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Abstract: The partition function of N = 6 supersymmetric Chern–Simons-matter
theory (known as ABJM theory) on S

3, as well as certain Wilson loop observables, are
captured by a zero dimensional super-matrix model. This super–matrix model is closely
related to a matrix model describing topological Chern–Simons theory on a lens space.
We explore further these recent observations and extract more exact results in ABJM
theory from the matrix model. In particular we calculate the planar free energy, which
matches at strong coupling the classical IIA supergravity action on AdS4 × CP

3 and
gives the correct N 3/2 scaling for the number of degrees of freedom of the M2 brane
theory. Furthermore we find contributions coming from world-sheet instanton correc-
tions in CP

3. We also calculate non-planar corrections, both to the free energy and to
the Wilson loop expectation values. This matrix model appears also in the study of
topological strings on a toric Calabi–Yau manifold, and an intriguing connection arises
between the space of couplings of the planar ABJM theory and the moduli space of
this Calabi–Yau. In particular it suggests that, in addition to the usual perturbative and
strong coupling (AdS) expansions, a third natural expansion locus is the line where one
of the two ’t Hooft couplings vanishes and the other is finite. This is the conifold locus
of the Calabi–Yau, and leads to an expansion around topological Chern–Simons theory.
We present some explicit results for the partition function and Wilson loop observables
around this locus.
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1. Introduction and Summary

The discovery of Aharony, Bergman, Jafferis and Maldacena (ABJM) of the world-
volume theory of coincident M2-branes [1] (following Bagger-Lambert and Gustavsson
[2,3]) provides a new interacting field theory with well defined weak and strong cou-
pling expansions. A great deal of effort has been given to studying these two limits of the
theory: three dimensional N = 6 supersymmetric Chern–Simons-matter and type IIA
string theory on AdS4 ×CP

3 (or M-theory on AdS4 ×S
7/Zk). For better or worse, both

descriptions of the theory are much harder than the D3-brane analog: 4d N = 4 SYM
and type IIB string theory on AdS5 × S

5. At weak coupling perturbative calculations
in ABJM theory are rather subtle and for many quantities are in even powers of the
coupling, while at strong coupling the geometry of CP

3 is more complicated than S
5

and has, for example, non-trivial 2-cycles.
An important breakthrough, which is the underpinning of the present study, was the

work of Kapustin, Willett and Yaakov [4], who use the localization techniques of [5] to
reduce the calculation of certain quantities in the gauge theory on S

3 to finite dimensional
matrix integrals.1 These matrix integrals can be evaluated in a systematic expansion in
1/N . Indeed, they have a natural supergroup structure, i.e., they are super-matrix mod-
els [7,8], and are related to some previously studied bosonic matrix models [9,10] by
analytical continuation [8].

The solution of this matrix model allowed for the evaluation of the first exact inter-
polating function in this theory [8] giving a closed form expression for the expectation
value of the 1/2 BPS Wilson loop operator of [7] at all values of the coupling. This
expression derived from the matrix-model reduction of the gauge theory reproduces
exactly the known leading strong coupling result, the classical action of a macroscopic
string in AdS4.

1 Similar results apply also to other 3d theories with N = 2 supersymmetry [4,6].
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The purpose of this paper is to explore further what can be learnt from the matrix
model and its solution to the understanding of the physical 3d gauge theory and its
string/M-theory dual.

This is a broad subject, connected through the matrix model to special geometry,
Chern–Simons (CS) theory, topological strings and more. One of the avenues we explore
is the relation between the moduli space of the matrix model and the space of couplings
of the gauge theory. It is very useful to consider the generalization of the gauge theory
where the rank of the two gauge groups are not equal [11].2 The space of couplings is
two dimensional and upon complexification, it matches the moduli space of the Riemann
surface solving the planar matrix model. This surface is also the mirror to a well studied
toric Calabi–Yau manifold known as local F0, where F0 = P

1 × P
1 is a Hirzebruch

surface. As we review in Sect. 3, this moduli space has three special loci: the orbifold
point, the large radius limit and the conifold locus.

These can be identified in the gauge theory respectively as the weakly coupled gauge
theory, the strongly coupled theory described by string theory on AdS, and lastly the
conifold locus is where the rank of one of the gauge group vanishes, so ABJM theory
reduces to topological CS theory [12]. The first two are known duality frames with the
AdS/CFT rules on how to evaluate observables on both sides. The simplicity of the con-
ifold locus suggests that there should be another duality frame where ABJM theory is
considered as a deformation of topological CS theory. We explore this in Sect. 6, where
we calculate the partition function and Wilson loop observables around this point. It
would be very interesting to learn how to calculate other quantities in this regime.

We present the matrix model for the ABJM theory and that for CS theory on the lens
space L(2, 1) = S

3/Z2 in the next section. The matrix model of ABJM has an underly-
ing U (N1|N2) symmetry while that of the lens space has U (N1 + N2) symmetry, which
in both cases are broken to U (N1)×U (N2). It is easy to see that the expressions for them
are related by analytical continuation of N2 → −N2, or analogously a continuation of
the ’t Hooft coupling N2/k → −N2/k (which may be attributed to the negative level
of the CS coupling of this group in the ABJM theory). We can then go on to study the
lens space model and analytically continue to ABJM at the end.

Conveniently, the lens space matrix model has been studied in the past [8,10,13,14].
The planar resolvent is known in closed form and the expressions for its periods are
given as power series at special points in moduli space. We review the details of this
matrix model and its solution in Sects. 2 and 3.

The matrix model of ABJM theory was derived by localization: it captures in a finite
dimensional integral all observables of the full theory which preserve certain super-
charges. At the time it was derived in [4], the only such observable (apart for the vacuum)
was the 1/6 BPS Wilson loop constructed in [15–17] and 1/2 BPS vortex loop operators
[18]. Indeed, the expectation value of the 1/6 BPS Wilson loop can be expressed as an
observable in the ABJM matrix model, and by analytical continuation in the lens space
model.

Another class of Wilson loop operators, which preserve 1/2 of the supercharges,
was constructed in [7] and studied further in [19]. It is the dual of the most symmetric
classical string solution in AdS4 ×CP

3. This Wilson loop is based on a super-connection
in space-time and reduces upon localization to the trace of a supermatrix in the ABJM
matrix model [7]. The different 1/2 BPS Wilson loops are classified by arbitrary repre-
sentations of the supergroup U (N1|N2), and the 1/6 BPS ones are classified by a pair

2 Though commonly known as ABJ theory, for simplicity we still call the theory with this extra parameter
ABJM theory. When specializing to the case of equal rank we refer to it as the “ABJM slice”.
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of representations3 of U (N1) and U (N2). We will mostly concern ourselves with the
1/2 BPS Wilson loop in the fundamental representation of U (N1|N2) and the 1/6 BPS
Wilson loop in the fundamental representation of U (N1). The exception is Sect. 8.2 and
Appendix B, where we study the 1/2 BPS Wilson loop in large symmetric and antisym-
metric representations. There we also make contact with the vortex loop operators of
[18].

Of course, the natural observables in CS theory are the partition function and Wilson
loops, so these quantities were also studied earlier in the matrix models of CS (see, for
example, [9,10,13,20–22]). This information is encoded in different period integrals
on the surface solving the matrix model, as we explain in Sect. 2.2. It turns out that
the 1/6 BPS loop is captured by a period integral around one of the two cuts in the
planar solution and the 1/2 BPS Wilson loop by a period integral around both cuts, or
alternatively, around the point at infinity, and is much easier to calculate [8].

With all this machinery presented in Sects. 2 and 3 in hand, we are ready to calculate,
and in Sects. 4, 5 and 6 we study the partition function and Wilson loop observables in
the three natural limits of the matrix model. First, in Sects. 4 we look at the orbifold
point, which is the weak coupling point of the matrix model and likewise of the physical
ABJM theory. The calculations there are straightforward and we present the answers
to these quantities. A single term (1/6 BPS loop at 2-loops) was calculated indepen-
dently directly in the field theory. All other terms are predictions for the higher order
perturbative corrections.

Section 5 addresses the strong coupling limit of the theory, where the matrix model
should reproduce the semiclassical expansion of these observables in type IIA string
theory on AdS4 ×CP

3. The expectation value of the Wilson loop was already derived in
[8] and matched with a classical string in AdS. We first generalize the strong coupling
expansion for the case of N1 �= N2, which corresponds to turning on a B-field in the
AdS dual. This version of the theory was studied in [11] and a more precise analysis of
the dictionary, capturing shifts in the charges, was presented in [23,24]. Interestingly,
it turns out that the matrix model knows about these shifted charges, and the strong
coupling parameter turns out to be exactly the one calculated in [24], rather than the
naive coupling.

In the same section we present also the calculation of the free energy in the matrix
model. The result is proportional to N 2/

√
λ (or a slight generalization for N1 �= N2).

This scales at large N like N 3/2, which is indeed the M-theory prediction for the number
of degrees of freedom on N coincident M2-branes [25]. Comparing with a supergravity
calculation, we find precise agreement with the classical action of AdS4 × CP

3. This is
the first derivation of this large N scaling in the field theory side. The matrix model also
provides an infinite series of instanton/anti–instanton corrections to both the partition
function and to the Wilson loop expectation value, which we interpret as fundamental
strings wrapping the CP

1 inside CP
3.

We then turn to a third limit of the theory, when one of the gauge couplings is pertur-
bative and the other one not. In the strict limit the ABJM theory reduces to topological
CS and in the matrix model one cut is removed. We show how to perform explicit calcu-
lations in this regime both from the planar solution of the matrix model and directly by
performing matrix integrals. In both approaches one can see the full lens space matrix
model arising as a (rather complicated) observable in topological CS theory on S

3. We

3 Special combinations of representations of U (N1)× U (N2) are also representations of U (N1|N2), and
in this case the 1/6 BPS and 1/2 BPS loops will have the same expression in the matrix model and the same
VEVs. The proof of localization for the 1/2 BPS loop [7] relied on this equivalence.
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speculate on possible tools of calculating directly in ABJM theory in this limit, where
integrating out the bi-fundamental matter fields leads to correlation functions of Wilson
loops in CS theory. We demonstrate the idea in the case of the 1/6 BPS Wilson loop,
which has a relatively simple perturbative expansion. This limit of the spin–chain of
ABJM theory was considered in [26], and a similar system in four dimensions was
studied in [27].

The brave souls that will make it to Sects. 7 and 8 will find some new results on the
non-planar corrections to the matrix model, and hence to ABJM theory. In Sect. 7 we
show that the full 1/N expansion of the free energy on S

3 is completely determined
by a recursive procedure based on direct integration [28,29] of the holomorphic anom-
aly equations [30]. The ability to determine the full expansion is closely related to the
integrability of topological string theory on toric Calabi–Yau threefolds (as discussed
in for example [31]). By the AdS/CFT correspondence, the 1/N expansion obtained
in this way determines the partition function of type IIA theory on the AdS4 × CP

3

background at all genera. This result is reminiscent of the “old” matrix models for non-
critical strings, where a double-scaled 1/N expansion, encoded in an integrable system,
captures the all-genus partition function of a string theory. The recursive procedure for
the computation of the 1/N expansion is quite efficient in practice, and one can perform
explicit computations at high genus. This allows us to study the large genus behavior of
the 1/N corrections, and we check that they display the factorial growth ∼ (2g)! typical
of string perturbation theory [32]. A careful examination of the coefficients suggests that
this 1/N expansion is Borel summable.

In Sect. 8 we present the genus one correction to the Wilson loop and expand it at
both weak and strong coupling. Another topic covered there is that of “giant Wilson
loops” [33–35], where in the supergravity dual (at least in AdS5 × S

5) a fundamental
string is replaced by a D-brane. This happens for Wilson loops in representations of
dimension comparable to N . We calculate the corresponding object in the matrix model
and compare it to the vortex loop operators of [18].

One point we have not touched upon is the connection to topological strings. Since
CS and the matrix model are related to topological strings, we expect there to be a direct
connection between ABJM theory and a topological string theory. All the quantities
captured by the matrix model should exist also in a topologically twisted version of
ABJM theory, possibly along the lines of [36].

2. The ABJM Matrix Model and Wilson Loops

2.1. The matrix model and its planar limit. The ABJM matrix model, obtained in [4],
gives an explicit integral expression for the partition function of the ABJM theory on S

3,
as well as for Wilson loop VEVs. This matrix model is defined by the partition function

ZABJM(N1, N2, gs)

= i− 1
2 (N

2
1 −N 2

2 )

N1!N2!
∫ N1∏

i=1

dμi

2π

N2∏
j=1

dν j

2π

∏
i< j

(
2 sinh

(
μi −μ j

2

))2 (
2 sinh

(
νi −ν j

2

))2

∏
i, j

(
2 cosh

(
μi −ν j

2

))2

×e
− 1

2gs

(∑
i μ

2
i −∑ j ν

2
j

)
, (2.1)

where the coupling gs is related to the Chern–Simons coupling k of the ABJM theory as

gs = 2π i

k
. (2.2)
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In writing this matrix integral we have been very careful with its precise overall nor-
malization, since one of our goals in the present paper is to compute the free energy
on the sphere at strong coupling. The calculation of [4] captures the full k dependence
of the partition function, but we have to fix an overall k-independent normalization.
This is done in two steps. First, we require that the above matrix integral reduces to the
partition function for Chern–Simons theory on S

3 when N1 = 0 or N2 = 0 (in a specific
framing of S

3). Once this is done, there is still a k-independent normalization factor
which appears as a constant coefficient multiplying the cosh in the denominator. This
term was not fixed in [4], but it can be easily obtained from the formulae they presented.
This calculation can be found in Appendix A, and leads to the matrix integral (2.1).

The ABJM matrix model is closely related to the L(2, 1) lens space matrix model
introduced in [9,10]. This matrix model is defined by the partition function

ZL(2,1)(N1, N2, gs)

= i− 1
2 (N

2
1 +N 2

2 )

N1!N2!
∫ N1∏

i=1

dμi

2π

N2∏
j=1

dν j

2π

∏
i< j

(
2 sinh

(
μi − μ j

2

))2 (
2 sinh

(
νi − ν j

2

))2

×
∏
i, j

(
2 cosh

(
μi − ν j

2

))2

e
− 1

2gs

(∑
i μ

2
i +
∑

j ν
2
j

)
. (2.3)

The relation between the partition functions is simply [8]

ZABJM(N1, N2, gs) = ZL(2,1)(N1,−N2, gs). (2.4)

Since the large N expansion of the free energy gives a sequence of analytic functions of
N1, N2, once these functions are known in one model, they can be obtained in the other
by the trivial change of sign N2 → −N2.

Let us now discuss the large N solution of the lens space matrix model, following
[8,10,13]. At large N , the two sets of eigenvalues, μi , ν j , condense around two cuts.
The cut of the μi eigenvalues is centered around z = 0, while that of the νi eigenvalues
is centered around z = π i. We will write the cuts as

C1 = (−A, A), C2 = (π i − B, π i + B), (2.5)

in terms of the endpoints A, B. It is also useful to use the exponentiated variable

Z = ez, (2.6)

In the Z plane the cuts (2.5) get mapped to

(1/a, a), (−1/b,−b), a = eA, b = eB, (2.7)

which are centered around Z = 1, Z = −1, respectively, see Fig. 1. We will use the
same notation C1,2 for the cuts in the Z plane. The large N solution is encoded in the
total resolvent of the matrix model, ω(z). It is defined as [13]

ω(z) = gs

〈
Tr

(
Z + U

Z − U

)〉

= gs

〈
N1∑

i=1

coth

(
z − μi

2

)〉
+ gs

〈
N2∑
j=1

tanh

(
z − ν j

2

)〉
, (2.8)
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Fig. 1. Cuts in the z-plane and in the Z -plane

where

U =
(

eμi 0
0 −eν j

)
. (2.9)

We will denote by ω0(z) the planar limit of the resolvent, which was found in explicit
form in [13]. It reads,

ω0(z) = 2 log

(
e−t/2

2

[√
(Z + b)(Z + 1/b)−√

(Z − a)(Z − 1/a)
])
, (2.10)

where

t = t1 + t2 (2.11)

is the total ’t Hooft parameter. It is useful to introduce the variables4

ζ = 1

2

(
a +

1

a
− b − 1

b

)
, β = 1

4

(
a +

1

a
+ b +

1

b

)
. (2.12)

β is related to the total ’t Hooft parameter through

β = et . (2.13)

All the relevant planar quantities can be expressed in terms of period integrals of the
one-form ω0(z)dz. The ’t Hooft parameters are given by

ti = 1

4π i

∮
Ci

ω0(z)dz, i = 1, 2. (2.14)

The planar free energy F0 satisfies the equation

I ≡ ∂F0

∂t1
− ∂F0

∂t2
− π it

2
= −1

2

∮
D
ω0(z)dz, (2.15)

where the D cycle encloses, in the Z plane, the interval between −1/b and 1/a (see
Fig. 1).5

4 The variable β is related to the variable ξ in [8] by β = ξ/2.
5 Likewise one can calculate the second “B-cycle” period, and it will arise when solving the Picard-Fuchs

equations at strong coupling in Sect. 3.2.



518 N. Drukker, M. Mariño, P. Putrov

The derivatives of these periods can be calculated in closed form by adapting a trick
from [37]. One finds,

∂t1,2
∂ζ

= − 1

4π i

∮

C1,2

dZ√
(Z2 − ζ Z + 1)2 − 4β2 Z2

= ±
√

ab

π(1 + ab)
K (k), (2.16)

and similarly

∂t1
∂β

= −2

√
ab

π(1 + ab)

(
K (k)− 2ab

1 + ab

(n1|k)− 2

1 + ab

(n2|k)

)
, (2.17)

where

k2 = 1 −
(

a + b

1 + ab

)2

, n1 = 1 − a2

1 + ab
, n2 = b(a2 − 1)

a(1 + ab)
. (2.18)

Likewise for the period integral in (2.15) we find

∂I
∂ζ

= −2

√
ab

1 + ab
K (k′),

∂I
∂β

= 4

√
ab

1 + ab

(
K (k′) +

2a(1 − b2)

(1 + ab)(a + b)
(
(n′

1|k′)−
(n′
2|k′))

)
,

(2.19)

where

k′ = a + b

1 + ab
, n′

1 = a + b

b(1 + ab)
, n′

2 = b(a + b)

1 + ab
. (2.20)

We can now use the dictionary between the lens space matrix model and the ABJM
matrix model given by (2.2) and (2.4) to get the planar solution of the latter model. In
particular, the natural ’t Hooft parameters in the ABJM theory

λ j = N j

k
(2.21)

are obtained from the planar solution of the lens space matrix model by the replacement

t1 = 2π iλ1, t2 = −2π iλ2. (2.22)

Since in the ABJM theory the couplings λ1,2 are real, the matrix model couplings t1,2
are pure imaginary. Thanks to (2.13) we know that β is of the form

β = e2π i(λ1−λ2) (2.23)

i.e., it must be a phase.
For later convenience we introduce yet another parameterization of the couplings in

terms of B and κ ,

B = λ1 − λ2 +
1

2
, κ = e−π iBζ. (2.24)

B is identified as the B-field in the dual type IIA background [24]. Notice that it has a
shift by −1/2 as compared to the original prescription in [11]. Clearly, all calculations
in the matrix model are periodic under B → B + 1, up to possible monodromies (see
(5.14) below). As we shall see later, the parameter κ is real for physical values of λ1,2.
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2.2. Wilson loops. One of the main results of [4] is that the VEV of the 1/6 BPS Wilson
loop in ABJM theory, labelled by a representation R or U (N1), can be obtained by
calculating the VEV of the matrix eμi in the matrix model (2.1), i.e.,

〈W 1/6
R 〉 = gs

〈
TrR

(
eμi
)〉

ABJMMM . (2.25)

A 1/2 BPS loop W 1/2
R was constructed in [7], where R is a representation of the

supergroup U (N1|N2). In [7] it was also shown that it localizes to the matrix model
correlator in the ABJM matrix model

〈W 1/2
R 〉 = gs 〈StrR U 〉ABJMMM, (2.26)

with the same U as in (2.9). Though at first sight the minus sign on the lower block of U ,
may look surprising, it can be attributed to the fact that the ν j eigenvalues are shifted by
π i from the real line. Due to the relation between the ABJM matrix model and the lens
space matrix model, these correlators can be computed in the lens space matrix model
as follows:

〈W 1/6
R 〉 = gs

〈
TrR

(
eμi
)〉

L(2,1)

∣∣∣
N2→−N2

,

〈W 1/2
R 〉 = gs 〈TrR U 〉L(2,1)

∣∣
N2→−N2

, (2.27)

where the super-representation R is regarded as a representation of U (N1 + N2).
To evaluate the Wilson loop one uses the resolvent, or equivalently, the eigenvalue

densities

ρ(1)(Z)dZ = − 1

4π it1

dZ

Z
(ω(Z + iε)− ω(Z − iε)) , Z ∈ C1,

ρ(2)(Z)dZ = 1

4π it2

dZ

Z
(ω(Z + iε)− ω(Z − iε)) , Z ∈ C2,

(2.28)

which are each normalized in the planar approximation to unity
∫
Ci

ρ
(i)
0 dZ = 1. (2.29)

For the 1/6 BPS Wilson loop in the fundamental representation one needs to integrate
ez = Z over the first cut

〈
W 1/6

〉
= t1

∫
C1

ρ(1)(Z)ZdZ =
∮
C1

dZ

4π i
ω(Z). (2.30)

The correlator relevant for the 1/2 BPS Wilson loop (again in the fundamental repre-
sentation) is much easier, since

〈
W 1/2

〉
= t1

∫
C1

ρ(1)(Z)ZdZ − t2

∫
C2

ρ(2)(Z)ZdZ =
∮

∞
dZ

4π i
ω(Z), (2.31)

and it can be obtained by expanding ω(Z) around Z → ∞.
The comparison to the case of the 1/2 BPS Wilson loop in N = 4 SYM in 4d is

straight-forward. In that case the matrix model is Gaussian and the eigenvalue density
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in the planar approximation follows Wigner’s semi-circle law. Doing the integral with
the insertion of ez gives a modified Bessel function [38],

ρ0(z) = 2

πλ

√
λ− z2 ⇒ 〈W 1/2

4dN=4〉planar =
∫ √

λ

−√
λ

ρ0(z) ez dz = 2√
λ

I1(
√
λ).

(2.32)

For the ABJM matrix model all the expressions are more complicated. Still the deriv-
ative with respect to ζ and β of the integral expression for the 1/6 BPS Wilson loop
(2.30) can be written in closed form [8], like the integrals (2.16) and (2.17),

∂ζ 〈W 1/6〉 = − 1

π

1√
ab(1 + ab)

(a K (k)− (a + b)
(n|k)) ,

∂β〈W 1/6〉 = − 2

π

√
ab

a + b
E(k).

(2.33)

For the 1/2 BPS Wilson loop of [7] the situation is much simpler and in the planar
approximation one needs only the large Z behavior of ω0 (2.10),

ω0 = t +
ζ

Z
+
ζ 2 + 2β2 − 2

2Z2 +
ζ(ζ 2 + 6β2 − 3)

3Z3 + O(Z−4). (2.34)

One finds [8]

〈W 1/2〉planar = ζ

2
, (2.35)

which can then be expanded in different regimes. We will elaborate on the expansion of
this expression in the next sections and will also turn to the non-planar corrections to it
and to that of the 1/6 BPS loop in Sect. 8.

As a simple generalization, by the replacement Z → Zl on the right hand side of
(2.31), the higher order terms in the expansion (2.34) give the expectation values of mul-
tiply wrapped 1/2 BPS Wilson loops where U → Ul in (2.26). For even winding the
sign in the lower block of the matrix U (2.9) is absent. This is consistent with the gauge
theory calculation [7], where this sign arose from the requirement of supersymmetry
invariance in the presence of the fermionic couplings which are antiperiodic, as should
be the case for a singly-wound contractible cycle (see also the discussion in [19]).

The normalization of the Wilson loop as given by (2.30) and (2.31) is not the same as
in the 4d N = 4 case (2.32). For the 1/6 BPS loop, the leading term at weak coupling
is t1 = 2π iN1/k. This means that the trace in the fundamental is normalized by a factor
of gs . For the 1/2 BPS loop the leading term is t1 ± t2 = gs(N1 ∓ N2), where the sign
depends on the winding number. We will comment more about this normalization in
Sect. 5.2.

3. Moduli Space, Picard–Fuchs Equations and Periods

In this section we present the tools for solving the lens space matrix model using special
geometry. We present three special points in the moduli space of the theory and write
explicit expressions for the four periods of ω0 at the vicinity of these points.

The lens space matrix model is equivalent to topological string theory on local F0 =
P

1 × P
1. The 1/N expansions of the free energy and of the 1/2 BPS Wilson loop VEV
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are the genus expansions of closed and open topological string amplitudes. The planar
content of the theory is encoded in the periods of the mirror geometry described by the
family of elliptic curves �, which can be written as

y = z1x2 + x + 1 −√
(1 + x + z1x2)2 − 4z2x2

2
. (3.1)

Here, z1, z2 parametrize the moduli space of complex structures, which is the mirror to
the enlarged Kähler moduli space of local F0. This moduli space has a very rich structure
first uncovered in [10] and further studied in, for example, [31,37] by using the standard
techniques of mirror symmetry.

Notice that the mirror geometry (3.1) is closely related to the resolventω0(Z). Indeed,
one finds that ω0(Z) ∼ log y(x) provided we identify the variables as

x = −Zz−1/2
1 , (3.2)

and

ζ = 1√
z1
, β =

√
z2

z1
. (3.3)

This can also be expressed as (2.24)

z1 = e−2π iB

κ2 , z2 = e2π iB

κ2 . (3.4)

Let us now discuss in some detail the moduli space of (3.1), since it will play a fun-
damental role in the following. It has complex dimension two, corresponding to the two
complexified Kähler parameters of local F0. The coordinates z1, z2 (or ζ, β) are global
coordinates in this moduli space. Another way of parametrizing it is to use the periods
of the meromorphic one-form

ω = log y(x)
dx

x
. (3.5)

As it is well-known, these periods are annihilated by a pair of differential operators
called Picard–Fuchs operators. In terms of z1, z2, the operators are

L1 = z2(1 − 4z2)ξ
2
2 − 4z2

1ξ
2
1 − 8z1z2ξ1ξ2 − 6z1ξ1 + (1 − 6z2)ξ2,

L2 = z1(1 − 4z1)ξ
2
1 − 4z2

2ξ
2
2 − 8z1z2ξ1ξ2 − 6z2ξ2 + (1 − 6z1)ξ1,

(3.6)

where

ξi = ∂

∂zi
. (3.7)

These operators lead to a system of differential equations known as Picard–Fuchs (PF)
equations. An important property of the moduli space is the existence of special points,
generalizing the regular singular points of ODEs on C. The PF system can be solved
around these points, and the solutions give a basis for the periods of the meromorphic
one-form. We can use two of the solutions to parametrize the moduli space near a sin-
gular point, and the resulting local coordinates, given by periods, are usually called flat
coordinates.
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3.1. Orbifold point, or weak coupling. There are three types of special points in the
moduli space. The first one is the orbifold point discovered in [10], which is the relevant
one in order to make contact with the matrix model. To study this point one has to use
the global variables,

x1 = 1 − z1

z2
, x2 = 1

√
z2

(
1 − z1

z2

) . (3.8)

The orbifold point is then defined as x1 = x2 = 0, and in terms of these variables the
Picard–Fuchs system is given by the two operators

L1 = 1

4
(8 − 8x1 + x2

1 )x2∂x2 − 1

4

(
4 − (2 − x1)

2x2
2

)
∂2

x2
− x1(2 − 3x1 + x2

1 )x2∂x1∂x2

− (1 − x1)x
2
1∂x1 + (1 − x1)

2x2
1∂

2
x1
,

(3.9)L2 = (2 − x1)x2∂x2 − (1 − (1 − x1)x
2
2 )∂

2
x2

− x2
1∂x1

− 2(1 − x1)x1x2∂x1∂x2 + (1 − x1)x
2
1∂

2
x1
.

A basis of periods near the orbifold point was found in [10]. It reads,

σ1 = − log(1 − x1),

σ2 =
∑
m,n

cm,n xm
1 xn

2 , (3.10)

Fσ2 = σ2 log x1 +
∑
m,n

dm,n xm
1 xn

2 ,

where the coefficients cm,n and dm,n vanish for non-positive n or m as well as for
all even n. They satisfy the following recursion relations with the seed values c1,1 =
1, d1,1 = 0 and d1,3 = −1/6:

cm,n = (n + 2 − 2m)2

4(m − n)(m − 1)
cm−1,n,

cm,n = (n − 2)2(m − n + 2)(m − n + 1)

n(n − 1)(2m − n)2
cm,n−2,

dm,n = (n + 2 − 2m)3dm−1,n + 4(n2 − n − 2m + 2)cm,n

4(m − 1)(m − n)(n + 2 − 2m)
,

dm,n = (n − 2)2(m − n + 1)(m − n + 2)

n(n − 1)(2m − n)2
dm,n−2

+

(
1

m − n + 2
+

1

m − n + 1
+

4

n − 2m

)
cm,n .

(3.11)

The ’t Hooft parameters of the matrix model are period integrals of the meromorphic
one-form, therefore they must be linear combinations of the periods above, and one finds
[10]

t1 = 1

4
(σ1 + σ2), t2 = 1

4
(σ1 − σ2). (3.12)
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An expansion around the orbifold point leads to a regime in which t1, t2 are very small.
In view of (2.22) this corresponds, in the ABJM model, to the weakly coupled theory

λ1, λ2 � 1. (3.13)

The remaining period in (3.10) might be used to compute the genus zero free energy of
the matrix model. Using the normalization appropriate for the ABJM matrix model, we
find

I = 4
∂F0

∂σ2
− π it

2
= 1

2
Fσ2 − log(4)σ2 − π i

2
σ1. (3.14)

3.2. Large radius, or strong coupling. The second point that we will be interested in is
the so-called large radius point corresponding to z1 = z2 = 0. This is the point where
the Calabi–Yau manifold is in its geometric phase, and the expansion of the genus zero
free energy near that point leads to the counting of holomorphic curves with Gromov–
Witten invariants. The solutions to the Picard–Fuchs Eqs. (3.6) near this point can be
obtained in a systematic way by considering the so-called fundamental period

�0(z1, z2; ρ1, ρ2)

=
∑

k,l≥0

�(2k + 2l + 2ρ1 + 2ρ2)�(1 + ρ1)
2 �(1 + ρ2)

2

�(2ρ1 + 2ρ2)�(1 + k + ρ1)2 �(1 + l + ρ1)2
zk+ρ1

1 zl+ρ2
2 . (3.15)

As reviewed in for example [39], a basis of solutions to the PF equations can be obtained
by acting on the fundamental period with the following differential operators:

D(1)
i = ∂ρi , D(2)

i = 1

2
κi jk∂ρ j ∂ρk . (3.16)

Here κi jk are the classical triple intersection numbers of the Calabi–Yau. This leads to
the periods

Ti (z1, z2) = −D(1)
i �0(z1, z2; ρ1, ρ2)

∣∣∣
ρ1=ρ2=0

,

Fi (z1, z2) = D(2)
i �0(z1, z2; ρ1, ρ2)

∣∣∣
ρ1=ρ2=0

.
(3.17)

These periods should be linearly related to those defined in the matrix model in
Eqs. (2.14) and (2.15). We present now some explicit expressions for them that we
will use in Sects. 5.1 and 5.3 to solve for these relations (see Eqs. (5.3) and (5.23)).

In general, one normalizes these periods and divides them by the fundamental period
evaluated at ρ1 = ρ2 = 0. But in local mirror symmetry we have [40]

�0(z1, z2; ρ1, ρ2)|ρ1=ρ2=0 = 1. (3.18)

The Ti are single-logarithm solutions, and they are identified in standard mirror symme-
try with the complexified Kähler parameters, while the Fi are double-logarithm solutions
and they are identified with the derivatives of the large radius genus zero free energy
w.r.t. the Ti . In our case, we find the explicit expressions

−T1 = log z1 + ω(1)(z1, z2),

−T2 = log z2 + ω(1)(z1, z2),
(3.19)
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where

ω(1)(z1, z2) = 2
∑

k,l≥0,
(k,l) �=(0,0)

�(2k + 2l)

�(1 + k)2�(1 + l)2
zk

1zl
2

= 2z1 + 2z2 + 3z2
1 + 12z1z2 + 3z2

2 + · · · . (3.20)

In order to obtain the Fi we have to compute the double derivatives w.r.t. the parameters
ρ1, ρ2. We find

∂2
ρ1
�0(z1, z2; ρ1, ρ2)

∣∣∣
ρ1=ρ2=0

= log2 z1 + 2 log z1 ω
(1)(z1, z2) + ω(2)1 (z1, z2), (3.21)

where

ω
(2)
1 (z1, z2) = 8

∑
k,l≥0,
(k,l) �=(0,0)

�(2k + 2l)

�(1 + k)2�(1 + l)2
(ψ(2k + 2l)− ψ(1 + k)) zk

1zl
2. (3.22)

Similarly,

∂2
ρ2
�0(z1, z2; ρ1, ρ2)

∣∣∣
ρ1=ρ2=0

= log2 z2 + 2 log z2 ω
(1)(z1, z2) + ω(2)2 (z1, z2), (3.23)

where

ω
(2)
2 (z1, z2) = 8

∑
k,l≥0,
(k,l) �=(0,0)

�(2k + 2l)

�(1 + k)2�(1 + l)2
(ψ(2k + 2l)

−ψ(1 + l)) zk
1zl

2 = ω
(2)
1 (z2, z1). (3.24)

Finally,

∂ρ1∂ρ2�0(z1, z2; ρ1, ρ2)
∣∣
ρ1=ρ2=0 = log z1 log z2 + (log z1 + log z2) ω

(1)(z1, z2)

+
1

2

(
ω
(2)
1 (z1, z2) + ω(2)2 (z1, z2)

)
. (3.25)

The double log periods are obtained as linear combinations of the above, by using
the explicit expressions for the classical intersection numbers that can be found in for
example [31]

κ111 = 1

4
, κ112 = −1

4
, κ122 = −1

4
, κ222 = 1

4
. (3.26)
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We find:

F1(z1, z2) = −1

8

(
D2
ρ1
ω0 − 2Dρ1ρ2ω0 − D2

ρ1
ω0

)

= −1

8

(
log2 z1 − 2 log z1 log z2 − log2 z2

)

+
1

4
log z2 ω

(1)(z1, z2) +
1

8
ω
(2)
2 (z1, z2),

F2(z1, z2) = −1

8

(
D2
ρ1
ω0 − 2Dρ1ρ2ω0 − D2

ρ1
ω0

)

= −1

8

(
− log2 z1 − 2 log z1 log z2 + log2 z2

)

+
1

4
log z1 ω

(1)(z1, z2) +
1

8
ω
(2)
1 (z1, z2).

(3.27)

They satisfy the symmetry property

F1(z1, z2) = F2(z2, z1). (3.28)

The reason why we are interested in the large radius point is because it describes
the structure of the ABJM theory at strong coupling. In the region where z2 is small, x2
is large and the periods t1,2 grow. In general, the expansions of the periods around the
special points have a finite radius of convergence, but they can be analytically continued
to the other “patches”. Since their analytic continuation satisfies the PF equation, we
know for example that the analytic continuation of the orbifold periods to the large radius
patch must be linear combinations of the periods at large radius. This provides an easy
way to perform the analytic continuation which will be carried out in detail in Sect. 5,
where we will verify that indeed the region near the large radius point corresponds to

λ1, λ2 � 1. (3.29)

3.3. Conifold locus. Finally, the third set of special points is the conifold locus. This is
defined by � = 0, where

� = 1 − 8(z1 + z2) + 16(z1 − z2)
2. (3.30)

In terms of the variables ζ, β, this locus corresponds to the four lines

ζ = −2β ± 2, ζ = 2β ± 2. (3.31)

The conifold locus is the place where cycles in the geometry collapse to zero size. The
first two lines correspond to a = ±1, i.e., the collapse of the C1 cycle, while the second
set of lines corresponds to b = ∓1, i.e., to the collapse of the C2 cycle. In principle we
can solve the PF system near any point in the conifold locus, but in practice it is useful
to focus on the point

z1 = z2 = 1

16
, (3.32)
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which has been studied in [31]. We will call it the symmetric conifold point. Appropriate
global coordinates around this point are6

y1 = 1 − z1

z2
, y2 = 1 − 1

16z1
. (3.33)

In terms of these coordinates, the PF system reads

L1 = ∂y2 − 2(1 − y2)∂
2
y2

− 8(1 − y1)
2∂y1 + 8(1 − y1)

3∂2
y1
,

L2 = −(7 − 8y2)∂y2 + 2(3 − 7y2 + 4y2
2 )∂

2
y2

− 8(1 − y1)∂y1 (3.34)

−16(1 − y1)(1 − y2)∂y1∂y2 + 8(1 − y1)
2∂2

y1
.

Notice that, strictly speaking, the orbifold point does not belong to the conifold locus,
once the moduli space is compactified and resolved [10]. A generic point in the conifold
locus has then t1 = 0 or t2 = 0, but not both, and expanding around the conifold locus
means, in the ABJM theory, an expansion in the region

λ1 � 1, λ2 ∼ 1, (3.35)

or in the region with λ2 exchanged with λ1. This regime of the ABJM theory has been
considered in [26].

It was observed in [41] that the moduli space of the local F0 surface can be mapped to
a well-known moduli space, namely the Seiberg–Witten (SW) u-plane [42]. This plane
is parametrized by a single complex variable u. The relation between the moduli is

u = 1

2

(
β + β−1

)
− ζ 2

8β
. (3.36)

The three singular points that we have discussed (large radius, orbifold, and symmetric
conifold) map to the points u = ∞,+1,−1. These are the semiclassical, monopole and
dyon points of SW theory. As we will see, they can be identified with interesting points
in ABJM theory.

An important set of quantities in the study of moduli spaces of CY threefolds are the
three-point couplings or Yukawa couplings, Czi z j zk . These are the components of a com-
pletely symmetric degree three covariant tensor on the moduli space. When expressed
in terms of flat coordinates they give the third derivatives of the genus zero free energy.
In terms of the coordinates z1, z2, the Yukawa couplings are given by [10,31]

C111 = (1 − 4z2)
2 − 16z1(1 + z1)

4z3
1�

,

C112 = 16z2
1 − (1 − 4z2)

2

4z2
1z2�

,

C122 = 16z2
2 − (1 − 4z1)

2

4z1z2
2�

,

C222 = (1 − 4z1)
2 − 16z2(1 + z2)

4z3
2�

.

(3.37)

6 These are slightly different from the ones used in [31].
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Fig. 2. The moduli space of the ABJM theory, describing the possible values of the ’t Hooft couplings λ1,2,
can be parametrized by a real submanifold of the moduli space of local F0, here depicted as a sphere. The
orbifold point maps to the origin, while the conifold locus (which is represented by a dashed line) maps to the
two axes

3.4. The moduli space of the ABJM theory. The matrix model of ABJM is closely related
to the lens space matrix model, and therefore so are also the moduli spaces of the theo-
ries. Some of the explicit relations needed for this identification will be presented only
in the following sections, but we would still like to present here the main points on the
moduli space.

We can think about the moduli space of the planar ABJM theory as the space of
admissible values of the ’t Hooft parameters λ1, λ2. We will assume for simplicity that
k > 0. The theory with negative values of k can be obtained from this one by a parity
transformation. In the gauge theory λ1,2 must be rational and non-negative (for k > 0).
Moreover, according to [11], any value of λ1,2 is admissible as long as

|λ1 − λ2| ≤ 1. (3.38)

This moduli space can be parametrized by the B field and κ , which from the explicit
expressions derived below (4.1) and (5.11) has to be real and positive. It can be identified
as a real submanifold of the moduli space of local F0. Moreover, we can identify the
singular points of this moduli space with natural limits of ABJM theory (see Fig. 2):

1. The weak coupling regime λ1,2 → 0 corresponds to the orbifold point of the local
F0 geometry κ = 0, B = 1/2. In terms of type IIA theory, this is also an orbifold
geometry with a small radius but a nonzero value for the B field.

2. The strong coupling regime λ1,2 → ∞ (where also κ → ∞) corresponds to the
large radius limit of the local F0 geometry.

3. Out of the four lines (3.31) in the conifold locus � = 0, only two lead to κ ∈ R.
They are the curves in the (κ, B) plane with κ = ±4 cosπB, which correspond
respectively to a = 1 and b = 1, therefore to λ1 = 0 or λ2 = 0. Hence, the
boundary of the ABJM moduli space given by min(λ1, λ2) = 0 corresponds to

κ(B) =
{−4 cosπB, B > 1/2

4 cosπB, B < 1/2 . (3.39)
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In particular, the symmetric conifold point z1 = z2 = 1/16 corresponds to B =
n ∈ Z, κ = ±4. Along the curve (3.39), one of the two gauge groups of the ABJM
theory is absent, so the theory reduces to topological CS theory. We examine this
regime in Sect. 6.

Given a fixed value of the B field, we can describe the real one-dimensional moduli
space of the ABJM theory as a real submanifold of the u-plane of Seiberg–Witten theory,
by using (3.36) in the form

u = − cos(2πB) +
κ2

8
. (3.40)

Singular points in moduli space become then the well-known singularities of SW the-
ory. For example, when B = 1/2, the moduli space, described by κ ∈ [0,∞), becomes
the region u ∈ [1,∞). The orbifold point (weakly coupled ABJM theory) maps to the
monopole point, while the large radius point (strongly coupled ABJM theory) corre-
sponds to the semi-classical region (see Fig. 3). Notice that the conifold point would
map to the dyon point of Seiberg–Witten theory, but this does not belong to the moduli
space of ABJM theory with B = 1/2. We can however realize it by making an analytic
continuation of the ’t Hooft coupling to complex values. The dyon point corresponds
then to the point κ2 = −16, which leads by (5.5) to an imaginary value

λ = −2iK

π2 , (3.41)

where K is Catalan’s number.
As usual, string dualities lead to a full complexification of the moduli space of ’t Hooft

parameters. In the case of ABJM theory, the complexified moduli space for the variables
λ1,2 is simply the moduli space of the parameters β, ζ , which is a Z2 × Z2 covering of
the moduli space parametrized by z1,2.

Fig. 3. The moduli space of the ABJM theory for B = 1/2 can be mapped to the line [1,∞) in the u plane of
Seiberg–Witten theory, which is here shown in red. The monopole point corresponds to the weakly coupled
ABJM theory, while the semiclassical limit corresponds to the strongly coupled theory
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4. Weak Coupling

In principle, to study the matrix model at weak coupling one does not need the sophis-
ticated tools presented in the previous section. One can do perturbative calculations
directly in the integral expressions (2.1) or (2.3) for the matrix model. A calculation of
the 1/6 BPS Wilson loop to three loop order was indeed done in this way in the original
paper [4].

Still, the explicit expressions for the periods σ1,2 (3.10) and their relation to t1,2 (3.12)
gives a much more efficient way to obtain perturbative, planar expansions. Inverting these
relations we find the weak coupling expression for κ (2.24)

κ = −2i(t1 − t2)− i

12

(
t3
1 + 3t2

1 t2 − 3t1t2
2 − t3

2

)

− i

960

(
t5
1 + 5t4

1 t2 − 10t3
1 t2

2 + 10t2
1 t3

2 − 5t1t4
2 − t5

2

)
+ O(t7). (4.1)

This agrees with the weak coupling expansion of the inverse of the exact mirror map
(5.5), obtained in [8].

Using the dictionary relating the ’t Hooft couplings (2.22) we immediately get the
result for the 1/2 BPS Wilson loop in the planar approximation (2.35),

〈W 1/2〉 = eπ iB κ

2
= eπ i(λ1−λ2) 2π i(λ1 + λ2)

[
1 − π2

6

(
λ2

1 − 4λ1λ2 + λ2
2

)

+
π4

120

(
λ4

1 − 6λ3
1λ2 − 4λ2

1λ
2
2 − 6λ1λ

3
2 + λ4

2

)
+ O(λ6)

]
. (4.2)

In this expression we factored out the term 2π i(λ1 + λ2), which depends on the overall
normalization of the Wilson loop, as mentioned after (2.35). There is also the extra phase
factor, which appears also at strong coupling and can be attributed to framing. Note that
so far this expansion has not been reproduced directly in the gauge theory, as even the
two-loop graphs are quite subtle.

For the 1/6 BPS Wilson loop, using the explicit expression (2.33) and expanding at
low orders one finds [8]

〈
W 1/6

〉
= eπ iλ1 2π iλ1

(
1 − π2

6
λ1(λ1 − 6λ2)

−π
3i

2
λ1λ

2
2 +

π4

120
λ1

(
λ3

1 − 10λ2
1λ2 − 20λ3

2

)
+ O(λ5)

)
. (4.3)

Again the exponent is a framing factor and the factor of 2π iλ1 is due to the normali-
zation chosen in (2.30). This expression agrees with the 2-loop calculations in [15–17].
Note that the 3-loop analysis in [17], done for λ1 = λ2, misses the next term, due to a
projection which essentially removes all terms at odd orders in perturbation theory.

Next we turn to the free energy. Here we notice that the period in (2.15) gives only the
derivative of the free energy. Indeed, within the formalism of special geometry developed
above, the planar free energy of the matrix model is only determined up to quadratic
terms in the ’t Hooft couplings. These have to be fixed by direct calculation in the matrix
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model

F = N 2
1

2
log

(
2πN1

k

)
+

N 2
2

2
log

(
2πN2

k

)

−3

4
(N 2

1 + N 2
2 )− log(4)N1 N2 + · · · . (4.4)

The last term comes from the normalization of the cosh term in (2.1), while the remaining
terms are just the free energies for two Gaussian matrix models with couplings ±2π i/k.
Notice that the above free energy has an imaginary piece given by

π i

6k
(N1 − N2)((N1 − N2)

2 − 1) (4.5)

Using the identification of the periods at weak coupling (3.14) we write down the next
term in the perturbative expansion

π2

72k2

(
N 4

1 − 6N 3
1 N2 + 18N 2

1 N 2
2 − 6N1 N 3

2 + N 4
2

)
. (4.6)

It would be interesting to try to reproduce these expressions directly from studying
perturbative ABJM theory on S

3.

5. Strong Coupling Expansion and the AdS Dual

We turn now to the strong coupling limit of the matrix model, where we have to find the
analytic continuation of the ’t Hooft parameters to the strong coupling region, as func-
tions of the global parameters of moduli space. We will see how the shift of the charges
discussed in [23,24] emerges naturally from our computation. We will also evaluate the
free energy in this regime and compare with the classical action of the vacuum AdS
dual, deriving in this way the N 3/2 behavior of the degrees of freedom.

5.1. Analytic continuation and shifted charges. In order to perform the analytic contin-
uation of the ’t Hooft parameters, we use the explicit representation of the periods in
terms of integrals given in (2.14) as well as their derivatives (2.16)–(2.17). Let us start
by discussing t1. We study its behavior at large ζ but fixed β, which is the large radius
region. We find

∂t1
∂ζ

= i

πζ
log

(
−ζ

2

β

)
+ o(ζ−1),

∂t1
∂β

= − i

2πβ

(
log(−ζ 2) + π i

)
+ o(1),

(5.1)

and this gives the leading behavior

t1 = − i

2π

(
log(−ζ 2) + π i

)
log

β

ζ
+ · · · . (5.2)

In the physical theory t1 should be imaginary and β a phase. By examining (5.2), this
implies that κ is real. From (3.4) we then see that z1 = z̄2 and henceforth we label it
z1 = z.
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We know also that t1 must be a linear combination of the periods at large radius.
Using that z1 = 1/ζ 2 and z2 = (β/ζ )2, and comparing (5.2) to the behavior of the
periods (3.19) and (3.27), we find

t1 = i

2π
(F1 + F2)− 1

2
T2 − π i

6
,

t2 = − i

2π
(F1 + F2) +

1

2
T1 +

π i

6
.

(5.3)

The constants ±π i/6 cannot be fixed by using the above information, but they can be
fixed by specializing to the ABJM slice z1 = z2, as we will see in a moment.

A simple calculation leads to the following explicit expression:

λ1(κ, B) = 1

2

(
B2 − 1

4

)
+

1

24
+

log2 κ

2π2

− log κ

2π2 ω
(1) (z, z̄) +

1

16π2

(
ω
(2)
1 + ω(2)2

)
(z, z̄) . (5.4)

This expansion is valid in the region κ → +∞. Notice that it is manifestly real when κ
is real and positive.

As a check of the above expression, we can particularize to the ABJM slice λ1 =
λ2 = λ, (B = 1/2), which corresponds in the gauge theory, to having identical gauge
groups in the two nodes of the quiver, i.e., N1 = N2. The mirror map for this case was
obtained in [8] as

λ

(
κ, B = 1

2

)
= κ

8π
3 F2

(
1

2
,

1

2
,

1

2
; 1,

3

2
;−κ

2

16

)
. (5.5)

The strong coupling expansion of this expression at κ � 1 is

λ

(
κ, B = 1

2

)
= log2 κ

2π2 +
1

24
+ O(κ−2), (5.6)

in agreement with (5.4). This also fixes the constants in (5.3).
As in [8], the observables of the model are naturally functions of ζ, β (alternatively

κ, B), and we have to re-express them in terms of λ1,2. Equation (5.4) shows that the
natural variable at strong coupling is not λ1, but rather

λ̂ = λ1 − 1

2

(
B2 − 1

4

)
− 1

24
= 1

2
(λ1 + λ2)− 1

2
(λ1 − λ2)

2 − 1

24
. (5.7)

In particular, it is only when expressed in terms of this variable that κ is a periodic
function of λ̂, B.

Remarkably, the above shift is precisely the one found in [24]. In the type IIA realiza-
tion of the ABJ theory U (M2)k ×U (M2 + M4)−k , where M2 corresponds to the number
of D2 branes and M4 to the number of D4 branes, the Maxwell charge of the D2 branes
is not M2, but rather

Q2 = M2 − k

2

(
B2 − 1

4

)
− 1

24

(
k − 1

k

)
, (5.8)



532 N. Drukker, M. Mariño, P. Putrov

where

B = − M4

k
+

1

2
. (5.9)

After dividing by k and taking the large k limit, we recover (5.7) with

λ̂ = Q2

k
. (5.10)

The relation between λ̂ and κ can be inverted at strong coupling, generalizing [8] to
B �= 1

2 , and it is of the form

κ(λ̂, B) = eπ
√

2λ̂

⎛
⎝1 +

∑
�≥1

c�

(
1

π
√

2λ̂
, β

)
e−2�π

√
2λ̂

⎞
⎠ , (5.11)

where

c�(x, β) =
2�−1∑
k=0

c(�)k (β)xk . (5.12)

The coefficients c(�)k (β) are Laurent polynomials in β, β−1, of degree �, and symmetric
under the exchange β ↔ β−1. In other words, they can be written as polynomials in
cos(2πm B), so they are periodic in B, with period 1. We find, for example,

c1(x, β) = −
(
β + β−1

) (
1 − x

2

)
,

c2(x, β) = 3 +
x

8

(
3β2 − 8 + 3β−2

)
(5.13)

−3x2

8

(
β + β−1

)2 − x3

8

(
β + β−1

)2
.

The fact that c�(x, β) are polynomials in x of degree 2� − 1, rather than power series,
comes out from an explicit calculation of the first few cases, and we have not established
it.

From the explicit expression (5.4) we can implement the symmetries of the model as
a function of κ and B (or equivalently, z1 and z2). For example, the transformation

N1 → 2N1 + k − N2, N2 → N1 (5.14)

simply corresponds to periodicity in the B field

B → B + 1 (5.15)

while κ remains unchanged. From the point of view of the z1,2 variables, this is simply
a monodromy transformation z1,2 → e∓2π iz1,2. Notice that not all the values of κ lead
to admissible values of λ1,2, since min(λ1, λ2) ≥ 0. This means that the boundary of
moduli space is the conifold locus (3.39).
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5.2. Wilson loops at strong coupling and semi–classical strings. As an application of
the explicit expression for κ (5.11), we can use (2.24) to immediately obtain the VEV
of the 1/2 BPS Wilson loop (2.35) at strong coupling

〈W 1/2〉g=0 = 1

2
eπ iBκ(λ̂, B). (5.16)

Note that this is a real function of λ̂, B, up to the overall phase involving the B field.
This is the same phase that appears also in the weak-coupling result (4.2) and arises also
in field theory calculations as a framing-dependent term [12,43,44]. The matrix model
always gives the answer for framing=1.

The result for the 1/6 BPS Wilson loop is, as usual more complicated, but can still
be written in a power series expansion at strong coupling. We quote only the leading
strong coupling result for λ1 = λ2 [8],

〈W 1/6〉g=0 ≈ −
√

2λ

2
eπ

√
2λ. (5.17)

We would like to comment about the normalization of the operators. As mentioned
after (2.35), the normalization chosen there is such that the trace of the identity in the
fundamental of U (N1) gives t1 = 2π iN1/k and for the fundamental of U (N1|N2) (with
a minus sign as in (2.9), it gives t1 − t2 = 2π i(N1 + N2)/k. In CS theory these nor-
malizations are quite common, but they may be not the most natural ones in the ABJM
theory.

An alternative normalization is to divide by this term, such that at weak coupling the
expansion of the Wilson loop will be 〈W 〉 ∼ 1 + · · ·. This is the normalization chosen in
[8], and hence the slight differences in the preceding equations from that reference. Note,
though, that with such a normalization, one would have to divide the doubly-wound 1/2
BPS Wilson loop in the fundamental representation by the super-trace of the identity,
which is 2π i(N1 − N2)/k and is singular for N1 = N2.

There should be a natural choice of normalization that would reproduce the correct
normalization of the one-loop partition function of the classical string in AdS4 × CP

3.
To this day, though, a fully satisfactory calculation for the analog string in AdS5 × S

5

giving the factor of λ−3/4 derived from the Gaussian matrix model does not exist. One
argument, based on world-sheet arguments was given in [45], but it is not clear why this
argument would be modified for ABJM theory. Direct calculations of the determinant
[46,47] were not conclusive. A possible trick to derive it was proposed in [48] by con-
sidering a 1/4 BPS generalization of the circular Wilson loop, where three zero modes
of the the Wilson loop of [49] are explicitly broken and the integral over them gives this
factor. It would be interesting to construct such generalization to the Wilson loop of [7]
and see if a similar argument can be derived from that.

Regardless of the overall normalization, one can compare those of the 1/2 BPS loop
and the 1/4 BPS loop. Ignoring numerical constants and the framing factor, the ratio is

〈W 1/6〉g=0

〈W 1/2〉g=0

≈ √
λ, (5.18)

which is proportional to the volume of a CP
1 inside CP

3. Indeed, it was argued in [15,17]
that the string description of the 1/6 BPS Wilson loop should be in terms of a string
smeared over such a cycle.
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5.3. The planar free energy and a derivation of the N 3/2 behaviour. In this section we
study the free energy at strong coupling. We derive the N 3/2 behavior characteristic of
M2 branes [25], and we match the exact coefficient with a gravity calculation in type
IIA superstring on AdS4 × CP

3.
The free energy of the matrix model has a large N expansion of the form

F = log Z =
∞∑

g=0

g2g−2
s Fg(λ1, λ2). (5.19)

This is the way the genus expansion is typically expressed in topological string theory.
To compare with the gauge theory and the AdS dual one may choose to rewrite this
series as an expansion in powers of 1/N by absorbing factors of λ into Fg .

As mentioned in Sect. 4, the formalism of special geometry determines the planar
free energy only up to quadratic terms in the ’t Hooft couplings, and these have to be
fixed from the explicit weak coupling calculation in the matrix model (4.4).

Let us now consider the derivative of the genus zero free energy (2.15), and study its
analytic continuation to strong coupling as we have done for ti at the top of Sect. 5.1.
Expanding (2.19) for large κ we find

∂I
∂ζ

= −π i

ζ
+ O(ζ−2),

∂I
∂β

= O(ζ−1), (5.20)

so

I = −π i log ζ + O(ζ 0) = −π i log κ + π2 B + O(κ0, B0), κ → ∞. (5.21)

From this leading large κ behavior we have that in the ABJM slice

∂F0

∂λ
≈ 2π3

√
2λ, (5.22)

which can be integrated to give the leading term in (5.34) and the match with the super-
gravity calculation presented below.

But to get the full series of corrections we should proceed more carefully. We know
that the result of the continuation should be a linear combination of periods, and com-
paring to (3.19) we see that we can express the period as

I +
π it

2
= ∂F0

∂t1
− ∂F0

∂t2
= −π i

4
(T1 + T2 + 2π i) . (5.23)

The constant term can be fixed by looking at the solution on the ABJM slice N1 = N2,
which can be obtained as follows. Since on the slice we effectively have a one-parameter
model, there is only one Yukawa coupling, which we can integrate to obtain F0. From
(3.37) we easily obtain

∂3
λF0(λ) = 1

4
Cλλλ

∣∣∣∣
λ1=−λ2

= − 128π6

κ(κ2 + 16)

1

K
( iκ

4

)3 , (5.24)

where the factor of 4 is introduced to match the normalization of the matrix model, and
we used that

dλ

dκ
= 1

4π2 K

(
iκ

4

)
. (5.25)
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Integrating once, we find

∂2
λF0(λ) = 4π3 K ′ ( iκ

4

)
K
( iκ

4

) + a1, (5.26)

where a1 is an integration constant and we have used the Legendre relation

E ′K + E K ′ − K K ′ = π

2
. (5.27)

A further integration leads to the following expression in terms of a Meijer function:

∂λF0(λ) = κ

4
G2,3

3,3

( 1
2 ,

1
2 ,

1
2

0, 0, − 1
2

∣∣∣∣− κ2

16

)
+ a1λ + a2. (5.28)

Comparison with the matrix model free energy at weak coupling (4.4) fixes a1 =
4π3i, a2 = 0, so we can write

∂λF0(λ) = κ

4
G2,3

3,3

( 1
2 ,

1
2 ,

1
2

0, 0, − 1
2

∣∣∣∣− κ2

16

)

+
π2iκ

2
3 F2

(
1

2
,

1

2
,

1

2
; 1,

3

2
;−κ

2.

16

)
. (5.29)

If we integrate this expression with the following choice of integration constant,

F0(λ) =
∫ λ

0
dλ′ ∂λ′ F0(λ

′), (5.30)

we obtain the correct weak coupling expansion.
We can now analytically continue the r.h.s. of (5.29) to κ = ∞, and we obtain

∂λF0(λ) = 2π2 log κ +
4π2

κ2 4 F3

(
1, 1,

3

2
,

3

2
; 2, 2, 2;−16

κ2

)
. (5.31)

This agrees with (5.23) on the ABJM slice. To see this, one notices that

ω(1)(z, z) = 2
∞∑

n=1

∑
k+l=n

(2k + 2l − 1)!
(k!)2(l!)2 zn = 2

∞∑
n=1

4n(2n − 1)!� (n + 1
2

)
√
π�(n + 1)3

zn

= 4z 4 F3

(
1, 1,

3

2
,

3

2
; 2, 2, 2; 16z

)
(5.32)

is precisely the generalized hypergeometric function appearing in (5.31).
We are now ready to discuss the calculation of the planar free energy at strong cou-

pling. We have

∂
λ̂

F0(λ1, λ2) = 2π2 log κ − π2ω(1)(z, z̄). (5.33)

After plugging the value of κ in terms of λ̂ given by the series expansion (5.11), and
integrating w.r.t. λ̂, we obtain

F0(λ̂, B) = 4π3
√

2

3
λ̂3/2 +

∑
�≥1

e−2π�
√

2λ̂ f�

(
1

π
√

2λ̂
, β

)
− 2π3i

3

(
B − 1

2

)3

,

(5.34)
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where f�(x) is a polynomial in x of the form

f�(x, β) =
2�−3∑
k=0

f (�)k (β)xk, � ≥ 2. (5.35)

The coefficients f (�)k (β) are Laurent polynomials in β of degree �, and symmetric under
the exchange β ↔ β−1. We have, for the very first cases,

f1(x, β) = −1

2

(
β + β−1

)
,

f2(x, β) = 1

16

(
β2 + 16 + β−2

)
+

x

4

(
β + β−1

)2
.

(5.36)

The integration constant in going from (5.33) to (5.34) can be seen to be zero by compar-
ing (5.34) with a numerical calculation of the integral (5.30) at intermediate coupling.

The free energy in the planar approximation is given by rescaling (5.34) by the string
coupling F = g−2

s F0 + O(g0
s ). This expression displays many interesting features.

First, note that on the ABJM slice N1 = N2 the leading term

− π
√

2

3
k2λ̂3/2 (5.37)

displays the “anomalous” scaling N 3/2 in the number of degrees of freedom for a theory
of M2 branes, as was first derived from a supergravity calculation in [25]. The above
calculation is a first principles derivation of this behaviour at strong coupling in the
gauge theory. Usually, this behaviour is associated to the thermal free energy on R

3,
while (5.37) gives rather the free energy of the ABJM theory on S

3 at strong coupling.
However, a supergravity calculation of this free energy also leads to the N 3/2 behavior.
We will show this now, and in particular we will match the numerical coefficient in
(5.37).7

5.4. Calculation of the free energy in the gravity dual. Consider type IIA theory on
AdS4 ×CP

3, and let us reduce it to the AdS4 factor as in for example [50]. The (Euclid-
ean) AdS metric appropriate for a boundary theory on S

3 is

ds2 = dρ2 + sinh2 ρ d�2, (5.38)

where d�2 is the metric on an S
3 of unit radius. In this coordinate system, the boundary

is at ρ → ∞. The free energy of the boundary CFT on S
3 should be given, in the

supergravity approximation, by minus the Euclidean gravitational action of the AdSn+1
space −IAdSn+1

. This action is given by a bulk term, a surface term, and a counterterm
at the boundary [51,52]

IAdSn+1
= Ibulk + Isurf + Ict, (5.39)

7 We would like to thank Diego Hofman for very useful remarks on this calculation.
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with

Ibulk = − 1

16πG N

∫
X

dn+1x
√

g (R − 2�) ,

Isurf = − 1

8πG N

∫
∂X

dn x
√

hK , (5.40)

Ict = 1

8πG N

∫
∂X

dn x
√

h

[
n − 1 +

1

2(n − 2)
R + · · ·

]
.

In these equations, G N is Newton’s constant, and R, K and R are the scalar curvature
of the bulk, the extrinsic curvature of the boundary ∂X , and the scalar curvature of the
induced metric h on ∂X , respectively. The counterterm action includes higher order
corrections which are not relevant for the case of AdS4 and will not be considered here
[52]. As our boundary ∂X , we will take the hypersurface ρ = ρ0, and at the end of the
calculation we must take ρ0 → ∞. The counterterms guarantee that the resulting action
will be finite.

The bulk action is easy to evaluate and gives

Ibulk(ρ0) = 3

8πG N
vol(AdS4; ρ0), (5.41)

where

vol(AdS4; ρ0) = vol(S3)

∫ ρ0

0
dρ (sinh ρ)3

= 2π2
[

1

12
cosh(3ρ0)− 3

4
cosh(ρ0) +

2

3

]
. (5.42)

It is easy to see that the surface term and the counterterms remove the divergences as
ρ0 → ∞, leaving only the term 4π2/3 in (5.42), and we find [52]

lim
ρ0→∞ IAdS4

(ρ0) = π

2G N
. (5.43)

If we now use the dictionary relating Newton’s constant to the gauge theory data,

1

G N
= 2

√
2

3
k2λ̂3/2, (5.44)

we find exactly the leading term in (5.34)! Of course, in order to obtain this result we
have used the regularization provided by the counterterm integral in (5.40), and one
could suspect that the matching depends very much on this regularization. However,
this counterterm has been tested (or fixed) in an independent way in the calculations
of [51,52]. In particular, for n = 4 it leads to the matching of the Casimir energy of
N = 4 SYM on R × S

3, and for n = 3 it reproduces the standard mass of an AdS4–
Schwarzschild black hole [51]. Therefore, the above calculation provides a genuine test
of the AdS4/CFT3 correspondence.

In Fig. 4 we show the exact result for the planar limit of ∂λF0(λ) in the case N1 = N2,
as a function of λ = N/k, and we compare it to the behavior of the supergravity predic-
tion,

∂λF0(λ) ≈ 2π3
√

2(λ− 1/24), λ → ∞. (5.45)
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Fig. 4. Comparison of the exact result for ∂λF0(λ) given in (5.29), plotted as a solid blue line, and the weakly
coupled and strongly coupled results. In the figure on the left, the red dashed line is the supergravity result
(5.45), while in the figure on the right, the black dashed line is the Gaussian result (5.46)

We see that the strong coupling behavior gets triggered for values of the couplingλ ≈ 0.2.
For λ → 0, the behavior of the prepotential is dominated by the Gaussian, weakly cou-
pled result (4.4),

∂λF0(λ) ≈ −8π2λ

(
log

(
πλ

2

)
− 1

)
, λ → 0. (5.46)

A second aspect to notice is that the supergravity result (5.34) has corrections which
are exponentially suppressed. The exponential is of the form

e−�A(CP
1), (5.47)

where

A(CP
1) = 2π

√
2λ̂ (5.48)

is the area of the CP
1 two-cycle in CP

3. Also, notice that each of these exponential cor-
rections multiplies (at each order in λ̂−1/2) the polynomial f (�)k (β) in β, β−1. Therefore,
we have contributions schematically of the form∑

n++n−=�
cn+,n−e−n+(A(CP

1)+2π iB)−n−(A(CP
1)−2π iB). (5.49)

This is precisely what one should expect for a gas of n+ instantons and n− anti–instan-
tons in a σ model on CP

3, where the (anti)instantons wrap the CP
1 cycle. Notice that

this kind of corrections are made possible by the non-trivial topology of two cycles in
CP

3, i.e., by the fact that b2(CP
3) = 1, and as such they are absent in AdS5 × S

5. Some
aspects of these string instantons have been studied in [53]. It would be interesting to test
in detail the possible connection between these string instantons and the exponentially
suppressed corrections to the planar free energy.

These instanton corrections are also present in the Wilson loop result (5.16), again
with an infinite series of corrections. This can be compared with the case of N = 4
SYM in 4d, where the asymptotic large coupling expansion of the Gaussian matrix
model (2.32) has a single instanton correction which can be explicitly identified with a
second saddle point solution in AdS5 × S5 [48,54].

Finally, we note that when N1 �= N2, the planar free energy (5.34) includes an imagi-
nary term proportional to (B −1/2)3, which is derived by the weak coupling calculation
(4.5). In CS theory such a term is related to framing [12]. It would be very interesting
to derive this phase in type IIA string theory.
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6. Conifold Expansion

The expansion around the conifold locus corresponds to a region in the moduli space
of the ABJM model where one of the gauge groups has finite coupling, while the other
one is weakly coupled. In the lens space matrix model this corresponds to one ’t Hooft
parameter being small, and the other of order 1. In this section we will study this regime
from three different points of view: the exact planar solution in terms of periods and
Picard–Fuchs equations, the matrix model, and the gauge theory.

6.1. Expansion from the exact planar solution. We can use the exact planar solution to
calculate various physical quantities near the conifold locus. For concreteness, we will
expand around t2 = 0 but with t1 arbitrary. The first ingredient we need is an expansion
of the global coordinates of moduli space. It turns out that the most convenient method
is based on the expressions for the periods (2.14). The locus where t2 = 0 is the line

ζ = 2β − 2, (6.1)

where the cut (−b,−1/b) collapses to the point Z = −1. The derivative of t2 w.r.t. ζ
can then be computed in terms of residues at this point by expanding the expression in
(2.16):

− ∂t2
∂ζ

=
∑
k�0

1

4π i

∮
−1

dZ
Hk(Z , β) (ζ − 2β + 2)k

(Z + 1)2k+1 , (6.2)

where Hk(Z , β) are regular at Z = −1. This gives a series for t2 in powers of ζ −2β +2,

− t2 = 1

4
√
β
(ζ − 2β + 2)− 1 − β

128β3/2 (ζ − 2β + 2)2

+
9 − 2β + 9β2

12288β5/2
(ζ − 2β + 2)3 + O((ζ − 2β + 2)4), (6.3)

which can be easily inverted to

ζ = 2β − 2 − 4
√
β t2 +

1

2
(1 − β) t2

2 +
3 + 10β + 3β2

48
√
β

t3
2 + O(t4

2 ). (6.4)

As a nice application of this expansion, we can compute the VEV of the 1/2 BPS Wilson
loop around the conifold point, which is given in (2.35). Using the dictionary (2.23),
(2.24), we find

e−π iB〈W 1/2〉g=0 = 2 sin(πλ1) + 2πλ2 (2 − cos(πλ1)) + π2λ2
2 sin(πλ1)

+
1

3
π3λ3

2

(
1 − 5 cos(πλ1) + 3 cos2(πλ1)

)
+ O(λ4

2). (6.5)

As λ2 → 0, we recover the result for a Wilson loop VEV in U (N1) CS theory. In the
conifold expansion we are then regarding the ABJM theory as a perturbation of U (N1)

CS theory at strong coupling.
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The above result can be also obtained by solving the Picard–Fuchs equation around
a point in the conifold locus. Let us choose for example the symmetric conifold point
(3.32), with B = 1 and κ = 4. This corresponds to the point in the conifold locus with

λ1 = 1

2
, λ2 = 0. (6.6)

The appropriate global coordinates near this point are (3.33). We find that λ2 is a period
solving the PF system (3.34) and with leading behavior

λ2 = − 1

4π
(y2 + y1/2) + O(y2). (6.7)

One finds the expansion

λ2 = π

4
(B − 1)2 − 5π3

96
(B − 1)4 +

(
1

8π
− π

32
(B − 1)2 +

43π3

1536
(B − 1)4

)
(κ − 4)

+

(
− 1

128π
+

9π

1024
(B − 1)2 − 99π3

8192
(B − 1)4

)
(κ − 4)2

+ O
(
(B − 1)6

)
+ O

(
(κ − 4)3

)
, (6.8)

which is inverted to

κ = 4 − 2π2
(
λ1 − 1

2

)2

+
π4

6

(
λ1 − 1

2

)4

+πλ2

(
8 + 4π

(
λ1 − 1

2

)
− 2π3

3

(
λ1 − 1

2

)3
)

+ O
(
λ2

2

)
+ O

(
(λ1 − 1/2)5

)
. (6.9)

This is indeed the expansion around λ1 = 1/2 of (twice) the series in the r.h.s. of (6.5).
Once we know the expansion of the global coordinates, we can consider other quan-

tities in the model, like the genus g free energies. The conifold expansion of Fg(t1, t2)
has the form

Fg(λ1, λ2) = FG
g (λ2) +

∑
n≥0

F (n)g (λ1)λ
n
2, (6.10)

where FG
g (λ2) is the free energy of the U (N2) Gaussian matrix model, and each coeffi-

cient F (n)g (λ1) can be obtained as an exact function of λ1. Of course,

F (0)g (λ1) = FS
3

g (λ1) (6.11)

is the genus g free energy of the CS theory on S
3. When g = 0, the expansion (6.10) can

be computed from the exact planar solution in various ways. One can for example use
the Yukawa couplings (3.37) expanded around the conifold locus in order to compute
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the third derivatives of F0, or use the modularity properties of the solution discussed in
[31,41]. In any case, for the first few functions one finds the following results:

F (1)0 (λ1) = 2π i
(
π2λ2

1 + 2Li2
(
−eπ iλ1

)
− 2Li2

(
−e−π iλ1

))
,

F (2)0 (λ1) = −2π3iλ1 + 8π2 log

(
cos

(
πλ1

2

))
, (6.12)

F (3)0 (λ1) = 2π3i

3
+
π3

3
(3 cos(πλ1)− 5) tan

(
πλ1

2

)
.

6.2. Conifold expansion from the matrix model. It is easy to implement the conifold
expansion directly in the lens space matrix model. To do that, we notice that it can be
written as two interacting Chern–Simons matrix models on S

3. We recall that the CS
matrix model on S

3, first considered in [9], is defined by the partition function

ZS3(N , gs) = 1

N !
∫ N∏

i=1

dμi

2π

∏
i< j

(
2 sinh

(
μi − μ j

2

))2

e− 1
2gs

∑
i μ

2
i . (6.13)

This is a one-cut matrix model [21]. It can be obtained from the lens space matrix model
when one of the two cuts collapses to zero size. In the Z plane the endpoints of the cut
are given by a and a−1, where

a = 2et − 1 − 2et/2
√

et − 1. (6.14)

Let us consider the following operator in this model:

W(ν j ) = 2
∑
i, j

log

(
2 cosh

(
μi − ν j

2

))
. (6.15)

The lens space partition function (2.3) can be calculated in two steps. In the first step,
we compute

Z1(ν j ) =
〈
eW(ν j )

〉
N1
, (6.16)

where the subindex N1 indicates that this is an unnormalized VEV in the S
3 CS matrix

model with gauge group U (N1). In a second step, we calculate

ZL(2,1) = 〈Z1(ν j )〉N2 (6.17)

in the CS matrix model with gauge group U (N2). To obtain the conifold expansion, we
calculate Z1(ν j ) and we expand it in gs and around ν j = 0. Each term in this expansion
can be computed exactly as a function of the Kähler parameter t1, since the CS matrix
model can be solved exactly in the 1/N expansion. The resulting double series in gs and
ν j is then regarded as an operator in the CS matrix model with group U (N2), which we
expand around the Gaussian point as in [9,10], i.e., we expand the sinh measure around
ν j = 0. The partition function ZL(2,1) is then computed as a VEV in the Gaussian matrix
model. This procedure gives a method to compute the expansion (6.10) directly in the
matrix model.
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To illustrate this procedure, let us calculate F0(t1, t2) at first order in t2. In this com-
putation we will denote

U1 = diag(eμi ), U2 = diag(eν j ). (6.18)

The expansion around ν j = 0 of the operator W(ν j ) reads

W(ν j ) = 2N2

N1∑
i=1

log
[
2 cosh

(μi

2

)]
−

N2∑
j=1

ν j

N1∑
i=1

tanh
(μi

2

)
+ O(ν2

j ). (6.19)

The average of the second term in the U (N2) matrix model vanishes (since it is odd in
ν j ), while higher order terms are at least of order t2

2 . The first term can be written as

2
N1∑

i=1

log
[
2 cosh

(μi

2

)]
= 2 Tr log(1 + U1)−

N1∑
i=1

μi . (6.20)

Therefore, in the planar limit and neglecting terms which contribute at order t2
2 , we have

log Z1(ν j ) ≈ 2t2
gs

〈Tr log(1 + U1)〉N1
, (6.21)

since the second term in (6.20) is odd in μi and its VEV vanishes. We then find,

F0(t1, t2) = FS
3

0 (t1) + 2t2gs 〈Tr log(1 + U1)〉 + O(t2
2 ). (6.22)

The VEV in (6.22), which is now normalized, can be computed in terms of the resolvent
of the CS matrix model, and similar computations appear in [14,55] in the context of
large N instanton corrections. In fact, it follows from (8.28) and (8.30) that the VEV in
(6.22) is given by −g(−1), where g(Y ) is computed in (B.2). The final result for the
linear correction in t2 is

π2

3
+

t2
1

2
+ Li2(e

−t1)− 2Li2(e
−t1/2) + 2Li2(−e−t1/2). (6.23)

Using dilogarithm identities, this agrees with λ2
t2

F (1)0 (λ1) in (6.12). It is interesting to
point out that, in the context of CS theory on the lens space L(2, 1), this function is
essentially the action of the large N instanton corresponding to the flat connection

U (N ) → U (N1)× U (N2), N2 � N1, (6.24)

as shown in [14]. In the matrix model, this action is obtained by tunneling N2 eigenvalues
from the first cut to the second cut.

We can also calculate the conifold expansion for the VEV of 1/6 and 1/2 BPS Wilson
loops directly in the matrix model. We want to compute

〈W 1/6〉 = gs〈Tr U1〉L(2,1). (6.25)

We will again perform this computation in the planar approximation and at linear order
in t2. At this order we can compute instead the normalized average of the operator

〈
Tr U1 eW(ν j )

〉
N1〈

eW(ν j )
〉
N1

= 〈Tr U1〉 +
〈
Tr U1 W(ν j )

〉(c) + · · · (6.26)
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in a Gaussian matrix model for the ν j . In the last line, all VEVs are normalized VEVs
in the S

3 CS matrix model. By completing the square of the Gaussian weight we derive

〈
Tr U1

(
N1∑

i=1

μi

)〉
= ∂

∂ j

〈
Tr U1 e j

∑N1
i=1 μi

〉∣∣∣∣
j=0

= gs 〈Tr U1〉 . (6.27)

We then find, at this order,

〈W 1/6〉g=0 = gs〈Tr U1〉 + t2
(

2〈Tr U1 Tr log(1 + U1)〉(c) − gs〈Tr U1〉
)

+ O(t2
2 ).

(6.28)

The connected correlator

〈Tr U1 Tr log(1 + U1)〉(c) = −
∞∑
�=1

(−1)�

�
〈Tr U1 Tr U �

1 〉(c) (6.29)

can be computed by considering the (partially) integrated two-point function (see for
example [56])

∫
d p W0(p, q) = −

∑
n,m

1

npnqm+1 〈Tr U n
1 Tr U m

1 〉(c) (6.30)

and extracting the coefficient of q−2. We have,
∫

d p W0(p, q)

= 1

2(p − q)

⎛
⎝1 −

√
(p − a)(p − a−1)

(q − a)(q − a−1)

⎞
⎠ +

1

2
√
(q − a)(q − a−1)

, (6.31)

which includes the appropriate integration constant. We find, after changing p → −p,

−
∞∑
�=1

(−1)�

�p�
〈Tr U1 Tr U �

1 〉(c)

= 1

4

(
a + a−1 + 2p − 2

√
(p + a)(p + a−1)

)
. (6.32)

When p = 1 this gives

−
∞∑
�=1

(−1)�

�
〈Tr U1 Tr U �

1 〉(c) = et1 − et1/2. (6.33)

Notice that this is an infinite sum of correlators in the CS matrix model. Since

〈Tr U1〉 = et1 − 1

gs
, (6.34)
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we finally obtain,

〈W 1/6〉g=0 = et1 − 1 + t2
(

et1/2 − 1
)2

+ O(t2
2 )

= et1/2
(

2 sinh
t1
2

+ t2

(
−2 + 2 cosh

t1
2

)
+ O(t2

2 )

)
. (6.35)

Since this is a Wilson loop only in the first group, the framing prefactor depends only
on the first ’t Hooft coupling.

The 1/2 BPS Wilson loop is obtained by subtracting

〈Tr U2〉L(2,1) = N2 + O(t2
2 ) = t2

gs
+ O(t2

2 ). (6.36)

We find,

e−(t1+t2)/2〈W 1/2〉g=0 = 2 sinh

(
t1
2

)
+ t2

(
−2 + cosh

(
t1
2

))
+ O(t2

2 ). (6.37)

This is the result (6.5) obtained from the conifold expansion after using the dictionary
(2.22).

6.3. On the near Chern–Simons expansion of ABJM theory. In the matrix model the
conifold locus corresponds to vanishing of one of the two cuts, where the lens space
matrix model can be written as a perturbation around the matrix model for Chern–Simons
on S

3. Here we want to explore this limit in the original 3-dimensional theory.
In the strict limit we have the theory with N2 = 0 and N1 � 1 and arbitrary N1/k.

In this limit all the fields charged under the second gauge group, i.e., its gluons and
all the bi-fundamental fermions and scalars are removed. Consequently, ABJM theory
simplifies dramatically and reduces to topological U (N ) CS. The only observables in
the theory in this strict limit are Wilson loops, and they are given by the standard CS
answer, which is exact in λ1 (and 1/N1).

One can try to perform a systematic expansion around this point in a perturbative
expansion in λ2. One keeps λ2 � λ1, but if desired, can still assume the planar approx-
imation, ignoring also the 1/N2 corrections.

It is convenient to draw the Feynman graphs in double-line double-color notation,
one color for each group. At the first non-trivial order in λ2, only graphs with a single
index loop of U (N2) are included. An arbitrary number of gluons of U (N1) are allowed.
Let us propose the following calculation procedure: First ignore all U (N1) gluons and
enumerate all remaining graphs. They are a very restricted subset, which can be identified
very easily.

In order to dress them up with the U (N1) gluons we write the propagators for the
bi-fundamental fields as a path integral over all trajectories in space. As a charged object,
these paths will effectively be Wilson loop in U (N1), which can be calculated exactly
in CS theory. Since this theory is topological, the result of adding all the gluons is inde-
pendent of the path of the bi-fundamental fields. One can then do the usual path integral
for these fields and find the regular scalar and fermion propagators.

The statement in the previous paragraph fails in a subtle way. The correlation function
of Wilson loop operators in CS theory does not depend on their geometry only as long
as their topology — the knotting and linking numbers — are kept fixed. Therefore one
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(a) (b) (c) (d) (e)

Fig. 5. Several Feynman graphs which may contribute at order λ2 to the 1/6 BPS Wilson loop with gluons
stripped. The big circle is the Wilson loop, dashed lines are bosons and the solid line a fermion, all presented
in double-line, double-color notation

has to modify the above statement, and sum over all possible topologies of the paths
of the bi-fundamental fields accompanied by the relevant knotted/linked Wilson loops.
Unfortunately, we do not have an a-priori method of determining the weight that should
be assigned to the different topologies.8

As an illustration, let us consider the 1/6 BPS Wilson loop (whose Feynman rules
are simpler than the 1/2 BPS one) and examine its perturbative expansion about the
conifold locus. The Wilson loop is given in our normalization by [15–17]

W 1/6 = gs Tr P exp
∫ (

iAμ ẋμ +
2π

k
|ẋ |M I

J CI C̄ J
)

ds. (6.38)

xμ parameterizes a circle in R
3 (or S

3), Aμ are the U (N1) gluons, CI and C̄ I are the
bi-fundamental scalars and M I

J = diag(1, 1,−1,−1) is a matrix in flavor space, which
is required to make this object BPS.

At order O(λ0
2), this is simply a Wilson loop of CS, whose planar expectation value

(ignoring framing) is

〈W 1/6〉g=0 = 2i sinπλ1 + O(λ2). (6.39)

After stripping away the gluon lines, there are still an infinite number of graphs
involving bi-fundamental fields. Examples are shown in Fig. 5. In the example drawn,
there is a single scalar or fermion loop. The scalar loop can “touch” the Wilson loop at
an arbitrary number of points, due to the scalar bilinear term in (6.38). There are extra
graphs which are not drawn, with fermionic tadpoles on the scalar lines, or vice–versa.

By explicit calculations [15–17], all the connected graphs illustrated (Fig. 5c, 5d, 5e)
vanish in dimensional regularization. The same can be argued for higher order graphs of
this form. Likewise, one would not expect tadpoles to contribute. We are left therefore
with the first two disconnected graphs, which become connected once gluon lines are
added. Indeed, the only non-vanishing graph that was thus far calculated is the one-loop
correction to the gluon propagator (Fig. 5a, 5b with two extra gluons), which accounts
for the O(λ2λ

2
1) term (which with our normalization is 2-loops) in the explicit answer

(4.3). 9

We can compare this to the explicit calculation in the matrix model above. The essen-
tial part of the expression for the Wilson loop at order O(λ2), (6.28) is the connected

8 Wilson loops arise out of dressing propagators of matter fields also in [57]. In that case the path is fixed
to a collection of light-like segments, due to the singularity in the Minkowski-space propagator.

9 This graph has a divergence that can be removed by including the double scalar exchange graph (Fig. 5c).
In dimensional regularization the finite part comes only from the gluon graph.
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correlator of two Wilson loops. One of them is the original Wilson loop and the other
came from expanding the cosh term in the matrix model (6.20), which arises from
integrating out the bi-fundamental matter. So this agrees with the identification of the
contribution as coming from the bubble graphs. Moreover, what we see in the matrix
model is that one should sum over multi-winding of this second Wilson loop, with a
weight 1/ l. This corresponds in the physical theory to summing over all possible topol-
ogies for the scalar and fermion bubble. As mentioned, we do not know how to derive
this factor of 1/ l from perturbation theory, but it is given to us by the explicit matrix
model calculation.

It was noted in [26] that in this limit of ABJM theory the spectrum of local operators
also simplifies and the spin-chain hamiltonian becomes short-range. A compelling con-
jecture for the mysterious function h(λ) in that limit was also presented there. It would
be interesting to explore this limit further and learn how to do this sum over topologies
for other observables.

7. Modular Properties and the Genus Expansion

In this section we provide an efficient, recursive method to compute the 1/N corrections
to the free energy in the case N1 = N2 = N . This is based on the modular properties of
the solution and the technique of direct integration of the holomorphic anomaly equa-
tions. The method determines a priori the full 1/N expansion. In practice it is quite
efficient and it makes possible to calculate the Fg corrections for high genera. This is
then used to estimate non-perturbative effects in the large N expansion.

As noted in [41], we can use the relation between the local F0 theory and Seiberg–
Witten theory to write all the quantities in the model in terms of modular forms. This
representation becomes particularly useful when we restrict ourselves to a one-parameter
model, as it was shown in a different context in [58]. When N1 = N2, β = 1 and the
modulus u becomes simply

u = 1 +
κ2

8
. (7.1)

In Seiberg–Witten theory, u is related to the modular parameter τ of the Seiberg–Witten
curve by

u = ϑ4
4 − ϑ4

2

ϑ4
3

(τ ) = 1 − 32q1/2 + 256q + · · · . (7.2)

where q = e2π iτ . This formula can be inverted to

τ = i
K ′ ( iκ

4

)
K
( iκ

4

) , (7.3)

therefore we see that the modular parameter τ is related to the specific heat of the theory
through (5.26). Let us now introduce the quantity

ξ = 2

ϑ2
2 (τ )ϑ

4
4 (τ )

. (7.4)
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This is proportional to the third derivative of the genus zero free energy, therefore to the
Yukawa coupling Cλλλ. More precisely, we have

∂3
λF0(λ) = −8π3i ξ. (7.5)

Therefore, the planar content of the theory can be elegantly encoded in terms of modular
forms on the Seiberg–Witten curve.

One powerful application of the modular properties of the ABJM theory is the deter-
mination of the higher genus corrections to the free energy, Fg(λ). These can be ob-
tained in principle from the matrix model (2.1), or equivalently from the formalism of
[59] (appropriately modified as in [60,61]). However, as emphasized in for example
[28,58,62], this formalism is not very convenient to do calculations at higher genus.
One should rather use the fact that the Fg are quasi-modular forms that can be promoted
to non-holomorphic modular forms. The resulting non-holomorphic objects satisfy the
holomorphic anomaly equations of [30], as shown in [28,63], and these can be in turn
solved with the technique of direct integration developed in [28,29,31,58] for local CY
manifolds and matrix models.

The basic strategy of direct integration is the following. First, we assume an ansatz
for Fg of the form

Fg(τ ) = ξ2g−2 fg(τ ), (7.6)

where

fg(τ ) =
3g−3∑
k=0

Ek
2(τ )c

(g)
k (τ ) , g ≥ 2, (7.7)

is an almost modular form of weight 6g − 6, with respect to a monodromy group
� ⊂ SL(2,Z). Fg(τ ) can be promoted to a non-holomorphic modular form Fg(τ, τ̄ ) by
changing

E2(τ ) → Ê2(τ, τ̄ ) = E2(τ )− 3

π Im(τ )
. (7.8)

The resulting Fg(τ, τ̄ ) satisfies the holomorphic anomaly equations of [30], which gov-
ern their anti–holomorphic dependence. Since this dependence is contained in Ê2(τ, τ̄ ),
these equations govern the E2 content of Fg . This means that the coefficients c(g)k (τ ),
which are modular forms of weight 6g − 6 − 2k, can be obtained recursively for k > 0
if one knows the lower Fg . In order to write down the recursive equation, it is useful to
introduce a covariant derivative dξ taking a form of weight k into a form of weight k + 2:

dξ = ∂τ +
k

3

∂τ ξ

ξ
. (7.9)

Then, the holomorphic anomaly equations lead to

d fg

dE2
= −1

3

⎧⎨
⎩d2

ξ fg−1 +
1

3

∂τ ξ

ξ
dξ fg−1 +

g−1∑
r=1

dξ fr dξ fg−r

⎫⎬
⎭ , g ≥ 2. (7.10)

If Fg′ are known, with g′ < g, the above equation determines all the coefficients c(g)k (τ )

in fg , with the exception of c(g)0 (τ ), which plays the rôle of an integration constant. This
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coefficient is a holomorphic form of weight 6g − 6 and it is called the holomorphic
ambiguity.

In order to fix the holomorphic ambiguity we need two pieces of information. The
first one concerns its functional dependence. Since c(g)0 (τ ) is a modular form w.r.t. some
monodromy subgroup, it belongs to a finitely generated ring. This means that it is deter-
mined by a finite number of coefficients, which typically grows with g. The second piece
of information comes from boundary conditions at singular points in moduli space. A
very powerful boundary condition for matrix models and local Calabi–Yau manifolds
is the so-called gap condition, discovered in [28] and further used in [31,58] to fix the
holomorphic ambiguity. According to the gap condition, near certain points pi in moduli
space, parametrized by a flat coordinate ti , the genus g free energy behaves as

F (i)g = ag

t2g−2
i

+ O(1). (7.11)

The superscript (i) means that the genus g free energy has to be transformed to the
duality frame which is appropriate for the i th singularity, as it is well-known in special
geometry. The “gap” refers to the absence of singular terms t−k with 0 < k < 2g − 2
in the local expansion near ti = 0. The vanishing of these terms provides boundary
conditions for c(g)0 (τ ), and in some cases it fixes them completely.

In our case, the relevant ring is that of �2 modular forms which is generated by the
theta functions

b = ϑ4
2 (τ ), c = ϑ4

3 (τ ), d = ϑ4
4 (τ ). (7.12)

Since c = b + d, only two of them are independent, and we will choose b and d. Using
standard formulae in the theory of modular forms, one finds

∂τ ξ

ξ
= b − E2

4
, (7.13)

as well as

dξb = b2 + bd

3
, dξ (bd) = (bd)b

6
, dξ E2 = 1

12

(
−E2

2 + 2bE2 − E4

)
. (7.14)

The modular expression for the genus one free energy is known [41] and reads

F1 = − log η(τ), (7.15)

therefore we have

dξ f1 = − E2

24
. (7.16)

These are all the ingredients needed for the recursion. The holomorphic ambiguity can
be written as

c(g)0 (τ ) =
3g−3∑
j=0

α
(g)
j b j d3g−3− j (7.17)

and it involves 3g − 2 unknowns. Let us see how we can fix these by looking at the
behavior near the three singular points of moduli space.
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At the orbifold point, the Fg are the genus g amplitudes of the super-matrix model
(2.1) with N1 = N2. Their leading behavior near λ = 0 is governed by two copies of
the Gaussian matrix model, therefore they behave as

F (o)g (λ) = B2g

g(2g − 2)
(2π iλ)2−2g + O(1). (7.18)

This gives g − 1 conditions, since the ansatz (7.17) for the holomorphic ambiguity only
involves even powers of λ.

The symmetric conifold point z1 = z2 = 1/16 is related to the orbifold point through
an S-duality transformation. The appropriate global coordinates near this point are given
in (3.33). In the ABJM slice one has

y1 = 0, y2 = y = 1 − ζ 2

16
. (7.19)

The following period is a good local, flat coordinate near the symmetric conifold point:

t =
∞∑

n=0

an

(n + 1) 24n
yn+1, (7.20)

where

an = 1(
2n
n

)
n∑

k=0

(
2k
k

)(
4k
2k

)(
2n − 2k

n − k

)(
4n − 4k
2n − 2k

)
. (7.21)

It was noticed in [31] that the genus g amplitude at the conifold point behaves like

F (c)g (t) = B2g

2g(2g − 2)

(
t

2i

)2−2g

+ O(1). (7.22)

This fixes 2g − 2 conditions.
Finally, the large radius point is related to the orbifold point by an ST S transforma-

tion. The genus g free energy is the generating function of Gromov–Witten invariants
of the local F0 geometry in the slice T1 = T2 = T . More precisely, one has

F (GW)
g (Q) = (−4)g−1

∑
d≥1

Nd,g Qd , Q = e−T , (7.23)

where

Nd,g =
∑

d1+d2=d

Nd1,d2,g (7.24)

is a sum of Gromov–Witten invariants at genus g, Nd1,d2,g , of local F0 (the degrees
d1, d2 correspond to the two Kähler classes of this geometry). Since (7.23) is a power
series in Q with no constant term, we obtain one extra condition, which, together with
the g − 1 conditions from the orbifold point and the 2g − 2 conditions of the conifold
point, completely fixes the 3g − 2 unknowns in the holomorphic ambiguity.
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Let us see how this works in some detail when g = 2. The integration of the holo-
morphic anomaly equation gives,

f2 = 1

3
· 1

242

(
−5

3
E3

2 + 3bE2
2 − 2E4 E2

)
+ c(2)0 (τ ), (7.25)

where c(2)0 (τ ) is of the form (7.17). The expansion around the orbifold, conifold, and
large radius points read, respectively,

F (o)2 (λ) = 1

432(2π iλ)2

(
−11

3
+ 1728α(2)0

)
+ O(1),

F (c)2 (t) = −5 + 1296α(2)3

1296t2 +
−1 − 864(12α(2)2 + 15α(2)3 )

10368t
+ O(1), (7.26)

F (GW)
2 (Q) = − 1

432

(
2

3
+ 1728(α(2)0 − α

(2)
1 + α(2)2 − α

(2)
3 )

)
+ O(Q).

Imposing the conditions (7.18), (7.22) and (7.23) we fix

α
(2)
0 = 1

25920
, α

(2)
1 = 7

17280
, α

(2)
2 = 1

3456
, α

(2)
3 = 1

3240
. (7.27)

We finally obtain

F (o)2 = 1

432bd2

(
−5

3
E3

2 + 3bE2
2 − 2E4 E2

)

+
16b3 + 15db2 + 21d2b + 2d3

12960bd2 . (7.28)

Since τ depends on λ through (7.3) and (5.5), this gives the exact expression for the
genus two free energy on S

3 in the ABJM model, for any value of the ’t Hooft coupling.
Notice that the modular ring appearing here and parametrizing the holomorphic ambi-

guity is different from the one appearing in Seiberg–Witten theory [28,29] or in the cubic
matrix model [58]. This is due to the fact that, although the curves are the same, the
meromorphic forms defining the theory are different.

Using this method, we have computed the free energies up to high genus. The strong
coupling behavior of F (o)g is of the form

F (o)g (λ) ∼ −λ 3
2 −g, λ → ∞, g ≥ 0. (7.29)

We have also used these results in order to investigate the large order behavior of the
1/N expansion. We have found that

F̃g(λ) = (−1)g−1
(

F (o)g − B2g

g(2g − 2)
(2π iλ)2−2g

)
(7.30)

behaves at large g as

F̃g(λ) ∼ (2g)! |A(λ)|−2g cos (2gθ(λ) + δ(λ)) . (7.31)

In this equation, the angle θ(λ) satisfies θ(0) = π/2 and θ(λ) �= 0 for all λ > 0, while
δ(λ) is a function of λ (see for example Sect. 2 of [64] for more details on the large



From Weak to Strong Coupling in ABJM Theory 551

order behavior of the genus expansion). The sign (−1)g−1 is included in (7.30) since in
the physical ABJM theory the coupling gs is imaginary. The large order behavior (7.31)
indicates that the singularities of the Borel transform of Fg(λ) which are closest to the
origin are located at ±A(λ), where

A(λ) = |A(λ)| eiθ(λ). (7.32)

Since θ(λ) does not vanish, none of them lies on the positive real axis. This strongly
suggests that the 1/N expansion of the free energy is Borel summable for any λ > 0.

The large order behavior of the genus expansion (7.31) is similar to the one found for
Chern–Simons theory on S

3 in [65], and it should be governed by a large N instanton
with action A(λ). It would be very interesting to identify this instanton and compute
A(λ) analytically, both in the gauge theory and in the string theory dual. The factorial
growth, found here by explicit calculation in the matrix model, agrees with the expected
behavior for the genus expansion in string theory [32].

8. More Exact Results on Wilson Loops

In this section we elaborate on the results of [7,8] and we obtain more exact results on
Wilson loops.

8.1. 1/N corrections. The higher genus corrections to the VEV of 1/2 and 1/6 BPS
Wilson loops can be computed in terms of the higher genus corrections to the resolvent
of the matrix model. The resolvent has a genus expansion of the form

ω(z) =
∞∑

g=0

g2g
s ωg(z). (8.1)

In the same way, the density of eigenvalues has a large N expansion of the form

ρ(z) =
∞∑

g=0

g2g
s ρg(z), ρ(z) = ρ(1)(z) + ρ(2)(z). (8.2)

Theρ(i)g (z) (with i = 1, 2) have their support on the intervals Ci , and they can be obtained
by the discontinuity of ωg at the cuts as in (2.28).

The genus expansion of the expectation value of the 1/6 BPS and 1/2 BPS
Wilson loops follows the expressions in (2.30) and (2.31) with the appropriate term
in the expansion of ρ(i)(Z) and ω(Z).

The first step is therefore to compute ωg(p). This calculation can be done with the
recursive techniques developed in the matrix model literature starting with [56] and cul-
minating with [59]. We will perform an explicit computation for g = 1. Calculations
for g ≥ 2 are in principle doable, but they become complicated.

A convenient formula for ω1(p) for an algebraic resolvent was found in [66]. To
write this formula, we write the discontinuity of the resolvent (also called spectral curve
in the matrix model literature) as

y(p) = M(p)
√
σ(p), σ (p) = (p − x1)(p − x2)(p − x3)(p − x4). (8.3)
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M(p) is sometimes called the moment function. Then, one has

ω1(p) = 4√
σ(p)

4∑
i=1

(
Ai

(p − xi )2
+

Bi

p − xi
+ Ci

)
, (8.4)

where

Ai = 1

16

1

M(xi )
,

Bi = − 1

16

M ′(xi )

M2(xi )
+

1

8 M(xi )

⎛
⎝2αi −

∑
j �=i

1

xi − x j

⎞
⎠ ,

Ci = − 1

48

1

M(xi )

∑
j �=i

α j − αi

x j − xi

− 1

16

M ′(xi )

M2(xi )
αi +

αi

8 M(xi )

⎛
⎝2αi −

∑
j �=i

1

xi − x j

⎞
⎠ ,

(8.5)

and the αi are given by

α1 = 1

(x1 − x2)

[
1 − (x4 − x2)

(x4 − x1)

E(k)

K (k)

]
,

α2 = 1

(x2 − x1)

[
1 − (x3 − x1)

(x3 − x2)

E(k)

K (k)

]
,

α3 = 1

(x3 − x4)

[
1 − (x4 − x2)

(x3 − x2)

E(k)

K (k)

]
,

α4 = 1

(x4 − x3)

[
1 − (x3 − x1)

(x4 − x1)

E(k)

K (k)

]
,

(8.6)

where the modulus of the elliptic functions is

k2 = (x1 − x2)(x3 − x4)

(x1 − x3)(x2 − x4)
. (8.7)

These expressions differ from the ones in [66] in a permutation of the roots, as explained
in [67]. The overall factor of 4 in (8.4) is due to the fact that our resolvent has a different
normalization than the one in [66].

Although the resolvent of the lens space matrix model (2.10) is not algebraic, its
discontinuity can be written in the form (8.3) with

σ(p) = f (p)2 − 4β2 p2, f (p) = p2 − ζ p + 1 (8.8)

and

M(p) = 2

p
√
σ(p)

tanh−1
√
σ(p)

f (p)
. (8.9)
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This form of the spectral curve is typical of the mirrors of toric geometries [60,61]. The
branch points are

x1 = −b, x2 = −1

b
, x3 = 1

a
, x4 = a. (8.10)

Using these expressions, it is possible to compute the integral

〈W 1/6〉g=1 = 1

4π i

∮
C1

ω1(Z)ZdZ (8.11)

in closed form, in terms of elliptic functions E, K and the elliptic integral of the third
kind 
(n, k), with

n = (a2 − 1)b

(1 + ab)a
. (8.12)

One finds the rather complicated expression

〈W 1/6〉g=1 = 1

12π
√

a b3/2(1 + ab)(a2 − 1)2(b2 − 1)K

[
−3(b−2a+a2b) (1+ab)4 E2

+
[
a(1 + a4)− b + a2(4 + 4a2 − a4)b − 4a(1 − 3a2 + a4)b2

−a2(1 + a2)b3(2 + b2) + a(1 − 8a2 + a4)b4
]

K 2

+
(

b3(1 + 6a2 + a4) + 4a(1 + a2)(b2 − 1)

+b(3 − 14a2 + 3a4)
)
(1 + ab)2 E K

]

+
(ab − 1)(a2 − b2)

12π (ab)3/2(1 + ab)k4 K 2

[
−6E2

+ 4(2 − k2)E K − (2 − 2k2 + k4) K 2
]

. (8.13)

To check this formula, we expand it around the weakly coupled point λ1 = λ2 = 0.
After using the inverse mirror map given by (4.1) we find

〈W 1/6〉g=1 = −π i

12
λ1 +

π2

12
λ2

1 +
π2

4
λ1λ2 +

π3i

18
λ3

1 +
π3i

24
λ2

1λ2 − π3i

4
λ1λ

2
2

−π
4

36
λ4

1 +
π4

24
λ3

1λ2 +
5π4

24
λ2

1λ
2
2 − π4

6
λ1λ

3
2 + O(λ5). (8.14)

We can test this expansion with a perturbative calculation in the ABJM matrix model.
At order O(g4

s ) we have found,

e−gs N1/2

2π iλ1
〈W 1/6〉 = 1 −

(
1

24
N 2

1 − 1

4
N1 N2 +

1

24

)
g2

s +

(
1

16
N 2

1 N2 − 1

16
N2

)
g3

s

+

(
3

5760
N 4

1 − 10

1920
N 3

1 N2 − 20

1920
N1 N 3

2

− 10

5760
N 2

1 +
5

192
N1 N2 +

1

32
N 2

2 +
7

5760

)
g4

s + · · · . (8.15)

It is straightforward to see that this agrees with (8.14).
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The 1/N correction to the 1/2 BPS Wilson loop is much easier to obtain, since it can
be computed as a residue at infinity. We have that

ω1(Z) = 4

Z2

4∑
i=1

Ci + O(Z−3), (8.16)

where the Ci are given in (8.5). We find, at weak coupling,

〈W 1/2〉g=1 = −π i

12
(λ1 + λ2) +

π2

12
(λ2

1 − λ2
2) +

π3i

18
(λ3

1 + λ3
2)− 5π3i

24
λ1λ2(λ1 − λ2)

−π
4

36
(λ4

1 − λ4
2) +

5π4

24
λ1λ2(λ

2
1 − λ2

2) + O(λ5). (8.17)

At strong coupling we find (we consider for simplicity the ABJM slice)

〈W 1/2〉g=1 = 1

24i

3 + 2 log2 κ − 4 log κ

log2 κ
κ + O(1). (8.18)

The leading exponent is exactly as at genus zero (5.16), representing the same minimal
surface with an extra degenerate handle attached. Its effect is to modify the one-loop
determinant, which (with our normalization and ignoring instantons) can be written as

〈W 1/2〉g=1 = −i

(
1

12
− 1

6π
√

2λ
+

1

16π2λ

)
eπ

√
2λ, λ → ∞. (8.19)

8.2. Giant Wilson loops. It has been argued in [33–35,68] that a D-brane probe in
AdS5 × S

5 represents an insertion of a Wilson loop in the dual 4d N = 4 SYM with
a large symmetric or antisymmetric representation (in the case of D3 branes and D5
branes, respectively). These “giant Wilson loops” are characterized by a representation
with n boxes, and one considers the limit

n, N → ∞,
n

N
fixed. (8.20)

In terms of the Gaussian matrix model of the Wilson loops in that theory, the giant
Wilson loop in the symmetric representation is represented by an additional eigenvalue
outside the cut and the antisymmetric representation by a “hole” in the original cut.

Let us review now the known D-brane solutions which could be relevant for ABJM
theory. The usual 1/2 BPS Wilson loop in the fundamental representation is described by
a string with world-volume AdS2 ⊂ AdS4. In M-theory it is an M2-brane wrapping also
the orbifold cycle on S

7/Zk . When considering k/2 coincident M2-branes (or k, when
it is odd) the M2-brane solution develops an extra branch, where the circle becomes a
linear combination of the orbifold direction and a contractible circle in AdS4 [69]. In
type IIA these configurations are D2-branes with world-volume AdS2 × S

1 ⊂ AdS4,
where the radius of the S

1 is a free modulus. From the M-theory point of view these
are continuous deformations of the system of k/2 coincident M2-branes describing a
Wilson loop in a k/2 dimensional representation. In the field theory they are the vortex
loop operators of [18], which have a description as semi-classical field configurations
and carry the same charge as k/2 Wilson loops.
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These solutions have further moduli associated to rotations away from the orbifold
cycle inside S

7/Zk . Such M2-brane configurations preserve 8 supercharges (1/3 BPS)
[15,18].

There is also a known family of D6-brane solutions which were argued in [15] to
represent the 1/6 BPS Wilson loops in anti-symmetric representations. The action for
this D-branes is (for N1 = N2)

SD6 = −π√
2λ

n(N − n)

N
, (8.21)

which matches that of n strings for small n and has the n → N − n symmetry of the
antisymmetric representation. In the matrix model these D6-branes should correspond
to creating a “hole” in one of the two cuts, splitting it in two.

We turn now to the lens space matrix model and try to find the appropriate description
for these objects, and in particular the 1/2 BPS vortex loop operators. As pointed out in
[70], the calculation of Wilson loops in the matrix model in this limit can be done in a
saddle-point approximation. We will now reformulate the arguments of [70] and adapt
them to the lens space matrix model.

We will focus on the case of 1/2 BPS Wilson loops, where we want to calculate

W η
n = 〈TrRη

n
U 〉, η = ±1, (8.22)

where U is the same matrix as in (2.9) and R±1
n = Sn, An are respectively the totally

symmetric and the totally antisymmetric representations of U (N1 + N2) with n boxes.
It will turn out that the relevant limit in this theory is slightly different from (8.20) and
is given by fixing

ν = η
n

k
= ηgs n

2π i
. (8.23)

Positive ν will correspond to symmetric representations and negative ν to antisymmetric
ones. In the ’t Hooft limit, for fixed N/k, the two scalings are clearly equivalent.

The calculation of (8.22) is very similar to the calculation of partition functions of
n bosons or fermions in the canonical ensemble, where n is fixed and large. But at
large n, in the thermodynamic limit, this calculation can be done as well in the grand
canonical ensemble. We then introduce the fugacity z and consider the grand-canonical
partition function, using the expression for the determinant as the generating function
of the characters

�η(z) =
∑
n≥0

znW η
n = 〈

det (1 − ηz U )−η
〉 =

〈
exp

⎛
⎝∑
�≥1

Tr U �

�
η�−1z�

⎞
⎠
〉
. (8.24)

The average value of n in this ensemble is given by (we remove the average notation
here, as is standard in the grand canonical formalism)

n = z
∂

∂z
log�η. (8.25)

This is inverted to determine the fugacity as a function of the number of particles

z∗ = z∗(n), (8.26)
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and then the original VEV can be calculated, in a saddle point approximation, as

W η
n ≈ z−n∗ �η(z∗) =

〈
exp

⎛
⎝−n log z∗ +

∑
�≥1

Tr U �

�
η�−1z�∗

⎞
⎠
〉
. (8.27)

For convenience, let us henceforth absorb Y = ηz. It can be seen that, at leading
order in large N , the grand-canonical partition function (8.24) is given by disconnected
planar graphs. Therefore

�η(Y ) ≈ exp

(
η

gs
g(Y )

)
, g(Y ) = gs

∑
�≥1

〈Tr U �〉0

�
Y �, (8.28)

where the subscript 0 refers to the planar part. We now observe that the function g(Y )
is related to the planar resolvent in the lens space matrix model (2.8) and (2.10) by

Y
∂

∂Y
g(Y ) = 1

2

(
ω0(Y

−1)− t
)

= − log

(
1

2

[√
(Y + b)(Y + 1/b) +

√
(Y − a)(Y − 1/a)

])
. (8.29)

Note that compared to ω0 in (2.10), the sign between the two square roots is reversed.
Integrating this equation we get

g(Y ) = −
∫ Y

0

dY ′

Y ′ log

(
1

2

[√
(Y ′ + b)(Y ′ + 1/b) +

√
(Y ′ − a)(Y ′ − 1/a)

])
.

(8.30)

The initial point of integration is chosen to be Y = 0, since around that point the inte-
grand approaches a constant ζ/2 + O(Y ). This guaranties that for small Y the result of
the integration will be proportional to the 1/2 BPS Wilson loop (2.35).

The saddle point Eqs. (8.25) determining the mean value of n is then given by

ν = 1

2π i
Y
∂

∂Y
g(Y ), (8.31)

i.e., (8.29),

e−2π iν = 1

2

[√
(Y∗ + b)(Y∗ + 1/b) +

√
(Y∗ − a)(Y∗ − 1/a)

]
, Y∗ = ηz∗. (8.32)

This can be solved explicitly in terms of β, ζ or alternatively in terms of B and κ . The
solution reads

Y∗ = iκ e−π i(2ν+B)

4 sin(2π(ν + B))

(
1 −

√
1 − 16 sin(2πν) sin(2π(ν + B))

κ2

)
. (8.33)

The choice of sign is such that Y∗ = 0 when ν = 0. We will write

W η
n ≈ exp

(
Aη/gs

)
, (8.34)
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where Aη, which is identified with the action of a brane probe in the large N string/M-
theory dual, is given by

Aη = −2π iην log(ηY∗) + ηg(Y∗). (8.35)

In the original variables, in terms of ω0, the integral (8.30) is from infinity to a finite
position Y −1∗ , and represents the effect of adding a single eigenvalue to the system. This
fits with the standard dictionary [71] identifying a brane with a single eigenvalue.

This integral gives an expression for the action of the giant Wilson loop, in the limit
(8.20) which is exact as a function of the ’t Hooft couplings. The derivatives of this
integral with respect to β and ζ can be evaluated in closed form, as in (2.16), in terms of
incomplete elliptic integrals. The resulting expression can then be studied at the different
limits of the ABJM theory as done for other observables in earlier sections.

If we go to the conifold limit, setting λ2 = 0, we get an expression for the giant
Wilson loop in Chern–Simons theory on S

3. In that case there exists an exact expression
for the Wilson loop for all n. As we show in Appendix B, the above derivation in this
limit indeed reproduces the CS answer.

We will now discuss the expansion of the result for the giant Wilson loop for large κ ,
since this is the strong coupling limit in which one makes contact with the AdS geometry
[33]. In terms of B and κ , the integral (8.30) reads

g(Y∗) = −
∫ Y∗

0

dY ′

Y ′ log

(
1

2

[√
(1 + Y ′)2 − eπ iBY ′(κ − 4i sin(πB))

+
√
(1 − Y ′)2 − eπ iBY ′(κ + 4i sin(πB))

])
, (8.36)

where Y∗ is given in (8.33).
Expanding Y∗ at leading order at large κ we get

Y∗ = 2i e−π i(2ν+B) sin(2πν)

κ
+ O(κ−2) = 1 − e−4π iν

κ
e−π iB + O(κ−2). (8.37)

This suggests rescaling Y in the integral (8.36) by κ , which allows for a systematic
expansion in powers of κ−1. At leading order the integral becomes

g(Y∗) = −
∫ Y∗

0

dY ′

Y ′
(

log
√

1 − eπ iBκY ′ + O(κ−1)
)
. (8.38)

This yields

g(Y∗) = 1

2
Li2
(

eπ iBκY∗
)

+ O(κ−2) = 1

2
Li2
(

1 − e−4π iν
)

+ O(κ−2). (8.39)

Another way to get this estimate is to notice that the highest powers of ζ in the series
expansion in y of g(y) are captured by

g(y) = 1

2
Li2(ζ y) + · · · . (8.40)
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Using the dilogarithm identity (B.3) we conclude that the action (8.35), written in terms
of the original variable n, is

1

gs
Aη = nπ

√
2λ̂ +

nπ i

2
(2B − 1 + η)

+
ηk

4π i

(
π2

6
− Li2

(
e−4π in/k

))
+ O(λ̂−1/2, e−2π

√
2λ̂). (8.41)

Notice that this formula does not display the exchange symmetry n ↔ N − n for
the antisymmetric case η = −1. This is because this symmetry is not present for the
antisymmetric super-representation, as pointed out in [72].

The leading order in λ in (8.41) is as expected, i.e., n times the action of the fun-
damental string (and n times an extra framing factor). The non-trivial dependence on ν
only appears at subleading order in λ, and therefore will not be visible in the supergrav-
ity approximation. As mentioned above, there are no known 1/2 BPS brane solutions
carrying less than k/2 units of electric charge other than fundamental strings. So we
expect that the above action describes the interaction of these coincident strings.

For n a multiple of k/2 (or of k, if it is odd), we see from (8.33) that Y∗ = 0 and the
integral (8.30) is over a full cycle. The argument of the dilogarithm in (8.41) is unity,
canceling the π2/6 term. Since Y ∗ passed through one of the cuts C1 or C2, it is now
on a different sheet, and exactly at the branch point of the logarithm in ω0(Y −1). This
happens exactly for the value of n where the strings describing the Wilson loop can
be replaced by D2-branes, which are the string theory incarnation of the vortex loop
operators [18]. This suggests that the vortex loop operators are related to eigenvalues
along the logarithmic branch-cut. It is possible to use our formalism to calculate the
perturbative and instanton corrections to these configurations and it would be interesting
to understand further their significance in the matrix model.
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A. Normalization of the ABJM Matrix Model

Here we shall fix the overall normalization of the matrix model. As explained in the
beginning of Sect. 2, to do this we must fix the coefficient of the cosh in the denomina-
tor. This term appears as a consequence of integrating out the matter hypermultiplets at
one-loop. For general supersymmetric Chern–Simons-matter theories, the contribution
of a hypermultiplet in representation R is given by [4]

log Z [a] = log
∏
ρ

∞∏
n=1

(
n + 1/2 + iρ(a)

n − 1/2 − iρ(a)

)n

, (A.1)

where ρ are the weights of the representation, and a is the element in the Cartan algebra
given by

a = 1

2π
diag

(
μ1, · · · , μN1 , ν1, · · · , νN2

)
. (A.2)
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In [4] the one-loop determinant is evaluated up to a multiplicative constant,

Z [a] =
∏
ρ

(C cosh (πρ(a)))−1/2 . (A.3)

The constant C can be determined by setting a = 0 in (A.1)

− 1

2
log C = log

∞∏
n=1

(
n + 1/2

n − 1/2

)n

. (A.4)

This is a divergent constant, but as usual when considering determinants on compact
manifolds, we can compute it by using ζ -function regularization. Let us define

ζZ (s) =
∞∑

n=1

(
n(

n + 1
2

)s − n(
n − 1

2

)s
)
. (A.5)

The regularization of the quantity appearing in (A.4) is then −ζ ′
Z (0). An elementary

calculation shows that

ζZ (s) = − (2s − 1
)
ζ(s), (A.6)

where ζ(s) is the standard Riemann zeta function. Therefore,

− ζ ′
Z (0) = − log 2

2
(A.7)

and C = 2.

B. Giant Wilson Loops in Chern–Simons Theory

Chern–Simons theory on S
3 is a particular case of the lens space matrix model when

b = 1 and the second cut collapses to zero size, i.e., t1 = t, t2 = 0. It gives the leading
behavior of the Wilson loop in ABJM theory when λ2 � λ1, as discussed in Sect. 6.

Here we consider the behavior of the giant Wilson loops, those in high dimensional
symmetric or antisymmetric representations presented in Sect. 8.2, in this limit. In this
case it is easy to calculate explicitly the action (8.35), since the integral

g(Y ) = −
∫ Y

0

dY ′

Y ′ log(h(Y ′)), h(Y ) = 1

2

[
1 + Y +

√
(1 + Y )2 − 4et Y

]
(B.1)

can be obtained in closed form

g(Y ) = π2

6
− 1

2
log2(h(Y )) + log(h(Y ))

(
log

(
1 − e−t h(Y )

)− log(1 − h(Y ))
)

−Li2(h(Y )) + Li2
(
e−t h(Y )

)− Li2(e
−t ). (B.2)

Here we used the dilogarithm identity

Li2(1 − x) = π2

6
− Li2(x)− log(x) log(1 − x). (B.3)
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The solution of the saddle point Eqs. (8.25) is obtained by setting in (8.33)

κ = −4i sinh
t

2
, B = t

2π i
+

1

2
, (B.4)

and we find

Y∗ = − 1 − e−2π iν

1 − e2π iν+t
. (B.5)

The action (8.35) is

η Aη = −2π iν log(ηY∗) + g(Y∗)

= −2π iν log η − 2π2ν2 + 2π iνt +
π2

6

+ Li2
(

e2π iν−t
)

− Li2
(

e2π iν
)

− Li2
(
e−t) . (B.6)

Notice that this expression is exact in t .
We can test (B.6) in all details against a direct calculation of correlators. Indeed, the

VEVs 〈TrR U 〉 for the Chern–Simons matrix model on S
3 are proportional to quantum

dimensions (see for example [21]):

〈TrR U 〉 = qκR/2+�(R)N/2dimq(R). (B.7)

In this equation,

q = egs , (B.8)

�(R) is the number of boxes in R, and κR is the framing factor, given by

κR =
∑

i

li (li − 2i + 1), (B.9)

where li are the lengths of the rows in the diagrams. The quantum dimensions of the
symmetric and antisymmetric representations are given by

dimq(Rη
n) = qηn(n−1)/4ent/2

[n]!
n∏

i=1

(1 − e−t q−η(i−1)), (B.10)

where

[n]! =
n∏

i=1

(qi/2 − q−i/2) = q
1
4 n(n+1)

n∏
i=1

(1 − q−i ). (B.11)

At large n we rescale

ξ = i

n
, q−i = exp(−gsi) → e−2π iηνξ (B.12)

so that

log([n]!) ≈ 1

gs

(
−π2ν2 + 2π iην

∫ 1

0
dξ log(1 − e−2π iηνξ )

)
. (B.13)
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This gives the following contribution to the action:

π2ν2 +
π2

6
− Li2

(
e−2π iην

)

= η

(
π2ν2 − 2π iν log η +

π2

6
− Li2

(
e−2π iν

))
. (B.14)

To derive the expression on the right hand side we used, for η = −1 the dilogarithm
identity

Li2(e
x ) = −Li2(e

−x ) +
π2

3
− x2

2
± π ix . (B.15)

The product in the numerator of both the symmetric and antisymmetric representa-
tions can be written in a unified form as

2π iην
∫ 1

0
dξ log(1 − e−t e−2π iνξ ) = η

(
Li2(e

−t−2π iν)− Li2(e
−t )
)
. (B.16)

The prefactors in (B.7) and (B.10) contribute

η(−3π2ν2 + 2π iνt). (B.17)

Together with (B.14) and (B.16) this exactly reproduces (B.6).
In the antisymmetric representation the result can also be written as

− 2π iν(t + 2π iν) +
π2

6
+ Li2(e

−t )− Li2(e
−t−2π iν)− Li2(e

2π iν). (B.18)

This expression agrees at leading order with the D6-brane calculation (8.21) and should
be the full answer in the limit of λ2 = 0. In this expression we see the expected symmetry
[68]

n ↔ N − n, (B.19)

which is

2π iν ↔ −t − 2π iν. (B.20)

References

1. Aharony, O., Bergman, O., Jafferis, D.L., Maldacena, J.: N = 6 superconformal Chern–Simons-matter
theories, M2-branes and their gravity duals. JHEP 0810, 091 (2008)

2. Gustavsson, A.: Algebraic structures on parallel M2-branes. Nucl. Phys. B 811, 66 (2009)
3. Bagger, J., Lambert, N.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev.

D 77, 065008 (2008)
4. Kapustin, A., Willett, B., Yaakov, I.: Exact results for Wilson loops in superconformal Chern–Simons

theories with matter. JHEP 1003, 089 (2010)
5. Pestun, V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. http://arXiv.

org/abs/0712.2824v2 [hep-th], 2010
6. Kapustin, A., Willett, B., Yaakov, I.: Nonperturbative Tests of Three-Dimensional Dualities. http://arXiv.

org/abs/1003.5694v2 [hep-th], 2010
7. Drukker, N., Trancanelli, D.: A supermatrix model for N = 6 super Chern–Simons-matter theory.

JHEP 1002, 058 (2010)
8. Mariño, M., Putrov, P.: Exact results in ABJM theory from topological strings. JHEP 1006, 011 (2010)

http://arXiv.org/abs/0712.2824v2
http://arXiv.org/abs/0712.2824v2
http://arXiv.org/abs/1003.5694v2
http://arXiv.org/abs/1003.5694v2


562 N. Drukker, M. Mariño, P. Putrov

9. Mariño, M.: Chern–Simons theory, matrix integrals, and perturbative three-manifold invariants. Commun.
Math. Phys. 253, 25 (2004)

10. Aganagic, M., Klemm, A., Mariño, M., Vafa, C.: Matrix model as a mirror of Chern–Simons theory.
JHEP 0402, 010 (2004)

11. Aharony, O., Bergman, O., Jafferis, D.L.: Fractional M2-branes. JHEP 0811, 043 (2008)
12. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989)
13. Halmagyi, N., Yasnov, V.: The spectral curve of the lens space matrix model. JHEP 0911, 104 (2009)
14. Mariño, M., Pasquetti, S., Putrov, P.: Large N duality beyond the genus expansion. http://arXiv.org/abs/

0911.4692v2 [hep-th], 2010
15. Drukker, N., Plefka, J., Young, D.: Wilson loops in 3-dimensional N = 6 supersymmetric Chern–Simons

Theory and their string theory duals. JHEP 0811, 019 (2008)
16. Chen, B., Wu, J.B.: Supersymmetric Wilson loops in N = 6 super Chern–Simons-matter theory. Nucl.

Phys. B 825, 38 (2010)
17. Rey, S.J., Suyama, T., Yamaguchi, S.: Wilson loops in superconformal Chern–Simons theory and funda-

mental strings in Anti-de Sitter supergravity dual. JHEP 0903, 127 (2009)
18. Drukker, N., Gomis, J., Young, D.: Vortex Loop Operators, M2-branes and Holography. JHEP 0903,

004 (2009)
19. Lee, K.M., Lee, S.: 1/2-BPS Wilson Loops and Vortices in ABJM Model. JHEP 1009, 004 (2010)
20. Tierz, M.: Soft matrix models and Chern–Simons partition functions. Mod. Phys. Lett. A 19, 1365 (2004)
21. Mariño, M.: Les Houches lectures on matrix models and topological strings. http://arXiv.org/abs/hep-th/

0410165v3, 2010
22. Dolivet, Y., Tierz, M.: Chern–Simons matrix models and Stieltjes-Wigert polynomials. J. Math.

Phys. 48, 023507 (2007)
23. Bergman, O., Hirano, S.: Anomalous radius shift in AdS4/CFT3. JHEP 0907, 016 (2009)
24. Aharony, O., Hashimoto, A., Hirano, S., Ouyang, P.: D-brane charges in gravitational duals of 2+1

dimensional gauge theories and duality cascades. JHEP 1001, 072 (2010)
25. Klebanov, I.R., Tseytlin, A.A.: Entropy of near-extremal black p-branes. Nucl. Phys. B 475, 164 (1996)
26. Minahan, J.A., Sax, O.O., Sieg, C.: A limit on the ABJ model. http://arXiv.org/abs/1005.1786v1 [hep-th],

2010
27. Gadde, A., Pomoni, E., Rastelli, L.: Spin chains in N = 2 superconformal theories: from the Z2 quiver

to superconformal QCD. http://arXiv.org/abs/1006.0015v1 [hep-th], 2010
28. Huang, M.x., Klemm, A.: Holomorphic anomaly in gauge theories and matrix models. JHEP 0709,

054 (2007)
29. Grimm, T.W., Klemm, A., Mariño, M., Weiss, M.: Direct integration of the topological string. JHEP 0708,

058 (2007)
30. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results

for quantum string amplitudes. Commun. Math. Phys. 165, 311 (1994)
31. Haghighat, B., Klemm, A., Rauch, M.: Integrability of the holomorphic anomaly equations. JHEP 0810,

097 (2008)
32. Shenker, S.H.: The Strength of nonperturbative effects in string theory. In: Álvarez, O., Marinari, E.,

Windey, P. (eds.) Random surfaces and quantum gravity. New York: Plenum 1991, pp. 191–200
33. Drukker, N., Fiol, B.: All-genus calculation of Wilson loops using D-branes. JHEP 0502, 010 (2005)
34. Gomis, J., Passerini, F.: Holographic Wilson loops. JHEP 0608, 074 (2006)
35. Gomis, J., Passerini, F.: Wilson loops as D3-branes. JHEP 0701, 097 (2007)
36. Kapustin, A., Saulina, N.: Chern–Simons-Rozansky-Witten topological field theory. Nucl. Phys. B 823,

403 (2009)
37. Brini, A., Tanzini, A.: Exact results for topological strings on resolved Y (p, q) singularities. Commun.

Math. Phys. 289, 205 (2009)
38. Erickson, J.K., Semenoff, G.W., Zarembo, K.: Wilson loops in N = 4 supersymmetric Yang-Mills

theory. Nucl. Phys. B 582, 155 (2000)
39. Hosono, S., Klemm, A., Theisen, S.: Lectures on mirror symmetry. In: Lecture Notes in Phys., Vol. 436,

Berlin: Heidelberg-NewYork: Springer, 1994, pp. 235–280
40. Chiang, T.M., Klemm, A., Yau, S.T., Zaslow, E.: Local mirror symmetry: Calculations and interpreta-

tions. Adv. Theor. Math. Phys. 3, 495 (1999)
41. Aganagic, M., Bouchard, V., Klemm, A.: Topological strings and (almost) modular forms. Commun.

Math. Phys. 277, 771 (2008)
42. Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in N = 2

supersymmetric Yang-Mills theory. Nucl.Phys. B 426, 19 (1994) [Erratum-ibid. B 430, 485 (1994)]
43. Guadagnini, E., Martellini, M., Mintchev, M.: Wilson lines in Chern–Simons theory and link invari-

ants. Nucl. Phys. B 330, 575 (1990)
44. Alvarez, M., Labastida, J.M.F.: Analysis of observables in Chern–Simons perturbation theory. Nucl.

Phys. B 395, 198 (1993)

http://arXiv.org/abs/0911.4692v2
http://arXiv.org/abs/0911.4692v2
http://arXiv.org/abs/hep-th/0410165v3
http://arXiv.org/abs/hep-th/0410165v3
http://arXiv.org/abs/1005.1786v1
http://arXiv.org/abs/1006.0015v1


From Weak to Strong Coupling in ABJM Theory 563

45. Drukker, N., Gross, D.J.: An exact prediction of N = 4 SUSYM theory for string theory. J. Math. Phys.
42, 2896 (2001)

46. Drukker, N., Gross, D.J., Tseytlin, A.A.: Green-Schwarz string in AdS5 × S
5: Semiclassical partition

function. JHEP 0004, 021 (2000)
47. Kruczenski, M., Tirziu, A.: Matching the circular Wilson loop with dual open string solution at 1-loop

in strong coupling. JHEP 0805, 064 (2008)
48. Drukker, N.: 1/4 BPS circular loops, unstable world-sheet instantons and the matrix model. JHEP

0609, 004 (2006)
49. Zarembo, K.: Supersymmetric Wilson loops. Nucl. Phys. B 643, 157 (2002)
50. Bak, D., Yun, S.: Thermal aspects of ABJM theory: Currents and condensations. Class. Quant. Grav. 27,

215011 (2010)
51. Balasubramanian, V., Kraus, P.: A stress tensor for anti-de Sitter gravity. Commun. Math. Phys. 208,

413 (1999)
52. Emparan, R., Johnson, C.V., Myers, R.C.: Surface terms as counterterms in the AdS/CFT correspondence.

Phys. Rev. D 60, 104001 (1999)
53. Cagnazzo, A., Sorokin, D., Wulff, L.: String instanton in AdS4 × CP

3. JHEP 1005, 009 (2010)
54. Giombi, S., Pestun, V., Ricci, R.: Notes on supersymmetric Wilson loops on a two-sphere. http://arXiv.

org/abs/0905.0665v2 [hep-th], 2009
55. Arsiwalla, X., Boels, R., Mariño, M., Sinkovics, A.: Phase transitions in q-deformed 2d Yang-Mills theory

and topological strings. Phys. Rev. D 73, 026005 (2006)
56. Ambjorn, J., Chekhov, L., Kristjansen, C.F., Makeenko, Yu.: Matrix model calculations beyond the spher-

ical limit. Nucl. Phys. B 404, 127 (1993) [Erratum-ibid. B 449, 681 (1995)]
57. Alday, L.F., Eden, B., Korchemsky, G.P., Maldacena, J., Sokatchev, E.: From correlation functions to

Wilson loops. http://arXiv.org/abs/1007.3243v2 [hep-th], 2010
58. Klemm, A., Mariño, M., Rauch, M.: Direct integration and non-perturbative effects in matrix models.

JHEP 1010, 004 (2010)
59. Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. http://arXiv.org/abs/

math-ph/0702045v4, 2007
60. Mariño, M.: Open string amplitudes and large order behavior in topological string theory. JHEP 0803,

060 (2008)
61. Bouchard, V., Klemm, A., Mariño, M., Pasquetti, S.: Remodeling the B-model. Commun. Math.

Phys. 287, 117 (2009)
62. Huang, M.x., Klemm, A.: Holomorphicity and modularity in Seiberg-Witten theories with matter. http://

arXiv.org/abs/0902.1325v1 [hep-th], 2009
63. Eynard, B., Mariño, M., Orantin, N.: Holomorphic anomaly and matrix models. JHEP 0706, 058 (2007)
64. Mariño, M., Schiappa, R., Weiss, M.: Nonperturbative effects and the large-order behavior of matrix

models and topological strings. Commun. Number Theor. Phys. 2, 349 (2008)
65. Pasquetti, S., Schiappa, R.: Borel and Stokes nonperturbative phenomena in topological string theory and

c = 1 matrix models. http://arXiv.org/abs/0907.4082v2 [hep-th], 2010
66. Akemann, G.: Higher genus correlators for the Hermitian matrix model with multiple cuts. Nucl. Phys.

B 482, 403 (1996)
67. Klemm, A., Mariño, M., Theisen, S.: Gravitational corrections in supersymmetric gauge theory and

matrix models. JHEP 0303, 051 (2003)
68. Yamaguchi, S.: Wilson loops of anti-symmetric representation and D5-branes. JHEP 0605, 037 (2006)
69. Lunin, O.: 1/2-BPS states in M theory and defects in the dual CFTs. JHEP 0710, 014 (2007)
70. Hartnoll, S.A., Kumar, S.P.: Higher rank Wilson loops from a matrix model. JHEP 0608, 026 (2006)
71. Lin, H., Lunin, O., Maldacena, J.M.: Bubbling AdS space and 1/2 BPS geometries. JHEP 0410, 025 (2004)
72. Bars, I.: Supergroups and their representations. In: Application of Group Theory in Phys. and Math.

Phys., Lectures Appl. Math. 21, Providence, RI: Amer. Math. Soc., 1985, p. 17

Communicated by A. Kapustin

http://arXiv.org/abs/0905.0665v2
http://arXiv.org/abs/0905.0665v2
http://arXiv.org/abs/1007.3243v2
http://arXiv.org/abs/math-ph/0702045v4
http://arXiv.org/abs/math-ph/0702045v4
http://arXiv.org/abs/0902.1325v1
http://arXiv.org/abs/0902.1325v1
http://arXiv.org/abs/0907.4082v2

	From Weak to Strong Coupling in ABJM Theory
	Abstract:
	1 Introduction and Summary
	2 The ABJM Matrix Model and Wilson Loops
	2.1 The matrix model and its planar limit
	2.2 Wilson loops

	3 Moduli Space, Picard--Fuchs Equations and Periods
	3.1 Orbifold point, or weak coupling
	3.2 Large radius, or strong coupling
	3.3 Conifold locus
	3.4 The moduli space of the ABJM theory

	4 Weak Coupling
	5 Strong Coupling Expansion and the AdS Dual
	5.1 Analytic continuation and shifted charges
	5.2 Wilson loops at strong coupling and semi--classical strings
	5.3 The planar free energy and a derivation of the N3/2 behaviour
	5.4 Calculation of the free energy in the gravity dual

	6 Conifold Expansion
	6.1 Expansion from the exact planar solution
	6.2 Conifold expansion from the matrix model
	6.3 On the near Chern--Simons expansion of ABJM theory

	7 Modular Properties and the Genus Expansion
	8 More Exact Results on Wilson Loops
	8.1 1/N corrections
	8.2 Giant Wilson loops

	Acknowledgements.
	A Normalization of the ABJM Matrix Model
	B Giant Wilson Loops in Chern--Simons Theory
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


