ball B(λ(s), r) centered at λ(s) with radius r < d is

R(z, s) =
Pλ(s)
z − λ(s)

+Ranalytic(z, s) , (3)

where Ranalytic(z, s) is analytic in N . We recall some useful properties of the
resolvent and the spectral projection Pλ(s); (see [17]).

2Choose η > 0 and let Ũ(t) be the propagator generated by Ã(t) := A(t)+η. It follows from (A1)

that Ã(t) is a generator of a contraction semigroup. Furthermore, for t, t′ ∈ R+, Ã(t′)Ã(t)−1

is bounded due to the closed graph theorem and (A2) (see [23]). Moreover, for small |t − t′|,
||(t′ − t)(Ã(t′)Ã(t)−1 − 1)|| = ||Ã(t)

˙̃
A

−1
(t)|| + o(|t − t′|), which is bounded due to (A3). By

Theorem X.70 in [24] (or Theorem 2, Chapter XIV in [28], Section 4), this implies, together with

(A1) and (A2), that Ũ(t) exists and is unique. In particular, ‖Ũ(t)ψ‖ ≤ 1 uniformly in t ≥ 0 (for

‖ψ‖ = 1). We also have ‖U(t)‖ = eηt‖Ũ(t)‖. Taking the limit η → 0 gives ‖U(t)ψ‖ ≤ 1.
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(i) It follows by direct application of the contour integration formula that
(
Pλ(s)

)2 = Pλ(s) , (4)

and hence
Pλ(s)Ṗλ(s)Pλ(s) = 0 . (5)

(ii)
A(s)Pλ(s) = Pλ(s)A(s) = λ(s)Pλ(s) . (6)

Proof.

A(s)Pλ(s) =
1

2πi

∮

γλ(s)

(
A(s) − z + z

)(
z −A(s)

)−1
dz

=
1

2πi

{
−
∮

γλ(s)

dz +
∮

γλ(s)

(
zPλ(s)
z − λ(s)

+ zRanalytic

)
dz

}

= λ(s)Pλ(s) ,

and similarly, Pλ(s)A(s) = λ(s)Pλ(s). �

(iii) It follows from (3) and (A4) that, for η ∈ C and d/2 ≤ |η| < d, there exists
a constant C <∞, independent of η, such that

‖R(λ(s) + η, s)‖ < C , (7)

uniformly in s ∈ [0, 1]. Moreover, since (λ(s) + η) ∈ ρ(A(s)), it follows by
the spectral mapping theorem (see for example [28], Chapter VIII, Section 7)
and (A3) that R(λ(s) + η, s) is differentiable as a bounded operator.3

We now discuss our general adiabatic theorem. Let Uτ (s, s′) be the propagator
satisfying

∂sUτ (s, s′) = −τA(s)Uτ (s, s′) , Uτ (s, s) = 1 , (8)
for s ≥ s′. Moreover, define the generator of the adiabatic time evolution,

Aa(s) := A(s) − 1
τ

[
Ṗλ(s), Pλ(s)

]
, (9)

with the corresponding propagator Ua(s, s′) which satisfies

∂sUa(s, s′) = −τAa(s)Ua(s, s′) ; Ua(s, s) = 1 , (10)

for s ≥ s′.
By Lemma 2.1 and (A1)–(A3) and (A5), both propagators Uτ (s, s′) and

Ua(s, s′) exist and are unique, and ‖Uτ(s, s′)‖, ‖Ua(s, s′)‖ < C for s ≥ s′, where C
is a finite constant independent of s, s′ ∈ [0, 1]. We are in a position to state our
adiabatic theorem.

3We know that, for z, ω ∈ ρ(A),

(z − A)−1 = (1 + (z − ω)(ω − A)−1)−1(ω − A)−1 .

In particular, choose z = λ(s) + η and ω = −1. Differentiability of R(λ(s) + η) as a bounded
operator follows from the latter identity and assumption (A3).
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Theorem 2.2 (A general adiabatic theorem). Assume (A1)–(A5). Then the fol-
lowing holds.

(i)
Pλ(s)Ua(s, 0) = Ua(s, 0)Pλ(0) , (11)

for s ≥ 0 (the intertwining property).
(ii) There is a finite constant C such that

sup
s∈[0,1]

‖Uτ (s, 0) − Ua(s, 0)‖ ≤ C

1 + τ
,

for τ > 0. In particular,

sup
s∈[0,1]

‖Uτ (s, 0) − Ua(s, 0)‖ = O(τ−1) ,

as τ → ∞.

Proof. (i) Equality holds trivially for s = 0, since Ua(s, s) = 1. Let

h(s, s′) := Ua(s, s′)Pλ(s′)Ua(s′, 0) , (12)

for 0 ≤ s′ ≤ s.
Using (6), (10) , the definition of Aa(s) and the fact that Ṗλ(s)Pλ(s) +

Pλ(s)Ṗλ(s) = Ṗλ(s), it follows that

∂s′h(s, s′) = ∂s′
(
Ua(s, s′)Pλ(s′)Ua(s′, 0)

)

= τUa(s, s′)
{
Aa(s′)Pλ(s′) − Pλ(s′)Aa(s′)

}
Ua(s′, 0)

+ Ua(s, s′)Ṗλ(s′)Ua(s′, 0)

= Ua(s, s′)
{ − Ṗλ(s′)Pλ(s′)

− Pλ(s′)Ṗλ(s′) + Ṗλ(s′)
}
Ua(s′, 0)

= 0 .

Therefore,
h(s, s′) ≡ h(s) .

In particular,
h(s, s) = h(s, 0) ,

which implies claim (i).
(ii) Consider ψ ∈ D, where the dense domain D appears in assumption (A2). We

are interested in estimating the norm of the difference (Uτ (s, 0)− Ua(s, 0))ψ
as τ → ∞. Using (8), (10) and the Duhamel formula,

(
Uτ (s, 0) − Ua(s, 0)

)
ψ = −

∫ s

0

ds′∂s′
(
Uτ (s, s′)Ua(s′, 0)

)
ψ (13)

=
∫ s

0

ds′
(
Uτ (s, s′)

[
Ṗλ(s′), Pλ(s′)

]
Ua(s′, 0)

)
ψ . (14)
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Let

X(s) :=
1

2πi

∮

γλ(s)

dzR(z, s)Ṗλ(s)R(z, s) , (15)

where γλ(s) is a contour of radius d/2 centered at λ(s), and where d appears
in (A4). Then

[
X(s), A(s)

]
=

1
2πi

∮

γλ(s)

dz
[
z −A(s), R(z, s)Ṗλ(s)R(z, s)

]

= Ṗλ(s)Pλ(s) − Pλ(s)Ṗλ(s) =
[
Ṗλ(s), Pλ(s)

]
. (16)

Assumptions (A3),(A4) and the spectral mapping theorem imply that,
for z ∈ γλ(s) ⊂ ρ(A(s)), R(z, s) is differentiable as a bounded operator.
Together with (A5), this implies that,

‖X(s)‖ < C1 , (17)

‖Ẋ(s)‖ < C2 , (18)

where C1 and C2 are finite constants independent of s ∈ [0, 1]. Moreover,

Uτ (s, s′)
[
X(s′), A(s′)

]
Ua(s′, 0) =

1
τ

{
− ∂s′Uτ (s, s′)X(s′)Ua(s′, 0)

+ Uτ (s, s′)
(
X(s′)

[
Ṗλ(s′), Pλ(s′)

])
Ua(s′, 0) + Uτ (s, s′)Ẋ(s′)Ua(s′, 0)

}
.

Together with (16), one may write the integrand in (13) as a total derivative
plus a remainder term. Using the fact that D is dense in H and (A5),

‖Uτ(s, 0) − Ua(s, 0)‖ ≤ 1
τ

sup
s∈[0,1]

[
C′

1‖X(s)‖ + C′
2‖Ẋ(s)‖] , (19)

where C′
i, i = 1, 2 are finite constants independent of s ∈ [0, 1].

Together with (17) and (18), this implies

sup
s∈[0,1]

‖Uτ (s, 0) − Ua(s, 0)‖ ≤ C

1 + τ
, (20)

for τ > 0, where C is a finite positive constant. �

Next, we discuss a concrete model of a thermodynamic system to be studied
subsequently.

3. The model

As an example, we consider a two-level quantum system Σ coupled to n reservoirs,
R1, . . . ,Rn, n ≥ 2, of free fermions in thermal equilibrium at inverse temperatures
β1, . . . , βn.
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The small system

The kinematical algebra of Σ is OΣ = M(C2), the algebra of complex 2 × 2
matrices over the Hilbert space HΣ = C2. Its Hamiltonian is given by HΣ = ω0σ3,
where σi, i = 1, 2, 3, are the Pauli matrices. When the system Σ is not coupled to
the reservoirs, its dynamics in the Heisenberg picture is given by

αt,s
Σ (a) := eiHΣ(t−s)ae−iHΣ(t−s) , (21)

for a ∈ OΣ.

A physical state of the small system, ωΣ, is described by a density matrix ρΣ.

We assume that ρΣ > 0, i.e., ωΣ is faithful. The operator κΣ = ρ
1/2
Σ belongs to

the space of Hilbert–Schmidt operators, whyich is isomorphic to HΣ ⊗ HΣ. Two
commuting representations of OΣ on HΣ ⊗HΣ are given by

πΣ(a) := a⊗ 1Σ , (22)

π#
Σ (a) := 1Σ ⊗ CΣaCΣ , (23)

where CΣ is an antiunitary involution on HΣ corresponding to complex conjuga-
tion in the basis of the eigenvectors of HΣ; (see for example [6]).

The generator of the free dynamics on the Hilbert space HΣ ⊗ HΣ is the
standard Liouvillean

LΣ = HΣ ⊗ 1Σ − 1Σ ⊗HΣ . (24)

The spectrum of LΣ is σ(LΣ) = {−2ω0, 0, 2ω0}, with double degeneracy at
zero.

Let ωΣ be the initial state of the small system Σ, with corresponding vector
ΩΣ ∈ HΣ ⊗ HΣ. The modular operator associated with ωΣ is ∆Σ = ωΣ ⊗ ωΣ

−1
,

and the modular conjugation operator, JΣ, is given by

JΣ(φ⊗ ψ) = ψ ⊗ φ ,

for φ, ψ ∈ HΣ. If ωΣ corresponds to the trace state, then ∆Σ = 1Σ ⊗ 1Σ.

The reservoirs

Each thermal reservoir is formed of free fermions. It is infinitely extended and
dispersive. We assume that the Hilbert space of a single fermion is h = L2(R+;B),
where B is an auxiliary Hilbert space, and m(u)du is a measure on R+. We also
assume that the single-fermion Hamiltonian, h, corresponds to the operator of
multiplication by u ∈ R+. For instance, for reservoirs formed of nonrelativistic
fermions in R3, the auxiliary Hilbert space B is L2(S2, dσ), where S2 is the unit
sphere in R3, dσ is the uniform measure on S2, and u = |�k|2, where �k ∈ R3 is
the particle’s momentum. In the latter case, the measure on R+ is chosen to be
m(u)du = 1

2

√
udu.
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Let b and b∗ be the annihilation-and creation operators on the Fermionic
Fock space F(L2(R+;B)). They satisfy the usual canonical anticommutation re-
lation (CAR)

{b#(f), b#(g)} = 0 , (25)

{b(f), b∗(g)} = (f, g)1 , (26)

where b# stands for b or b∗, f, g ∈ L2(R+;B), and (·, ·) denotes the scalar product
in L2(R+;B). Moreover, let ΩR denote the vacuum state in F(L2(R+;B)).

The kinematical algebra, ORi , of the ith reservoir Ri, i = 1, . . . , n, is gener-
ated by b#i and the identity 1Ri . The free dynamics of each reservoir (before the
systems are coupled) is given by

αt,s
Ri

(
b#i (f)

)
= b#i

(
ei(t−s)uf

)
, (27)

for i = 1, . . . , n, f ∈ L2(R+;B).
The (αRi , βi)-KMS state, ωRi , of each reservoir Ri, i = 1, . . . , n, at inverse

temperature βi, is the gauge invariant, quasi-free state uniquely determined by the
two-point function

ωRi
(
b∗i (f)bi(f)

)
=
(
f, ρβi(·)f

)
, (28)

where ρβi(u) := 1
eβiu+1

.

Next, we introduce FAW
i := FRi(L2(R+;B)) ⊗ FRi(L2(R+;B)), the GNS

Hilbert space for the Araki–Wyss representation of each fermionic reservoir Ri

associated with the state ωRi , [4]. Denote by ΩRi the vacuum state in
FRi(L2(R+;B)), with biΩRi = 0. The Araki–Wyss representation, πi, of the kine-
matical algebra ORi , i = 1, . . . , n, on FAW

i is given by

πi

(
bi(f)

)
:= bi

(√
1 − ρβi f

)⊗ 1Ri + (−1)Ni ⊗ b∗i
(√
ρβi f

)
, (29)

π#
i

(
bi(f)

)
:= b∗i

(√
ρβif

)
(−1)Ni ⊗ (−1)Ni + 1Ri ⊗ (−1)Nibi

(√
1 − ρβi f

)
,

where Ni = dΓi(1) is the particle number operator for reservoir Ri. Furthermore,
ΩRi ⊗ΩRi ∈ FAW

i corresponds to the equilibrium KMS state ωRi of reservoir Ri.

The free dynamics on the GNS Hilbert space FAW
i of each reservoir Ri is

generated by the standard Liouvillean LRi . The modular operator associated with
(ORi , ωRi) is given by

∆Ri = e−βiLRi
,

and the modular conjugation is given by

JRi(Ψ ⊗ Φ) = (−1)Ni(Ni−1)/2Φ ⊗ (−1)Ni(Ni−1)/2Ψ ,

for Ψ,Φ ∈ FAW
i ; (see, for example, [7]).

In order to apply the complex translation method developed in [12, 14–16],
we map FAW

i = FRi(L2(R+;B)) ⊗ FRi(L2(R+;B)) to FRi(L2(R;B)) as done
in [16]; (using the isomorphism between L2(R+;B)⊕L2(R+;B) and L2(R;B), the
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latter having measure du on R). To every f ∈ L2(R+;B), we associate functions
fβ, f

#
β ∈ L2(R;B), with measure du on R, by setting

fβ(u, σ) :=

{√
m(u)

√
1 − ρβ(u)f(u, σ) , u ≥ 0√

m(−u)
√
ρβ(−u) f(−u, σ) , u < 0

, (30)

and

f#
β (u, σ) :=

{√
m(u)i

√
ρβ(u)f(u, σ) , u ≥ 0√

m(−u)i
√

1 − ρβ(−u) f(−u, σ) , u < 0

= ifβ(−u, σ) , (31)

where m(u)du is the measure on R+, see (29).
Let ai and a∗i be the annihilation and creation operators on FRi(L2(R;B)).

Then

πi

(
bi(f) + b∗i (f)

)→ ai(fβi) + a∗i (fβi) , (32)

π#
i

(
bi(f) + b∗i (f)

)→ i(−1)Ni
[
ai(f

#
βi

) + a∗i (f
#
βi

)
]
; (33)

ΩRi ⊗ ΩRi → Ω̃Ri , (34)

where Ω̃Ri is the vacuum state in FRi(L2(R;B)).4

Moreover, the free Liouvillean on FRi(L2(R;B)) for the reservoir Ri is
mapped to

LRi = dΓi(u) , (35)

where u ∈ R.

The coupled system

The kinematical algebra of the total system, Σ ∨R1 ∨ · · · ∨ Rn, is given by

O = OΣ ⊗OR1 ⊗ · · · ⊗ ORn , (36)

and the Heisenberg-picture dynamics of the uncoupled system is given by

α0 = αΣ ⊗ αR1 ⊗ · · · ⊗ αRn . (37)

The representation of O on H := HΣ ⊗ HΣ ⊗ FR1(L2(R;B)) ⊗ · · · ⊗ FRn

(L2(R;B)), determined by the initial state

ω = ωΣ ⊗ ωR1 ⊗ · · · ⊗ ωRn (38)

by the GNS construction, is given by

π = πΣ ⊗ π1 ⊗ · · · ⊗ πn , (39)

and an anti-representation commuting with π by

π# = π#
Σ ⊗ π#

1 ⊗ · · · ⊗ π#
n . (40)

4For a discussion of this map, see Theorem 3.3 in [16]; (see also the Appendix).
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Moreover, let Ω := ΩΣ ⊗ Ω̃R1 ⊗ · · · ⊗ Ω̃Rn denote the vector in H corresponding
to the state ω. Denote the double commutant of π(O) by M := π(O)′′, which is
the smallest von Neumann algebra containing π(O).

For a ∈ O, we abbreviate π(a) by a whenever there is no danger of confusion.
The modular operator of the total system is

∆ = ∆Σ ⊗ ∆R1 ⊗ · · · ⊗ ∆Rn ,

and the modular conjugation is

J = JΣ ⊗ JR1 ⊗ · · · ⊗ JRn .

According to Tomita–Takesaki theory,

JMJ = M′ , ∆itM∆−it = M ,

for t ∈ R; (see for example [7]). Furthermore, for a ∈ M,

J∆1/2aΩ = a∗Ω . (41)

The Liouvillean of the total uncoupled system is given by

L0 = LΣ +
n∑

i=1

LRi . (42)

This defines a selfadjoint operator on H.
The system Σ is coupled to the reservoirs R1, . . . ,Rn, through an interaction

gV (t), where V (t) ∈ O is given by

V (t) =
n∑

i=1

{
σ1 ⊗

[
bi
(
fi(t)

)
+ b∗i

(
fi(t)

)]}
, (43)

σi, i = 1, 2, 3, are the Pauli matrices, and fi ∈ L2(R+;B), i = 1, . . . , n, are the
form factors.

The standard Liouvillean of the interacting system acting on the GNS Hilbert
space H is given by

Lg(t) = L0 + gI(t) , (44)

where the unperturbed Liouvillean is defined in (42), and the interaction Liouvil-
lean determined by the operator V (t) is given by

I(t) =
{
V (t) − JV (t)J

}

=
n∑

i=1

{
σ1 ⊗ 1Σ ⊗

[
a∗i
(
fi,βi(t)

)
+ ai

(
fi,βi(t)

)]

− i1Σ ⊗ σ1 ⊗ (−1)Ni

[
a∗i
(
f#

i,βi
(t)
)

+ ai

(
f#

i,βi
(t)
)]}

, (45)

where ai, a
∗
i are the annihilation and creation operators on the fermionic Fock

space FRi(L2(R;B)). Note that since the perturbation is bounded, the domain of
Lg(t) is D(Lg(t)) = D(L0).
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Let Ug be the propagator generated by the standard Liouvillean. It satisfies

∂tUg(t, t′) = −iLg(t)Ug(t, t′) ; Ug(t, t) = 1 , (46)

for t ≥ t′. The Heisenberg-picture evolution is given by

αt,t′
g (a) = U

∗
g(t, t

′)aUg(t, t′) , (47)

for a ∈ O.
Generally, the kernel of Lg(t),Ker Lg, is expected to be empty when at least

two of the reservoirs have different temperatures.5 This motivates introducing the
so called C-Liouvillean, Lg , which generates an equivalent dynamics on a suitable
Banach space contained in H (isomorphic to O) and which, by construction, has
a non-trivial kernel.

Consider the Banach space

C(O,Ω) := {aΩ : a ∈ O} ,
with norm ‖aΩ‖∞ = ‖a‖. Since Ω is separating for O, the norm ‖aΩ‖∞ is well-
defined, and since Ω is cyclic for O, C(O,Ω) is dense in H.

Let Ug(t, t′) be the propagator given by

αt,t′
g (a)Ω = Ug(t, t′)aΩ , (48)

and
Ug(t′, t)Ω = Ω . (49)

Moreover, let Lg(t) be its generator, i.e.,

∂tUg(t, t′) = iUg(t, t′)Lg(t) with Ug(t, t) = 1 . (50)

Differentiating (48) with respect to t, setting t = t′, and using (50), (47) and
(41), one obtains[(L0 + gV (t)

)
a− a

(L0 + gV (t)
)]

Ω =
[(L0 + gV (t)

)
a− (V (t)a∗

)∗]Ω
=
(L0 + gV (t) − gJ∆1/2V (t)∆−1/2J

)
aΩ

≡ Lg(t)aΩ .

Hence, the C-Liouvillean is given by

Lg(t) := L0 + gV (t) − gJ∆1/2V (t)∆−1/2J . (51)

Note that, by construction,
Lg(t)Ω = 0 ,

for all t ∈ R.
Next, we discuss the assumptions on the interaction. For δ > 0, we define the

strips in the complex plane

I(δ) := {z ∈ C : |Imz| < δ}
5This is consistent with the fact that the coupled system is not expected to possess the property
of return to equilibrium if the reservoirs have different temperatures (or chemical potentials). One
can verify that, indeed, this is the case when assumptions (B1) and (B2), below, are satisfied;
(see [16, 21, 22]).
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and
I−(δ) := {z ∈ C : −δ < Imz < 0} . (52)

Moreover, for every function f ∈ L2(R+;B), we define a function f̃ by setting

f̃(u, σ) :=

{√
m(u)f(u, σ) , u ≥ 0√
m(|u|) f(|u|, σ) , u < 0

, (53)

where m(u)du is the measure on R+. Denote by H2(δ,B) the Hardy class of
analytic functions

h : I(δ) → B ,
with

‖h‖H2(δ,B) := sup
|θ|<δ

∫

R

‖h(u+ iθ)‖2
Bdu <∞ .

We require the following basic assumptions on the interaction term.
(B1) Fermi Golden Rule.

Assume that
n∑

i=1

‖f̃i(2ω0, t)‖B > 0 , (54)

for almost all t ∈ R, which is another way of saying that the small system is
coupled to at least one reservoir, to second order in perturbation theory.

(B2) Regularity of the form factors.
Assume that ∃δ > 0, independent of t and i = 1, . . . , n, such that

e−βiu/2f̃i(u, t) ∈ H2(δ,B) , (55)

the Hardy class of analytic functions. This implies that the mapping

R � r → ∆irV (t)∆−ir ∈ M , (56)

(where ∆ = ∆Σ ⊗ ∆R1 ⊗ · · · ⊗ ∆Rn is the modular operator of the coupled
system, and M = π(O)′′,) has an analytic continuation to the strip I(1/2) =
{z ∈ C : |Imz| < 1/2}, which is bounded and continuous on its closure,
∀t ∈ R.

(B3) Adiabatic evolution.
The perturbation is constant for t < 0, V (t) ≡ V (0), and then slowly

changes over a time interval τ such that V τ (t) = V (s), where s = t/τ ∈ [0, 1]
is the rescaled time. We also assume that V (s) is twice differentiable in s ∈
[0, 1] as a bounded operator, such that

R � r → ∆ir∂j
sV (s)∆−ir ∈ M , j = 0, 1, 2 , (57)

has an analytic continuation to the strip {z ∈ C : |Imz| < 1/2}, which is
bounded and continuous on its closure. This follows if we assume that there
exists δ > 0, independent of s and i = 1, . . . , n, such that

e−βiu/2∂j
s f̃i(u, s) ∈ H2(δ,B) , (58)
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the Hardy class of analytic functions, for j = 0, 1, 2. This assumption is
needed to prove an adiabatic theorem for states close to NESS.6

Let Ũg be the propagator generated by the adjoint of the C-Liouvillean, i.e.,

∂tŨg(t, t′) = −iL∗
g(t)Ũg(t, t′) , (59)

Ũg(t, t) = 1 . (60)

Assumption (B2) implies that the perturbation is bounded, and hence the domain
of L#

g , where L#
g stands for Lg or L∗

g, is

D(L#
g ) = D(L0) ,

and Ug, Ũg are bounded and strongly continuous in t and t′.

4. The C-Liouvillean and NESS

In [16, 21, 22], it is shown that, when the perturbation is time-independent, and
under reasonable regularity assumptions on the form factors, the state of the cou-
pled system converges to a nonequilibrium steady state (NESS) which is related
to a zero-energy resonance of the adjoint of the C-Liouvillean. Here, we study the
C-Liouvillean in the time-dependent case, and relate a zero-energy resonance to
the instantaneous NESS. The statements made in this section have been proven
in [16] (see also [14, 15]) for the time-independent case. Extending those results
to the time-dependent case is straightforward, since we study the spectrum of the
Liouvillean at each fixed moment of time. However, a sketch of the proofs of all the
statements made in this section is given in the Appendix to make the presentation
self-contained.

We first study the spectrum of L∗
g using complex spectral deformation tech-

niques as developed in [12, 14–16].
Let ui be the unitary transformation generating translations in energy for

the ith reservoir, i = 1, . . . , n. More precisely, for fi ∈ L2(R;B),

ui(θ)fi(u) = fθ
i (u) = fi(u + θ) .

Moreover, let
Ui(θ) := Γi

(
ui(θ)

)

denote the second quantization of ui(θ).
Explicitly, Ui(θ) = e−iθAi , where Ai := idΓi(∂ui) is the second quantization

of the generator of energy translations for the ithreservoir, i = 1, . . . , n. We set

U(θ) := 1Σ ⊗ 1Σ ⊗ U1(θ) ⊗ · · · ⊗ Un(θ) . (61)

6When the reservoirs are formed of nonrelativistic fermions in R3, an example of a form factor
satisfying assumptions (B1)–(B3) is given by

fi(u, s) = hi(s)|u|1/4e−|u|2 ,

where hi(s) is twice differentiable in s.
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Define
L∗

g(t, θ) := U(θ)L∗
g(t)U(−θ) , (62)

which is given by
L∗

g(t, θ) = L0 +Nθ + gṼ tot(t, θ) , (63)

L0 = LΣ +
∑

i LRi , LRi = dΓ(ui), i = 1, . . . , n, N =
∑

i Ni, the total particle
number operator, and

Ṽ tot(t, θ) =
∑

i

{
σ1 ⊗ 1Σ ⊗

[
ai

(
f

(θ)
i,βi

(t)
)

+ a∗i
(
f

(θ)
i,βi

(t)
)]− i1Σ ⊗ (ρΣ)−1/2

σ1(ρΣ)1/2 ⊗ (−1)Ni

[
ai

(
eβiui/2f

#(θ)
i,βi

(t)
)

+ a∗i
(
e−βiui/2f

#(θ)
i,βi

(t)
)]}

.

It follows from assumption (B2) that, for θ ∈ I(δ), Ṽ tot
g (t, θ) is a bounded operator.

Hence L∗
g(t, θ) is well-defined and closed on the domain D := D(N)∩D(LR1 )∩· · ·∩

D(LRn). When the coupling g = 0, the pure point spectrum of L0 is σpp(L0) =
{−2ω0, 0, 2ω0}, with double degeneracy at 0, and the continuous spectrum of L0

is σcont(L0) = R. Let
L0(θ) := L0 +Nθ .

We have the following two lemmas.

Lemma 4.1. For θ ∈ C, the following holds.
(i) For any ψ ∈ D, one has

‖L0(θ)ψ‖2 = ‖L0(Reθ)ψ‖2 + |Imθ|2‖Nψ‖2 . (64)

(ii) If Imθ �= 0, then L0(θ) is a normal operator satisfying

L0(θ)∗ = L0(θ) , (65)

and D(L0(θ)) = D.
(iii) The spectrum of L0(θ) is

σcont

(L0(θ)
)

= {nθ + s : n ∈ N\{0} and s ∈ R} , (66)

σpp

(L0(θ)
)

= {Ej : j = 0, . . . , 3} , (67)

where E0,1 = 0, E2 = −2ω0 and E3 = 2ω0, (the eigenvalues of LΣ).

Lemma 4.2. Suppose assumptions (B1) and (B2) hold, and assume that (g, θ) ∈
C× I−(δ). Then, for each fixed time t ∈ R, the following holds.

(i) D(L∗
g(t, θ)) = D and (L∗

g(t, θ))
∗ = Lg(t, θ).

(ii) The map (g, θ) → L∗
g(t, θ) from C × I−(δ) to the set of closed operators

on H is an analytic family (of type A) in each variable separately; (see [17],
Chapter V, Section 3.2).

(iii) For g ∈ R finite and Imz large enough,

s− lim
Imθ↑0

(
L∗

g(t, θ) − z
)−1 =

(
L∗

g(t, Reθ) − z
)−1

. (68)
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We now apply degenerate perturbation theory, as developed in [12], to com-
pute the spectrum of L∗

g(t, θ). Using contour integration, one may define the pro-
jection onto the perturbed eigenstates of L∗

g(t, θ), for θ ∈ I−(δ). Let

Pg(t, θ) :=
∮

γ

dz

2πi
(
z − L∗

g(t, θ)
)−1

, (69)

where γ is a contour that encloses the eigenvalues Ej , j = 0, . . . , 3, at a distance
d > 0, such that, for sufficiently small |g| (to be specified below) the contour also
encloses Ej(g, t), the isolated eigenvalues of L∗

g(t, θ). We let

P0 = 1Σ ⊗ 1Σ ⊗ |Ω̃Rn ⊗ · · · ⊗ Ω̃R1〉〈Ω̃R1 ⊗ · · · ⊗ Ω̃Rn | ,
where 1Σ corresponds to the identity on HΣ and Ω̃Ri corresponds to the vacuum
state in FRi(L2(R;B)). Furthermore, we define

Tg(t) := P0Pg(t, θ)P0 . (70)

Consider the isomorphism

Sg(t, θ) := T−1/2
g (t)P0Pg(t, θ) : Ran

(
Pg(t, θ)

)→ Ran(P0) (71)

and its inverse7

S−1
g (t, θ) := Pg(t, θ)P0T

−1/2
g (t) : Ran(P0) → Ran

(
Pg(t, θ)

)
. (72)

We set
Mg(t) := P0Pg(t, θ)L∗

g(t, θ)Pg(t, θ)P0 , (73)
and define the quasi-C-Liouvillean by

Σg(t) := Sg(t, θ)Pg(t, θ)L∗
g(t, θ)Pg(t, θ)S−1

g (t, θ) = T−1/2
g (t)Mg(t)T−1/2

g (t) . (74)

Let k = min{δ, π/β1, . . . , π/βn}, where δ appears in assumption (B2), Section 3,
and β1, . . . , βn, are the inverse temperatures of the reservoirs R1, . . . ,Rn, respec-
tively. For θ ∈ I−(k) (see (52)), we choose a parameter ν such that

−k < ν < 0 and − k < Imθ < −k + |ν|
2

. (75)

We also choose a constant g1 > 0 such that

g1C < (k − |ν|)/2 , (76)

where

C := sup
θ∈I(δ),t∈R

‖Ṽ tot(t, θ)‖ (77)

≤ sup
t∈R,z∈I(δ)

√
2

2

∑
i

|1 + e−βiz |−1/2
(
3‖f̃i(t)‖H2(δ,B) + ‖e−βiu/2f̃i‖H2(δ,B)

)
,

which is finite due to assumption (B2).

7It follows from (78), Theorem 4.3 (i) below, that Tg(t) → 1 on Ran(Pg(t, θ)) as g → 0, and hence

Sg(t, θ) is a well-defined operator on Ran(Pg(t, θ)). By (70), it has the right inverse S−1
g (t, θ).

Moreover, dimRan(Pg(t, θ)) = dimRan(P0) for g small enough, and hence S−1
g (t, θ) is the inverse

of Sg(t, θ).
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Theorem 4.3. Suppose that assumptions (B1) and (B2) hold. Then, for g1 > 0
satisfying (76), θ ∈ I−(k), ν satisfying (75), and t ∈ R fixed, the following holds
uniformly in t, i.e., g1 is independent of t.

(i) If |g| < g1, the essential spectrum of the operator L∗
g(t, θ) is contained in

the half-plane C\Ξ(ν), where Ξ(ν) := {z ∈ C : Imz ≥ ν}. Moreover, the
discrete spectrum of L∗

g(t, θ) is independent of θ ∈ I−(k). If |g| < 1/2g1, then
the spectral projections Pg(t, θ), associated to the spectrum of L∗

g(t, θ) in the
half-plane Ξ(ν), are analytic in g and satisfy the estimate

‖Pg(t, θ) − P0‖ < 1 . (78)

(ii) If |g| < g1/2, then the quasi-C-Liouvillean Σg(t) defined in (74) depends
analytically on g, and has a Taylor expansion

Σg(t) = LΣ +
∞∑

j=1

g2jΣ(2j)(t) . (79)

The first non-trivial coefficient in (79) is

Σ(2)(t) =
1
2

∮

γ

dz

2πi

(
ξ(z, t)

(
z − LΣ

)−1 +
(
z − LΣ

)−1
ξ(z, t)

)
,

where ξ(z, t) := P0Ṽ
tot(t, θ)(z − L0(θ))−1Ṽ tot(t, θ)P0.

In fact, one may apply second order perturbation theory to calculate the
perturbed eigenvalues of L∗

g(t, θ). To second order in the coupling g,

E0(g, t) = 0 ,

E1(g, t) = −iπg2
∑

i

‖f̃i(2ω0, t)‖2
B +O(g4) ,

and

E2,3(g, t) = ∓
(

2ω0 − 1
2
g2PV

∫

R

du
1

2ω0 − u

∑
i

‖f̃i(u, t)‖2
B

)

− i
π

2
g2
∑

i

‖f̃i(2ω0, t)‖2
B +O(g4) ,

where PV denotes the Cauchy principal value (see the Appendix).
The following corollary follows for the case of time-independent interactions;

(see [16, 21, 22]).
Define

D := 1Σ ⊗ 1Σ ⊗ e−kÃR1 ⊗ · · · ⊗ e−kÃRn , (80)

where ÃRi := dΓ(
√
p2

i + 1), and pi := i∂ui is the generator of energy translations
for Ri, i = 1, . . . , n. Note that D is a positive bounded operator on H such that
Ran(D) is dense in H and DΩ = Ω. This operator will act as a regulator which is
used to apply complex deformation techniques. Let αt

g ≡ αt,0
g .
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Corollary 4.4 (NESS). Suppose assumptions (B1) and (B2) hold, and that the
perturbation V (t) ≡ V is time-independent. Then there exists g1 > 0 such that,
for 0 < |g| < g1 and aΩ ∈ D(D−1), the following limit exists,

lim
t→∞

〈
Ω, αt

g(a)Ω
〉

= 〈Ωg, D
−1aΩ〉 , (81)

where Ωg corresponds to the zero-energy resonance of L∗
g, and αt

g is the perturbed
dynamics. For a ∈ Otest, a dense subset of O (that will be specified below), this
limit is exponentially fast, with relaxation time τR = O(g−2).8

Moreover, [16,21,22] prove strict positivity of entropy production in the latter
case, which is consistent with Clausius’ formulation of the second law of thermo-
dynamics. See [10] for another proof using scattering theory of the convergence
to a NESS and strict positivity of entropy production when two free fermionic
reservoirs at different temperatures or chemical potentials are coupled.

5. Quasi-static evolution of NESS

In this section, we apply Theorem 2.2, Section 2, to investigate the quasi-static
evolution of NESS of the model system introduced in Section 3.

Together with assumption (B1), we assume (B3), i.e., V τ (t) = V (s), where
s ∈ [0, 1] is the rescaled time with sufficient smoothness properties of the in-
teraction. From Theorem 4.3, Section 4, we know the spectrum of the deformed
adjoint of the C-Liouvillean, L∗

g(t, θ) = U(θ)L∗
g(t)U(−θ), for θ ∈ I−(k), where

k = min(δ, π/β1, . . . , π/βn), and δ appears in assumption (B3). Let γ0 be a con-
tour enclosing only the zero eigenvalue of L∗

g(s, θ), for all s ∈ [0, 1], and

P 0
g (s, θ) :=

∮

γ0

dz

2πi
(
z − L∗

g(s, θ)
)−1

, (82)

the spectral projection onto the state corresponding to the zero eigenvalue of
L∗

g(s, θ). Moreover, let htest = D(ek
√

p2+1), and OR,test be the algebra generated
by b#(f), f ∈ htest, and 1R. Note that OR,test is dense in OR. Define

Otest := OΣ ⊗OR1,test ⊗ · · ·ORn,test , (83)

which is dense in O, and

C :=
{
aΩ : a ∈ Otest

} ≡ D(D−1
)
,

where D is the positive operator as defined in (80), Section 4. We make the fol-
lowing additional assumption.

(B4) The perturbation Hamiltonian V (s) ∈ Otest, for s ∈ [0, 1].

8In fact, by assuming additional analyticity of the interacting Hamiltonian, one may show that
this result holds for any initial state normal to ω; see [16, 21, 22].
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In order to characterize the quasi-static evolution of nonequilibrium steady states,
we introduce the new notion of an instantaneous NESS. Define an instantaneous
NESS vector to be

Ωg(s) := DU(−θ)P 0
g (s, θ)U(θ)DΩ . (84)

Note that Ωg from Corollary 4.4, Section 4, has the same form as (84).
It is important to note that introducing the operator D is needed to remove

the complex deformation.
We have the following Theorem, which effectively says that if a system, which

is initially in a NESS, is perturbed slowly over a time scale τ � τR, where τR is
some generic time scale (τR = maxs∈[0,1] τR(s), and τR(s) is the relaxation time to
a NESS, see proof of Corollary 4.4 in the Appendix), then the real state of the
system is infinitesimally close to the instantaneous NESS, and the difference of the
two states is bounded from above by a term of order O(τ−1).

Theorem 5.1 (Adiabatic theorem for NESS). Suppose assumptions (B1), (B3)
and (B4) hold. Then there exists g1 > 0, independent of s ∈ [0, 1], such that, for
a ∈ Otest, s ∈ [0, 1], and 0 < |g| < g1, the following estimate holds

sup
s∈[0,1]

∣∣∣〈Ωg(0), D−1ατs
g (a)Ω

〉− 〈Ωg(s), D−1aΩ
〉∣∣∣ = O(τ−1) , (85)

as τ → ∞.

Proof. Note that assumption (B3) implies assumption (B2), and hence the results
of Theorem 4.3 about the spectrum of L∗

g(t, θ), for θ ∈ I−(k) and fixed t ∈ R,
hold. The proof is now reduced to showing that the assumptions of Theorem 2.2
are satisfied. Choose θ ∈ I−(k). It follows from assumption (B3) and Lemma A.1
in the Appendix, that the deformed C-Liouvillean L∗

g(s, θ) with common dense
domain D = D(L0) ∩ D(N) generates the propagator Ũ (τ)

g (s, s′, θ), s′ ≤ s, which
is given by

∂sŨ
(τ)
g (s, s′, θ) = −iτL∗

g(s, θ)Ũ
(τ)
g (s, s′, θ) , for s′ ≤ s; Ũ (τ)

g (s, s, θ) = 1 . (86)

This implies that (A1) and (A2) are satisfied. Furthermore, (A3) follows from
the second resolvent identity

(
L∗

g(s, θ) − z
)−1 =

(L0(θ) − z
)−1

(
1 + gṼ tot(s, θ)

(L0(θ) − z
)−1

)−1

, (87)

and the results of Theorem 4.3, Section 4. We also know that zero is an isolated
simple eigenvalue of L∗

g(s, θ) such that dist(0, σ(L∗
g(s, θ))\{0}) > d, where d > 0

is a constant independent of s ∈ [0, 1]. This implies that assumption (A4) holds.
Again using the resolvent equation (87) and assumption (B3), P 0

g (s, θ) defined
in (82) is twice differentiable as a bounded operator for all s ∈ [0, 1], which im-
ply (A5). Let Ũ (τ)

a (s, s′, θ) (with domain D) be the propagator of the deformed
adiabatic evolution given by

∂sŨ
(τ)
a (s, s′, θ) = −iτL∗

a(s, θ)Ũ (τ)
a (s, s′, θ) for s′ ≤ s ; Ũ (τ)

a (s, s, θ) = 1 , (88)
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and

L∗
a(s, θ) = L∗

g(s, θ) +
i

τ

[
Ṗg(s, θ), Pg(s, θ)

]
. (89)

(Here, the (̇) stands for differentiation with respect to s.) Since (A1)–(A5) are
satisfied, the results of Theorem 2.2 hold.

P 0
g (s, θ)Ũ (τ)

a (s, 0, θ) = Ũ (τ)
a (s, 0, θ)P 0

g (0, θ) , (90)

and
sup

s∈[0,1]

‖Ũ (τ)
g (s, 0, θ) − Ũ (τ)

a (s, 0, θ)‖ = O(τ−1) , (91)

as τ → ∞.
For h the single particle Hamiltonian of the free fermions, eiht leaves

D(ek
√

p2+1) invariant. Therefore, for a ∈ Otest, αt
0(a) ∈ Otest, where αt

0 cor-
responds to the free time evolution. Moreover, together with assumption (B4)
and the boundedness of V , this implies (using a Dyson series expansion) that
ατs

g (a) ∈ Otest.

Now, applying the time evolution on C(O,Ω), and remembering that DΩ =
Ω, U(θ)Ω = Ω, the fact that U(θ) and D commute, and the definition of the
instantaneous NESS, it follows that

〈
Ωg(0), D−1ατs

g (a)Ω
〉

=
〈
Ũ (τ)

g (s, 0, θ)P 0
g (0, θ)Ω, a(θ)Ω

〉
. (92)

Using the results of Theorem 2.2, it follows that
〈
Ũ (τ)

g (s, 0, θ)P 0
g (0, θ)Ω, a(θ)Ω

〉
=
〈
Ũ (τ)

a (s, 0, θ)P 0
g (0, θ)Ω, a(θ)Ω

〉
+O(τ−1)

=
〈
P 0

g (s, θ)Ũ (τ)
a (s, 0, θ)Ω, a(θ)Ω

〉
+O(τ−1)

=
〈
P 0

g (s, θ)Ũ (τ)
g (s, 0, θ)Ω, a(θ)Ω

〉
+O(τ−1) .

The fact that (Ũ (τ)
g (s, 0, θ))∗Ω = Ω implies

DP 0
g (s, θ)Ũ (τ)

g (s, 0, θ) = |Ωg(s, θ)〉〈Ω|Ũ (τ)
g (s, 0, θ)

= |Ωg(s, θ)〉〈(Ũ (τ)
g (s, 0, θ))∗Ω|

= |Ωg(s, θ)〉〈Ω| = DP 0
g (s, θ) .

It follows that
〈
Ωg(0), D−1α(τs)

g (a)Ω
〉

=
〈
Ωg(s), D−1aΩ

〉
+O(τ−1) ,

for large τ . �

Remarks. (1) Positivity of entropy production. If the interaction Hamiltonian
gV (t) is time-periodic with period τ, i.e., V (t+ τ) = V (t), it is shown in [3]
that the final state of the coupled system (introduced in Section 3) converges
to a time periodic state after very many periods. It is also shown that entropy
production per cycle is strictly positive (Theorem 6.3 in [3]). The infinite
period limit, τ → ∞, is equivalent to the quasi-static limit. Hence, entropy
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production in the quasi-static evolution of NESS of the model considered in
this paper is strictly positive.

(2) An example of a reversible isothermal process. As a second application of The-
orem 2.2 in quantum statistical mechanics, one may consider a concrete ex-
ample of an isothermal process of a small system coupled to a single fermionic
reservoir, and calculate an explicit rate of convergence (O(τ−1)) between the
instantaneous equilibrium state and the true state of the system in the quasi-
static limit τ → ∞ (see [1]). Under suitable assumptions on the form factors,
one may show that there exists a constant g1 > 0 such that, for a in a dense
subset of O and 0 < |g| < g1, the following estimate holds

∣∣ρτs(a) − ωβ
τs(a)

∣∣ = O(τ−1) , (93)

as τ → ∞, where ρτs is the true state of the system at time t = τs, and ωβ
τs is

the instantaneous equilibrium state, which corresponds to the zero eigenvalue
of the time-dependent standard Liouvillean.

Appendix A.

Existence of the deformed time evolution

Choose θ ∈ I−(δ), where δ appears in assumption (B2), Section 3. The deformed
time evolution is given by the propagator Ũg(t, t′, θ) which satisfies

∂tŨg(t, t′, θ) = −iL∗
g(t, θ)Ũg(t, t′, θ) , Ũg(t, t, θ) = 1 .

The following lemma guarantees the existence of Ũg(t, t′, θ). Let

D := D(L0) ∩D(N) ,

and denote by

C := sup
t∈R

sup
θ∈I−(δ)

‖Ṽ tot(t, θ)‖

≤
√

2
2

sup
t∈R,z∈I(δ)

∑
i

∣∣1 + e−βiz
∣∣−1/2

(
3‖f̃i(t)‖H2(δ,B)

+ ‖e−βiui/2f̃i(t)‖H2(δ,B)

)
<∞

due to assumption (B2), Section 3.

Lemma A.1. Assume (B2), choose θ ∈ I−(δ) ∪ R and |g| < g1, and fix t ∈ R.
Then

(i) L∗
g(t, θ) with domain D generates a contraction semi-group e−iσL∗

g(t,θ), σ ≥ 0
on H.

(ii) For ψ ∈ D, e−iσL∗
g(t,θ)ψ is analytic in θ ∈ I−(δ). For θ′ ∈ R and θ ∈

I−(δ) ∪ R,
U(θ′)e−iσL∗

g(t,θ)U(−θ′) = e−iσL∗
g(t,θ+θ′) .
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(iii) Ũg(t, t′, θ)Ũg(t′, t′′, θ) = Ũg(t, t′′, θ) for t ≥ t′ ≥ t′′.
(iv) Ũg(t, t′, θ)D ⊂ D, and for ψ ∈ D, Ũg(t, t′, θ)ψ is differentiable in t and t′

such that

∂tŨg(t, t′, θ)ψ = −iL∗
g(t, θ)Ũg(t, t′, θ)ψ ,

∂t′ Ũg(t, t′, θ)ψ = iŨg(t, t′, θ)L∗
g(t

′, θ)ψ .

(v) For θ′ ∈ R,

U(θ′)Ũg(t, t′, θ)U(−θ′) = Ũg(t, t′, θ + θ′) .

Moreover, Ũg(t, t′, θ) is analytic in θ ∈ I−(δ).

Proof. Claim (i) follows from Phillip’s Theorem for the perturbation of semigroups
(see [17] Chapter IX). Claim (ii) follows from assumption (B2), the resolvent iden-
tity

(
L∗

g(t, θ) − z
)−1

=
(L0(θ) − z

)−1
(
1 + Ṽ tot(t, θ)

(L0(θ) − z
)−1

)−1

,

U(θ′)L∗
g(t, θ)U(−θ′) = L∗

g(t, θ + θ′) ,

and the fact that

e−iσL∗
g(t,θ) =

1
2πi

∫

Γ

e−σz
(
iL∗

g(t, θ) − z
)−1

dz ,

where Γ is a contour encircling the spectrum of L∗
g(t, θ).

Claims (iii) and (iv) are consequences of Kato’s Theorem [18], to which we
refer the reader. Without loss of generality, rescale time such that t = τs, s ∈ [0, 1],
and let L∗n

g (sτ, θ) = L∗
g(τ

k
n , θ) for n ∈ N\{0} and s ∈ [ k

n ,
k+1

n ], k = 0, . . . , n − 1.
Moreover, define Ũn

g (τs, τs′, θ) := e−iτ(s−s′)L∗n
g (τ k

n ,θ) if k
n ≤ s′ ≤ s ≤ k+1

n , and
Ũn

g (τs, τs′, θ) = Ũn
g (τs, τs′′, θ)Ũn

g (τs′′, τs′, θ) if 0 ≤ s′ ≤ s′′ ≤ s ≤ 1. It follows
from (ii) for θ′ ∈ R, that

U(θ′)Ũn
g (τs, τs′, θ)U(−θ′) = Ũn

g (τs, τs′, θ + θ′) ,

and that Ũn
g (τs, τs′, θ) is analytic in θ ∈ I−(δ), where δ appears in (B2). Claim

(v) follows by taking the n→ ∞ limit (in norm). �

Glued Hilbert space representation

We want to show that

F(L2(R+;B)
)⊗F(L2(R+;B)

) ∼= F(L2(R;B)
)
.

Let Ω be the vacuum state in the fermionic Fock space F(L2(R+;B)). For fermionic
creation/annihilation operators on F(L2(R+;B)),

b#(f) :=
∫
m(u)dudσf(u, σ)b#(u, σ) , f ∈ L2(R+;B) ,
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define the creation/annihilation operators on F(L2(R+;B)) ⊗F(L2(R+;B)) as

b#l (f) := b#(f) ⊗ 1 ;

b#r (f) := (−1)N ⊗ b#(f) ,

where · corresponds to complex conjugation. Note that bl and br anti-commute.
Let ã and ã∗ be the annihilation and creation operators on the fermionic Fock
space F(L2(R+;B) ⊕ L2(R+;B)), such that they satisfy the usual CAR, and let
Ω̃ be the vacuum state in F(L2(R+;B) ⊕ L2(R+;B)). An isomorphism between
F(L2(R+;B))⊗F(L2(R+;B)) and F(L2(R+;B)⊕L2(R+;B)) follows by the iden-
tification

b#l (f) ∼= ã#((f, 0)) ,

b#r (g) ∼= ã#((0, g)) ,

Ω ⊗ Ω ∼= Ω̃ .

Now we claim that F(L2(R+;B)⊕L2(R+;B)) is isomorphic to F(L2(R;B)).
Consider the mapping

j : L2(R+;B)⊕ L2(R+;B) � (f, g) → h ∈ L2(R;B) ,

such that

h(u, σ) :=

{√
m(u)f(u, σ) , u ≥ 0√
m(|u|)g(|u|, σ) , u < 0

.

This mapping is an isometry, since

‖h‖2
L2(R;B) = ‖(f, g)‖2

L2(R+;B)⊕L2(R+;B)

=
∫

R+;B
dudσm(u)|f(u, σ)|2 +

∫

R+;B
dudσm(u)|g(u, σ)|2

= ‖f‖2
L2(R+;B) + ‖g‖2

L2(R+;B) .

Moreover, the mapping j is an isomorphism, since, for given h ∈ L2(R;B), there
exists a mapping j−1 : h→ (f, g) ∈ L2(R+;B) ⊕ L2(R+;B), such that

f(u, σ) :=
1√
m(u)

h(u, σ) , u > 0 ,

g(u, σ) :=
1√
m(|u|)h(|u|, σ) , u < 0 .

Proof of statements in Section 49

Proof of Lemma 4.1. L0(θ) restricted to the N = n1 sector is

L(n)
0 (θ) = LΣ + s1 + · · · + sn + nθ , (94)

9Although the results in this subsection are a very simple extension of those proven in [14–16] to

the time-dependent case, they are sketched here so that the presentation is self-contained. The
reader can refer to those references for additional details.
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where s1, . . . , sn are interpreted as one-particle multiplication operators. For
Imθ �= 0, it also follows from (94) that

D =

{
ψ =

{
ψ(n)

}
: ψ(n) ∈ D(L(n)

0 (θ)
)

and
∑

n

‖L(n)
0 (θ)ψ(n)‖2 <∞

}
,

and hence L0(θ) is a closed normal operator on D. Claims (ii) and (iii) follow from
the corresponding statements on the sector N = n1. �

Proof of Lemma 4.2. The first claim (i) follows from the fact that gṼ tot(t, θ) is
bounded for θ ∈ I(δ) due to assumption (B2) and the fact that the reservoirs are
fermionic. It also follows from assumption (B2) that (g, θ) → L∗

g(t, θ) is analytic in
θ ∈ I−(δ). Analyticity in g is obvious from (62). Assume that Reθ = 0. It follows
from assumption (B2) that the resolvent formula

(
L∗

g(t, θ) − z
)−1 =

(L0(t, θ) − z
)−1

(
1 + gṼ tot(t, θ)

(L0(θ) − z
)−1

)−1

, (95)

holds for small g, as long as z belongs to the half-plane {z ∈ C : 0 < c < Imz}.
Since (L0(t, θ) − z)−1 is uniformly bounded as Imθ ↑ 0 for g ∈ R and Imz large
enough, and Ṽ tot(t, θ) is bounded and analytic in θ, claim (iii) follows from the
Neumann series expansion of the resolvent of L∗

g(t, θ). �

Proof of Theorem 4.3. (i) The resolvent formula

(
L∗

g(t, θ) − z
)−1 =

(L0(θ) − z
)−1

(
1 + gṼ tot(t, θ)

(L0(θ) − z
)−1

)−1

, (96)

holds for small g and z in the half-plane {z ∈ C : 0 < c < Imz}. Note that

∥∥gṼ tot(t, θ)
(L0(θ) − z

)−1∥∥ ≤ |g|C∥∥(L0(θ) − z
)−1∥∥

≤ |g|C 1
dist

(
z, η(L0(θ))

) ,

where C is given by (77) and η(L0(θ)) is the closure of the numerical range of L0.

Fix g1 such that it satisfies (76), and choose ε such that ε > k−|ν|
2 > 0. Let

G(ν, ε) :=
{
z ∈ C : Imz > ν; dist

(
z, η
(L0(θ)

))
> ε
}
.

Then

sup
z∈G(ν,ε)

∥∥gṼ tot(t, θ)
(L0(θ) − z

)−1∥∥ ≤ |g|
g1
,
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uniformly in t. If |g| < g1, the resolvent formula (96) holds on G(ν, ε), and, for
m ≥ 1,

sup
z∈G(ν,ε)

∥∥∥∥∥∥
(
z − L∗

g(t, θ)
)−1 −

m−1∑
j=0

(
z − L0(t, θ)

)−1
(
gṼ tot(t, θ)

(
z − L0(θ)

)−1
)j

∥∥∥∥∥∥

≤
(

|g|
g1

)m

1 − |g|
g1

, (97)

uniformly in t. It follows that
⋃

ε> k−|ν|
2

G(ν, ε) ⊂ ρ
(
L∗

g(t, θ)
)
, (98)

where ρ(L∗
g(t, θ)) is the resolvent set of L∗

g(t, θ). Moreover, setting m = 1 in (97),
it follows that, for |g| < g1/2,

‖Pg(t, θ) − P0‖ < 1 ,

and hence Pg(t, θ) is analytic in g.
Fix (g0, θ0) ∈ C × I−(δ) such that |g0| < g1. Since L∗

g0
(t, θ0) and L∗

g0
(t, θ)

are unitarily equivalent if (θ− θ0) ∈ R and the discrete eigenvalues of L∗
g0

(t, θ) are
analytic functions with at most algebraic singularities in the neighbourhood of θ0,
it follows that the pure point spectrum of L∗

g0
(t, θ) is independent of θ.

(ii) Analyticity of Tg(t) in g follows directly from (i) and the definition of
Tg(t). Since ‖Tg(t)− 1‖ < 1 for |g| < g1/2, T−1/2

g (t) is also analytic in g. Inserting
the Neumann series for the resolvent of L∗

g(t, θ), gives

Tg(t) = 1 +
∞∑

j=1

gjT (j)(t) , (99)

with

T (j)(t) =
∮

γ

dz

2πi
(
z−LΣ

)−1
P0Ṽ

tot(t, θ)((z−L0(θ))−1Ṽ tot(t, θ))j−1P0

(
z−LΣ

)−1
.

(100)
Similarly,

Mg(t) = LΣ +
∞∑

j=1

gjM (j)(t) , (101)

with

M (j)(t) =
∮

γ

dz

2πi
z
(
z−LΣ

)−1
P0Ṽ

tot(t, θ)((z−L0(θ))−1Ṽ tot(t, θ))j−1P0

(
z−LΣ

)−1
.

(102)
The odd terms in the above two expansions are zero due to the fact that P0 projects
onto the N = 0 sector. The first non-trivial coefficient in the Taylor series of Σg(t)
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is

Σ(2)(t) = M (2)(t) − 1
2
(
T (2)(t)LΣ + LΣT (2)(t)

)
(103)

=
1
2

∮

γ

dz

2πi

(
ξ(z, t)

(
z − LΣ

)−1 +
(
z − LΣ

)−1
ξ(z, t)

)
, (104)

with

ξ(z, t) = P0Ṽ
tot
g (t, θ)

(
z − L0(θ)

)−1
Ṽ tot

g (t, θ)P0 . �

Details of the calculation of the discrete spectrum of L∗
g(t, θ). Denote by Pk, k =

0, . . . , 3, the spectral projection onto the eigenstates of LΣ, and let

Γ(2)
k (t) := PkΣ(2)(t)Pk , k = 0, . . . , 3 .

Consider first the nondegenerate eigenvalues (Ek = ∓2ω0, k = 2, 3). Using the fact
that

lim
ε↘0

Re
1

x− iε
= PV 1

x
;

lim
ε↘0

Im
1

x− iε
= iπδ(x) ,

and applying the Cauchy integration formula gives

ReΓ(2)
3 =

1
2

∑
i

PV
∫

R

du
‖f̃i(u, t)‖2

B
u− 2ω0

,

ImΓ(2)
3 = −π

2

∑
i

‖f̃i(2ω0, t)‖2
B ,

and

ReΓ(2)
2 = −1

2

∑
i

PV
∫

R

du
‖f̃i(u, t)‖2

B
u− 2ω0

,

ImΓ(2)
2 = −π

2

∑
i

‖f̃i(2ω0, t)‖2
B .

Now apply degenerate perturbation theory for the zero eigenvalue. Using the
definition of fi,βi and f#

i,βi
given in Section 3,

ReΓ(2)
0,1 = 0 ,

ImΓ(2)
0,1 = −π

∑
i

‖f̃i(2ω0, t)‖2
B

cosh(βiω0)

(
eβiω0 −eβiω0

−e−βiω0 e−βiω0

)
.
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Therefore, to second order in the coupling g,

E2,3(g, t) = ∓
(

2ω0 − 1
2
g2PV

∫

R

du
1

2ω0 − u

∑
i

‖f̃i(u, t)‖2
B

)

− i
π

2
g2
∑

i

‖f̃i(2ω0, t)‖2
B +O(g4) ,

while
E0,1(g, t) = g2a0,1(t) +O(g4) ,

where a0,1(t) are the eigenvalues of the matrix

−iπ
∑

i

‖f̃i(2ω0, t)‖2
B

2 cosh(βiω0)

(
eβiω0 −eβiω0

−e−βiω0 e−βiω0

)
.

Since Ω is an eigenvector corresponding to the isolated zero eigenvalue of
Lg(t, θ) (by construction, Lg(t, θ)Ω = 0), then zero is also an isolated eigenvalue
of L∗

g(t, θ). (One way of seeing this is to take the adjoint of the spectral projection
of Lg(t, θ) corresponding to Ω, which is defined using contour integration.) Note

that ψ =
(

1
1

)
is the eigenvector corresponding to the zero eigenvalue of Σ(2)(t).

Hence,

E0(g, t) = 0 ,

E1(g, t) = −iπg2
∑

i

‖f̃i(2ω0, t)‖2
B +O(g4) .

Proof of Corollary 4.4 (NESS). Define k := min(π/β1, . . . , π/βn, δ), where δ ap-
pears in assumption (B2), and let θ ∈ I−(k). We already know the spectrum of
L∗

g(t, θ) from Theorem 4.3. For a ∈ Otest,

lim
t→∞〈Ω, αt

g(a)Ω〉 = lim
t→∞〈Ω, eitLgae−itLgΩ〉

= lim
t→∞〈e−itL∗

gΩ, aΩ〉
= lim

t→∞〈e−itL∗
g(θ)Ω, a(θ)Ω〉

= lim
t→∞

1
2πi

〈∫ ∞

−∞
du
(
u+ iη − L∗

g(θ)
)−1

e−i(u+iη)tΩ, a(θ)Ω
〉
,

for η > 0. One may decompose the last integral into two parts (see for exam-
ple [14]). The first part is

lim
t→∞

1
2πi

〈∮

γ

dz
(
z − L∗

g(θ)
)−1

e−iztΩ, a(θ)Ω
〉

= 〈Ωg, D
−1aΩ〉 ,

where the zero-energy resonance is

Ωg := DU(−θ)P 0
g (θ)U(θ)DΩ = DU(−θ)P 0

g (θ)Ω .
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The second term converges to zero exponentially fast as t→ ∞, since

1
2πi

〈∫ ∞

−∞

(
u− i(µ− ε) − L∗

g(θ)
)−1

e−i(u−i(µ−ε))tΩ, a(θ)Ω
〉

= O
(
e−(µ−ε′)t) ,

where 0 < ε′ < ε < |Imθ| =: µ; (see also Theorem 19.2 in [25]). �
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[8] J. Dereziński and V. Jaksić, Return to equilibrium for Pauli–Fierz systems, Ann.
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