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Status of the Fundamental Laws of Thermodynamics
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We describe recent progress towards deriving the Fundamental Laws of thermodynam-
ics (the 0th, 1st, and 2nd Law) from nonequilibrium quantum statistical mechanics in
simple, yet physically relevant models. Along the way, we clarify some basic thermody-
namic notions and discuss various reversible and irreversible thermodynamic processes
from the point of view of quantum statistical mechanics.
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1. INTRODUCTION

Most systems in Nature can be viewed as interacting many-particle systems:
Atoms and molecules in gases, fluids, superfluids and solids, electrons and ions
in plasmas, the electron fluids in conductors and semi-conductors, nuclear matter
in neutron stars, etc. It is fascinating and intriguing that certain aspects of all
these systems, when close to thermal equilibrium, can be described by a few gen-
eral and universal laws: the Fundamental Laws of thermodynamics. The purpose
of thermodynamics is to describe average statistical properties of macroscopi-
cally extended systems of matter in states close to thermal equilibrium states,
with small spatial and slow temporal variations. Typical macroscopic systems
are formed of 1023–1028 particles. Describing such systems microscopically, by
solving the corresponding Hamilton equations or a Schrödinger equation, is a
dauntingly difficult, in practice an impossible task. To circumvent this problem,
one limits one’s attention to describing emergent properties involving only a few
observable macroscopic quantities, such as the volume V of the system, its inter-
nal energy U , or its magnetization M . These macroscopic quantities, which can
be measured simultaneously, and, in principle, with arbitrary precision, are called
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extensive thermodynamic observables. The Laws of Thermodynamics give non-
trivial relations between these quantities valid for arbitrary macroscopic systems.
Thermodynamics is a highly successful physical theory that is self-contained.
Nevertheless, it is interesting to attempt to derive its Fundamental Laws from
an ab-initio microscopic description, in particular, from a quantum statistical de-
scription of many-particle systems. Conceptually, this is not only important to
improve our understanding of thermodynamics, but it is also a consistency check
of quantum statistical mechanics.

The program to derive the 0th, 1st, and 2nd Law from kinetic theory and
statistical mechanics has been studied since the late 19th Century, with contri-
butions by many distinguished scientists, including Maxwell, Boltzmann, Gibbs
and Einstein. However, this program has not been completed so far. In this paper,
we present some recent results summarizing our own attempts to derive ther-
modynamics from quantum statistical mechanics and to bring the program just
described closer to a satisfactory completion. We claim that, indeed, these laws
can be derived in a mathematically rigorous manner from quantum statistical me-
chanics, provided one adopts a suitable notion of thermal reservoirs, assumes part
of the 0th law for such reservoirs, and limits the scope of the study to a class of
idealized, yet physically relevant models. A more detailed presentation together
with a discussion of Fourier’s Law will appear in Ref. 5, (see also Ref. 10).

Recent rigorous results concerning a partial derivation of the Fundamen-
tal Laws of thermodynamics from quantum statistical mechanics also represent
progress towards understanding irreversible behaviour of macroscopic open sys-
tems and the emergence of classical regimes on the basis of more fundamental,
time-reversal invariant microscopic laws, such as those of quantum mechanics.
They are also a step in the direction of understanding a limiting regime in the
description of many-particle systems in which the atomistic constitution of matter
becomes irrelevant, corresponding to the limit as the Boltzmann constant, kB ,
tends to 0.

2. BASIC CONCEPTS AND LAWS OF THERMODYNAMICS

Before starting to discuss our derivation of the Laws of Thermodynamics from
nonequilibrium quantum statistical mechanics, we recall some basic concepts and
notions of thermodynamics.

One of the basic notions of thermodynamics is that of an isolated system, i.e.,
of a time-translation invariant system without any contact to or interaction with its
environment. For such a system, the measured values of extensive thermodynamic
observables are time-independent (stationary). It is a fact of experience- and a
standard assumption of thermodynamics- that the state of a macroscopically large
isolated system approaches a state which, locally, is indistinguishable from a
stationary equilibrium state, as time, t , tends to ∞. This “equilibrium postulate”
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is the subtle part of the 0th Law of Thermodynamics. In our analysis, this part
of the 0th Law is used to justify our assumption that the state of an isolated,
macroscopically large (infinite) heat bath always approaches a thermal equilibrium
state, as t → ∞. This assumption will not be fully, but only partially proven for
infinitely extended, dispersive heat baths. Infinitely extended, dispersive systems
are called open systems.

Let N be the number of elements in a complete family of independent exten-
sive thermodynamic observables of a system �. These observables are conserved
and can be measured simultaneously and with arbitrary precision. Their mea-
sured values specify a point X ∈ �� , where �� is a convex subset of RN . A
thermodynamic observable is a real-valued function on �� . Every point X ∈ ��

corresponds to a unique equilibrium state of �.
One may couple two thermodynamic systems, 1 and 2, through local interac-

tions. When these interactions vanish, the state space of the coupled system is the
Cartesian product, �1 × �2. When one introduces interactions between 1 and 2,
some symmetries of 1 and 2 can be broken, and the corresponding generators are
not conserved quantities, anymore. The new family of extensive thermodynamic
observables and the space of equilibrium states, �1∨2, of the coupled system de-
pend on the type of interactions between 1 and 2, in particular on the symmetries
preserved by the interaction.

Next, we discuss the notion of a thermodynamic process, which plays a central
role in thermodynamics. Let (X1, X2) ∈ �1 × �2 correspond to an initial product
equilibrium state of 1 ∨ 2 at some time t0, before the two systems are coupled.
Suppose that an interaction between 1 and 2 is turned on at time t0. One is then
interested in predicting the state of the coupled system at time t0 + T , as T → ∞.
Let γ (t) be the macrostate of the coupled system.

If one system is finite, and the other one is macroscopically large, the “equi-
librium postulate” says that γ (t) converges to an equilibrium state X12 ∈ �1∨2 of
the coupled system, as t → ∞. In thermodynamics, the map

�1 × �2 � (X1, X2) �→ X12 ∈ �12

is only predictable if the interactions between 1 and 2 are specified, or, put dif-
ferently, if it is specified which constraints on 1 ∨ 2 are eliminated through the
coupling.

If the reverse process,

X12 �→ (X1, X2)

cannot be realized without coupling the system 1 ∨ 2 to further macroscopically
large systems, we say that the process (X1, X2) �→ X12 is irreversible.

A thermodynamic process {γ (t)}t0≤t<∞ of a system � is reversible iff γ (t) =
X (t) ∈ �� is an equilibrium state of �, for all t ∈ [t0,∞). Of course, this is an
idealized notion. In practice, γ (t) can only be very close to, but not identical to,
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an equilibrium state, for t0 < t < ∞. We set Xi := γ (t0) (initial state of �), and
X f := limt→∞ γ (t) (final state of �). In thermodynamics, one is only interested
in predicting X f , assuming one knows the nature of the process and its initial state
Xi .

As mentioned above, extensive thermodynamic observables of a system �

correspond to conserved quantities (conservation laws) of �. These conserved
quantities are generators of symmetries of �. The moduli space, �� , of equilibrium
states of �, is the convex closure of the joint spectrum of a maximal family
of independent conserved quantities that can be measured simultaneously. To
each symmetry of � that remains unbroken in a thermodynamic process of �,
there corresponds an extensive thermodynamic observable whose value remains
constant in time. One can thus classify thermodynamic processes according to the
symmetries they leave unbroken. “Eliminating a constraint” amounts to turning
on interactions between subsystems of � that break one or several of the original
symmetries of �, (but may leave other symmetries unbroken).

A thermal contact (diathermal wall) between a thermodynamic system �

and a thermal reservoir R is an interaction which leaves all symmetries of �

unbroken except for time-translation invariance. It leaves all the thermodynamic
observables of � unchanged except for its energy. Similarly, one can define a
thermal contact between two thermodynamic systems �1 and �2 as an interaction
which preserves all the symmetries of �1 and �2, except for time-translation
invariance: It leaves all the thermodynamic observables of �1 and �2 invariant
except for their energies.

2.1. Laws of Thermodynamics

In this subsection, we recall the fundamental Laws of Thermodynamics (0th,
1st, and 2nd Law), which form the axiomatic basis of thermodynamics.2 We are
interested in physical properties of a thermodynamic system � that can be en-
coded in a finite number, N , of independent extensive thermodynamic observables,
ξ1, . . . , ξN .

2.1.1. The 0th Law

There are several parts to the 0th Law.

(i) There exist, for all practical purposes, infinitely large thermodynamic
systems that approach thermal equilibrium when isolated from their en-
vironment. Such systems are called (thermal) reservoirs or heat baths.
Two thermal reservoirs, R1 and R2, are said to be equivalent (R1 ∼ R2)

2 We will not discuss the Third Law of thermodynamics.
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iff no energy flows between R1 and R2 when a diathermal contact is
established between them. We then say that the two reservoirs R1 and R2

have the same temperature. Furthermore, given three thermal reservoirs,
R1, R2 and R3, such that R1 ∼ R2 and R2 ∼ R3, then R1 ∼ R3, i.e.,
the equivalence of heat baths is transitive.

(ii) When one brings a finite thermodynamic system � in thermal contact
with a reservoir R and waits for an (infinitely) long time the state of the
coupled system will asymptotically converge to an equilibrium state at
the temperature of the reservoir.

(iii) Moreover, if one turns off the contact between � and R quasi-statically
(adiabatically) the final state of � is the equilibrium state at the temper-
ature of the reservoir, while the final state of the reservoir is identical to
its initial equilibrium state.

In our derivation of the Laws of Thermodynamics from quantum statistical
mechanics, we assume some portion of part (i) of the 0th Law of Thermodynamics,
while we are able to prove parts (ii) and (iii) for idealized, yet physically relevant
model systems. The difficult portion of part (i) represents an open problem not
unrelated to the one of understanding the dynamics of macroscopic systems with
translationally invariant many-body interactions.

2.1.2. The 1st Law

For each finite thermodynamic system �, there exists a thermodynamic
observable U , the internal energy, which has a definite value in each state of �;
(U is defined uniquely, up to an additive constant). For a thermodynamic process
γ in which one brings � in contact with a thermal reservoir R, the total amount of
heat energy �Q(γ ), exchanged between R and � in the course of the process γ , is
a well-defined quantity which depends not only on the initial point, Xi = ∂iγ , and
the final point, X f = ∂ f γ , of γ , but on the whole trajectory γ .3 The difference

�A(γ ) := U (X f ) − U (Xi ) − �Q(γ ),

is the work done on �.
Before stating the 2nd Law, we need to introduce the notion of a heat engine.

A heat engine is a finite thermodynamic system that is driven periodically in time
and that is brought in contact with at least two inequivalent thermal reservoirs and
with its environment. After each cycle (or period), the system returns to its initial
state, i.e., ∂iγ = ∂ f γ . Let �Q(γ ) be the total heat energy exchanged between the
heat engine and the thermal reservoirs in one cycle. Since the internal energy of
the heat engine is the same at the beginning and at the end of each cycle, the 1st

3 If �Q > 0, heat energy flows from R to �, and if �Q < 0 heat flows from � to R.
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Law says that �Q(γ ) is fully converted into work done by the heat engine on its
environment.

Usually, one introduces the following (scaling) postulate on heat engines: The
size of a heat engine can be enlarged or reduced by a scale factor λ > 0. (Here, a
continuum theory of matter is implicitly assumed). Consider a heat engine � with
a moduli space of equilibrium states �� . Then

��λ

:= {X ∈ RN : λ−1 X ∈ ��}
is the moduli space of equilibrium states of the heat engine �λ. To a cycle γ of
�, there corresponds a cycle γ λ of �λ such that

U (λX ) = λU (X ),�Q(γ λ) = λ�Q(γ ).

We are now in a position to state one formulation of the Second Law of
Thermodynamics due to Thomson and Planck.

2.1.3. The 2nd Law

There does not exist any heat engine that does nothing but absorb heat energy
from one single reservoir and convert it into work.

Consider a heat engine � connected to two thermal reservoirs, R1 and R2,
with the property that, in one cycle γ , it gains an amount �Q1 of heat energy
from R1 and it releases an amount �Q2 of heat energy to R2. The heat engine
performs work if �Q1 − |�Q2| = �Q1 + �Q2 > 0. In this case, the thermal
reservoir R1 is called the heating, while R2 is called the refrigerator.

It follows from the above formulation of the Second Law of Thermodynamics
that if there exists a heat engine that usesR1 as its heating andR2 as its refrigerator,
then there does not exist any heat engine that uses R2 as its heating and R2 as
its refrigerator. This fact can be used to define an empirical temperature �: the
temperature �1 of R1 is higher than the temperature �2 of R2 if there exists a
heat engine � that uses R1 as its heating and R2 as its refrigerator.

A heat engine is said to be reversible (or a Carnot machine) if, in a time-
reversed cycle, it can work as a heat pump: During a cycle γ −, it takes an amount
�Q2 of heat energy from R2 and releases an amount �Q1 of heat energy to R1.
The environment must supply an amount �A = �Q1 − |�Q2| of work per cycle.
Reversible heat engines are idealizations of realistic engines.

We define the degree of efficiency of a heat engine � as the ratio of the work
done per cycle and the heat energy it gains from the heating in one cycle, i.e.,

η� := �A

�Q1
= �Q1 + �Q2

�Q1
= 1 + �Q2

�Q1
.

It follows from the Second Law of thermodynamics that among all heat engines
with the same heating and refrigerator, the reversible engines have the highest
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degree of efficiency, ηrev. One can use this fact to define an absolute temperature
T of a thermal reservoir R by setting

ηrev = T1 − T2

T1
,

for an arbitrary pair of heating and refrigerator. The fact that η� ≤ ηrev implies
that

�Q1

T1
+ �Q2

T2
≤ 0,

with equality when γ is reversible.
This result can be generalized to a situation where � is connected to n thermal

reservoirs, R1, . . . ,Rn , with temperatures T1 > · · · > Tn . Then

n∑

i=1

�Qi

Ti
≤ 0,

with equality if the cyclic process is reversible. Taking the limit n → ∞ yields

∮

γ

δQ

T
≤ 0,

with equality if γ is reversible.
Consider a reversible cyclic process, γ ⊂ �� , of �, and parametrize its

trajectory in �� by time τ ∈ [t0,∞). We assume that

γ̇ (τ ) := lim
h↘0

1

h
[γ (τ + h) − γ (τ )] ∈ Tγ (τ )�

� ⊂ RN

exists, for all ∈ [t0,∞).
Denote by γt the subprocess {γ (τ )}t0≤τ≤t from Xi := γ (t0) to γ (t) ∈ �� .

From the 1st Law of Thermodynamics, we infer that �Q(γt ) is a well-defined
quantity. For h > 0,

�Q(γt+h) − �Q(γt ) = h · K (t) + O(h2),

where (we assume) K (t) is continuous in t . For every point X ∈ �� and each
vector Z ∈ RN , there exists a subprocess γt of a reversible cyclic process γ of �

such that

γ (t) = X ; γ̇ (t) = Z .
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One can use the functional �Q(·) defined on the set of reversible processes of �

to define a 1-form δQ(γ (t)) with the property that4

γ̇ (t) · δQ(γ (t)) = lim
h↘0

1

h
(�Q(γt+h) − �Q(γt )) = K (t).

The internal energy U of � is a state function, hence a function on �� . Denote by
dU the 1-form over �� given by the gradient of U . We define the work 1-form by

δA := dU − δQ.

Let X1, . . . , X N be coordinates on �� . Then one can write

δA =
N∑

i=1

ai (X )d Xi ,

where ai (X ), i = 1, . . . , N , are called the work coefficients. They are intensive
quantities, meaning that under rescaling, ai (λX ) = ai (X ), i = 1, . . . , N .5

Using the fact that
∮

γ rev

δQ

T
= 0, ∀γ rev ⊂ ��,

and the convexity of �� , one can define a state function S, the entropy, on ��

such that

d S = δQ

T
.

Then

dU = T d S + σ A

holds for reversible changes of state.
Consider an adiabatic process γ : Xi → X f of an isolated system �, such that

Xi, f ∈ �� . It follows from the definition of entropy and the fact that
∮
γ̄

δQ
T ≤ 0,

for a cyclic process γ̄ ⊃ γ , that

S(X f ) ≥ S(Xi ).

4 These arguments need to be made mathematically accurate. For some details and references, see for
example Ref. 31.

5 Quantities ξ with the property that under rescaling ξ (λX ) = λξ (X ), λ > 0, are called extensive, e.g.,
the internal energy U or the volume, while quantities with the property that ξ (λX ) = ξ (X ) are called
intensive, e.g., the temperature T , and the work coefficients.
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Using the scaling postulate and the connectedness and convexity of �� , one can
show that the entropy S is concave: For λ ∈ (0, 1),

S(λX1 + (1 − λ)X2) ≥ λS(X1) + (1 − λ)S(X2).

There are further equivalent formulations of the Second Law of Thermody-
namics:

1. Clausius (1854): Suppose two reservoirs, R1 and R2, are connected
diathermally. If heat flows between them then it can only flow in one
direction.

2. Carnot (1824): For a heat engine �, η� ≤ ηrev.
3. Caratheodory: In an arbitrarily small neighborhood of each equilibrium

state, X, of an isolated system �, there are equilibrium states X ′ of � that
are not accessible from X via reversible and adiabatic processes.6

It follows that, during an adiabatic process of an isolated system, the entropy
can only increase (maximum principle for the entropy).

In the following sections, we will show how Clausius’ and Garnet’s for-
mulation of the Second Law of Thermodynamics can be derived from quantum
statistical mechanics in simple systems.

3. QUANTUM MECHANICAL DESCRIPTION OF THERMODYNAMIC

SYSTEMS, HEAT BATHS, AND THERMODYNAMIC PROCESSES

We start by clarifying the concept of a thermodynamic system � from the
point of view of quantum statistical mechanics. A thermodynamic system is a
system of quantum-mechanical matter confined to a compact region of space.
Physical properties of the system � are encoded in bounded operators acting on a
separable Hilbert space, H� , of pure state vectors. These operators generate some
subalgebra, O� , of B(H�), where B(H�) is the algebra of bounded operators on
H� . The algebra O� is called the kinematical algebra of �. The pure states of
� are unit rays in H� , and its mixed states are described by density matrices P,
which are positive trace-class operators such that T r (�) = 1. The dynamics of �

is generated by a family of semi-bounded, self-adjoint operators {H�(t)}t∈R acting
on H� , the Hamiltonians. Under natural hypotheses, these operators determine a
unitary propagator, V �(t, s), describing the time evolution of a state of � at time
s to a corresponding state at time t. In the Heisenberg picture, the time evolution
of an operator A ∈ O� is given by

α
t,s
� (A) = V �(s, t)AV �(t, s), (1)

6 For a mathematically rigorous discussion, see for example (12), and also (31).
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and we assume that α
t,s
� (A) ∈ O� , for every A ∈ O� . Since a density matrix

P describing a mixed state of � is a positive, trace-class operator on H� , it
has a square-root κ = P1/2 belonging to L2(H�) =: K� , the two-sided ideal of
Hilbert-Schmidt operators in B(H�), which is isomorphic to H� ⊗ H� . Then

T r (PA) = T r (κ∗ Aκ) := 〈κ, Aκ〉. (2)

In the Schrödinger picture, the time-evolution of a state κs ∈ K� from time s to
time t is given by is

κt = U�(t, s)κs := V �(t, s)κs V �(s, t).

Then

〈κt , Aκt 〉 = 〈
κs, α

t,s
� (A)κs

〉
, ∀A ∈ O�.

The propagator U�(t, s), on K� is generated by a family of (usually time-
dependent) Liouvilleans {L�(t)}, with L�(t),= adH� (t). It satisfies the equation

∂tU�(t, s) = −iL�(t)U�(t, s), (3)

with U�(s, s) = 1, ∀s.7 Since K� is a Hilbert space, one may study the spectra of
the Liouvilleans L�(t) using available methods of spectral theory.

The formulation outlined here has a natural incarnation in the thermody-
namic limit of systems in thermal equilibrium; see Refs. 9 and 22.

According to the Gibbs Ansatz, the equilibrium state of � at inverse temper-
ature β > 0 is described, in the canonical ensemble, by the density matrix

P�
β (A) := e−β H�

Z�
β

, (4)

where Z�
β := T r (e−β H�

) is a normalization factor. The expectation value of an
operator A ∈ O� in this equilibrium state is given by

ω�
β (A) := T r

(
P�

β A
)
. (5)

Note that if H�(t) = H� is independent of time then ω�
β is time-translation

invariant and satisfies the Kubo- Martin- Schwinger (KMS) condition, which will
be recalled later.

We distinguish between two types of thermodynamic systems, those with a
finite-dimensional Hilbert space (mesoscopic systems, such as an impurity spin
or a quantum dot), and macroscopic systems, which have countably infinite di-
mensional Hilbert space. Understanding how the state of an isolated macroscopic
system converges to a state that, locally, is indistinguishable from an equilibrium
state, as time tends to infinity, is usually a challenging open problem. Macroscopic

7 We work in units where h̄ = 1.
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systems are defined in terms of families of thermodynamic systems, �i , confined
to regions �i , with �i ↗ R3, with the property that {�i } is thermodynamically
stable.8

A heat bath or reservoir R is the limit of a sequence of thermodynamic
systems confined to compact regions of physical space R3, {�i }∞i=1, such that �i ⊆
� j ⊂ R3, for i < j , and limi→∞�i = R3, or a half-space R3

±. The Hamiltonians
H�i are assumed to be time-independent. Denote by O�i the kinematical algebra
of the system confined to �i . We assume thatO�i ⊆ O� j if i < j . The kinematical
algebra of the heat bathR isOR := ∨

i∈N O�i , where (·) denotes the norm closure.
We make the following assumptions, which need to be verified in specific

physical models, regarding the existence of the time evolution and equilibrium
states in the thermodynamic limit; (see Refs. 13 and 37 for models where the
following assumptions are verified). Let O∞ := ∨

i∈N O�i .

(A1) Existence of dynamics. We assume that

n − lim
i

αt
�i

, (A) =: αt
R (A), (6)

exists for all A ∈ O∞, t ∈ R, and {αt
R}t∈R is a one-parameter group of

∗- automorphisms ofOR. (Note that αt
R need not be norm continuous, as

in the case of bosonic reservoirs, where it is only σ -weakly continuous,
Refs. 13.)

(A2) Existence of equilibrium states.9 For A ∈ O∞, consider the sequence
of equilibrium expectation values ω�i

β at inverse temperature β > 0.

We assume existence of a limit of a suitable (sub)sequence ω
�i
β (·), as

i → ∞. The limiting equilibrium state, ωR
β , is αt

R-invariant

ωR
β

(
αt
R(A)

) = ωR
β (A), (7)

for A ∈ OR and t ∈ R. Moreover, it satisfies the Kubo-Martin-
Schwinger (KMS) condition, which says that, for A, B in a norm-dense

8 A brief remark about thermodynamic stability is in order at this point; (for further discussion, see for
example Ref. 37). For a thermodynamic system � given by the disjoint union of elements of a family
of thermodynamic systems, {�i }, � = ∨

i �i , the Hilbert space of � is given by H� = ⊗iH�i , and

the kinematical algebra of � is given by O� = ⊗iO�i . The Hamiltonian of � is H�
0 = ∑

i H�i
0 +

surface terms, with the property that H�i
0 ≈ H

� j
0 if �i is the spatial translate of � j . We say that �

is thermodynamically stable if T r (e−βH�
0 ) ≤ eCβ vol(�� ), as �� ↗ R3, ∀β.

9 There are several ensembles in statistical mechanics: the microcanonical ensemble, where the number
of particles and the energy are fixed, the canonical ensemble where the number of particles in the
system is fixed while the energy fluctuates, and the grandcanonical ensemble where both the number
of particles and the energy are allowed to fluctuate. Although different for finite systems, the three
ensembles are usually equivalent in the thermodynamic limit.
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subalgebra of OR,

ωR
β

(
Aαt

R(B)
) = ωR

β

(
α

t−iβ
R (B)A

)
. (8)

The following principle concerning thermodynamic limits will be assumed hence-
forth; (but see for example Ref. 37).

3.1. Principle Concerning Thermodynamic Limits

Let I ⊂ R be an interval of time, E bounded subset of R3, and ε > 0. Then
there exists a compact set �(ε, I, E) ⊂ R3, |�(ε, I, E)| < ∞, such that, ∀� ⊃
�(ε, I, E),

ω�
β (eit H�

Ae−i t H�

B) = ωR
β

(
αt
R(A)B

) + O(ε),

∀A, B ∈ OE , ∀t ∈ I .
For the sake of clarity of exposition, we will assume, throughout the following

discussion, that reservoirs are finite and take the thermodynamic limit of suitable
quantities at the end of every argument. We note, however, that one may work
directly with reservoirs in the thermodynamic limit (see for example Refs. 13, 21
and 40). KMS states satisfy certain stability properties which justify to view them
as equilibrium states of thermal reservoirs; (see Refs. 22 and 23 for a detailed
discussion of this point). They give rise to an eigenvector of the Liouvillean,
obtained via the GNS construction, corresponding to the simple eigenvalue 0.

3.2. Thermodynamic Processes

We first sketch what we mean by different thermodynamic processes before
considering specific ones, later. Consider a thermodynamic system � coupled to
n reservoirs, R1, . . . ,Rn . We assume that the reservoirs are finite and then take
the thermodynamic limit of suitable quantities. The initial state, P, of the coupled
system � ∨ (

∨n
i=1 Ri ), is normal relative to P� ⊗ (

⊗n
i=1 PRi ), where PRi is an

equilibrium state of Ri . The dynamics is generated by the Hamiltonian

H (t) = H�(t) +
n∑

i=1

HRi ,

where

H� = H�
0 (t) + I �∨

(∨n
i=1

)Ri

(t), (9)

and I �∨(
∨n

i=1Ri )(t) ∈ O� ⊗ (
⊗n

i=1 ORi ) describes interactions between � and the
reservoirs. The density matrix Pt of the total system at time t satisfies the Liouville
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equation

Pt = −i[H (t), Pt ] = −iL(t)Pt , (10)

and Pt=0 = P. Note that one may work directly in the thermodynamic limit. On
the state space determined by the initial state ω = ω� ⊗ ωR1 ⊗ · · · ⊗ ωRn via
the GNS construction, the dynamics is unitarily implemented by a propagator
U (t, s), which is generated by time-dependent Liouvilleans L(t). A basic problem
in quantum statistical mechanics is to establish the existence of the thermodynamic
limit of the following quantities,(6,7,13,22,36)

ρt (·) := lim
T D

T r (Pt ·), (true state of the composed system) (11)

ρ�
t := ρt |O�⊗1R , (restriction to the subsystem �), (12)

and of the dynamics αt . Here, “limT D” refers to the thermodynamic limit of
the reservoirs. Moreover, for a thermodynamic system � coupled to a single
reservoirR, the instantaneous equilibrium state corresponding to the Hamiltonian
H (t) = H�(t) + HR at inverse temperature β is given by

Pβ
t := e−β H (t)

Zβ(t)
,

where Zβ(t) = T re−β H (t). A standard problem is to establish the existence of the
thermodynamic limit of instantaneous equilibrium states,

ω
β
t (·) = lim

T D
T r

(
Pβ

t ·). (13)

We refer the reader to Refs. 13 and 37 for a rigorous discussion of the existence
of these limits for a large class of systems.

The choice of reservoirs R1, . . . ,Rn, the initial state P of � ∨ (∨n
i=1Ri ),

and the dynamics {H�(t)}t∈R, determine a trajectory of states {ρ�
t } of �,

where

ρ�
t (A) := lim

T D
T r (Pt A ⊗ 1), (14)

A ∈ O� .
Isothermal processes correspond to diathermal contacts of � to a single heat

bath, n = 1 (or, equivalently, several heat baths but with the same temperature).
Adiabatic processes are processes of an isolated system. Circular or cyclic pro-
cesses are processes with the property that H�(t + t∗) = H�(t), for a period
t∗ < ∞.

The reservoirs considered in this paper are usually formed of ideal Bose–
Fermi gases, such as black-body radiation, noninteracting magnons in a magnet,
or electrons in a metal. Moreover, a typical thermodynamic system � may be an
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array of quantum spins, discrete quantum dots, or interacting bounded subsystems
of a reservoir R. The mathematical methods used in our analysis are the algebraic
formulation of quantum statistical mechanics Refs 6, 7, 22 scattering theory as
developed in Refs. 24 and 36, and spectral and resonance theory (spectral defor-
mations, Mourre theory, Fermi’s Golden Rule); see for example Ref. 1, 9, 14–17,
19, 25–27, 32–35. We make the following assumption regarding the idealized
models considered in this paper.

(A) The subsystem � has a finite-dimensional Hilbert space (dim H� =
d < ∞), the reservoirs Ri , i = 1, . . . , n, are formed of non-interacting bosons or
fermions. Interactions between � andR1, . . . ,Rn are described by local operators
affiliated with the kinematical algebra of the coupled system and with certain
regularity properties; see Refs. 1, 9 and 26 for concrete examples for which the
analysis sketched in this paper is applicable.

4. INTERNAL- AND HEAT ENERGY, WORK, ENTROPY

AND THE 1ST LAW

As in the previous section, consider a finite system �(dim(H�) = d < ∞)
coupled diathermally to several reservoirs R1, . . . ,Rn . As mentioned earlier, the
reservoirs are first assumed to be finite, and the thermodynamic limit of suitable
quantities will be taken at the end of each argument. The internal energy of � is
defined by

U�(t) := ρt (H�(t)), (15)

where ρt is the true state of the total system, and H�(t) is as in Ref. 9 (Sec. 3).
The rate of change of heat energy is given by

δQ(t)

dt
:= −

n∑

i=1

d

dt
ρ
(
HRi

) = −i
n∑

i=1

ρt

(
[H (t), HRi ]

)

= i
n∑

i=1

ρt

(
[HRi , I �∨(∨n

i=1Ri )(t)]
) =:

n∑

i=1

δQRi (t)

dt
,

where δ(·) denotes the imperfect or inexact differential of (·). It follows that

U̇�(t) − δQ(t)

dt
= ρt (Ḣ�(t)) =:

δA(t)

dt
. (16)

The thermodynamic limit for the reservoirs exists on both sides of this identity.
Eq. (16) is nothing but the expression of the 1st Law of Thermodynamics. Next,
we define the relative entropy of �, with respect to the reference state

PR := 1

d
1� ⊗n

i=1 PRi
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as

S�(t) := −kB lim
T D

T r (Pt [log Pt − log PR]) (17)

= −kB lim
T D

T r

(
Pt

[
log Pt −

n∑

i=1

log PRi + log d

])
(18)

= −kB lim
T D

T r

(
Pt

[
log Pt +

n∑

i=1

(βi HRi + log ZRi ) + log d

])
, (19)

where kB is the Boltzmann constant, and ZRi = Tr (e−βi HRi ). Since we are as-
suming that H� is finite-dimensional, this quantity is well-defined, and the ther-
modynamic limit of the reservoirs can be taken. The usefulness of this notion of
entropy will become apparent soon.

A well-known trace inequality (see Ref. 13) says that

T r (B log B) ≥ T r (B log A) + T r (B − A),

for A and B positive, and bounded operators. This inequality implies that the
relative entropy of � has a definite sign, for all t ∈ R,10

S�(t) ≤ 0. (20)

The quantities T r Pt log Pt and T r Pt log ZRi are time-independent. There-
fore, the rate of change of entropy is

Ṡ�(t) =
∑

i

1

Ti

dρt (HRi )

dt
(21)

=
∑

i

1

Ti

δQRi (t)

dt
. (22)

Note that if the limit of the rate of entropy production

ε := − lim
t→∞ Ṡ�(t)

exists then E ≥ 0, as follows from the upper bound in Eq. 20. This bound on E is
closely related to the Second Law of Thermodynamics, as we will see later.

10 Another property of relative entropy is its strong subadditivity (see for example Ref. 30).
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5. ISOTHERMAL PROCESSES, RETURN TO EQUILIBRIUM,

AND THE ISOTHERMAL THEOREM

In this section, we consider a system � diathermally coupled to a single heat
bath R at temperature T R > 0. As shown in the previous section,

U̇�(t) = δ

dt
Q�(t) + δ

dt
A�(t), (23)

and

Ṡ�(t)
1

T R
δ

dt
Q�. (24)

We begin the non-trivial part of our analysis by considering an example of an
irreversible thermodynamic process, that plays an important role in deriving the
Zeroth Law of Thermodynamics.

5.1. Return to equilibrium1,9,16,25,26,32,33

If (�,R) belongs to the class of model systems satisfying Assumption (A),
Sec. 3 with the properties that

(i)
∫ ∞

dt ||(H�(t) − H�
∞

)(
H�

∞ + i
)−1|| < ∞,

with form factors in the interaction Hamiltonian that are sufficiently reg-
ular in the infrared, i.e., for small wave vectors (see, for example, Refs. 9,
16 for precise statements), and

(ii) Fermi’s Golden rule (when � is coupled to the reservoirs) holds, in the
sense that, to second order in perturbation theory, all the eigenvalues of
the unperturbed Liouvillean, except a single one at 0, become resonances
when the perturbation is turned on (i.e., develop an imaginary part),

then

ρt → ωβ, (25)

where ωβ is the equilibrium state of the coupled system at inverse temperature (β
corresponding to the Hamiltonian H∞ = H�

∞ + HR.
Here the problem of proving the property of return to equilibrium is viewed

as a spectral problem. The coupled system exhibits return to equilibrium if 0 is
a simple eigenvalue of the (standard) Liouvillean corresponding to H∞, and the
spectrum of the Liouvillean away from zero is continuous; (see for example 9,
25, and 26). Using different methods of spectral theory, the property of return to
equilibrium has been established for a variety of quantum mechanical systems:
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complex spectral deformation techniques for the spin-boson model, 25,26 Feshbach
map and operator-theoretic renormalization group methods, in conjunction with
complex spectral deformations, for a small system coupled to a thermal reservoir of
photons,9 and an extension of Mourre’s positive commutator method, together with
a Virial Theorem, for a small system coupled to a thermal bath of free bosons,16,32.
The general formalism used in these papers is based on important insights in
Ref. 22. Positive commutator methods used in studying return to equilibrium have
been extended to studying thermal ionization of atoms and molecules coupled
to the radiation field in Refs. 17 and 18, and to prove the property of return to
equilibrium for a variety of further, physically interesting systems, e.g., an impurity
spin coupled to a bath of non-interacting magnons in a magnet, or a quantum dot
coupled to nonrelativistic electrons in a metal; (see Ref. 1).

Suppose that the coupled system � ∨ R has the property of return to equilib-
rium. What happens if the coupling is slowly turned off, after return to equilibrium,
e.g., by quasi-statically removing the contact between R and �? What charac-
terizes reversible isothermal processes? The answer to these questions relies on
the so called isothermal theorem, which is an adiabatic theorem for states close to
thermal equilibrium states.

We consider a system � ∨ R directly in the thermodynamic limit, and study
a process with Liouvillean Lτ (t), given by Lτ (t) ≡ L(s), where the rescaled time
is s := t

τ
, and {L(s)} is a family of time-dependent “standard” Liouvilleans. We

assume that the operators L(s) have a common dense domain of definition, for
all s ∈ I , where I ⊂ R is a compact interval. Moreover, we assume that, for all
s ∈ I , (L(s) + i)±1 is differentiate in s, (L(s) d

ds (L(s) + i)−1 is uniformly bounded,
σpp(L, (s)) = {0} and σ (L(s))\{0} = σc(L(s)), and that the projection, P(s), onto
the eigenstate corresponding to the eigenvalue 0 of L(s) is twice differentiate
in s, for almost all s ∈ I . Note that P(s) projects onto the instantaneous equi-
librium state, or reference state, ω

β
τ s at time t = τ s. We are interested in the

quasi-static limit, τ → ∞. Physically, this limit corresponds to τ � τR , where
τR = maxs∈I τR(s), and τR(s) is the relaxation time to equilibrium of L(s), s ∈ I .

5.2. Isothermal Theorem2

Under the hypotheses described above,

ρτ s(A) = ωβ
τ s(A) + o(1),

as τ → ∞, ∀A ∈ O� ⊗ OR, and ∀s ∈ I , where I ⊂ R is an arbitrary compact
interval, (i.e., ρτ s(A) − ω

β
τ s(A) tends to 0, as τ → ∞).

The proof of this theorem can be found in Ref. 2. It relies on a slight gen-
eralization of results in Refs. 8 and 41. To get a quantitative estimate on the rate
of convergence to the quasi-static limit, we need more precise information on the
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spectrum of the standard Liouvilleans L(s). The hypotheses of the isothermal the-
orem can be verified for classes of explicit quantum mechanical systems, including
ones for which the property of return to equilibrium has been established.1

Next, we sketch several consequences of this theorem, clarifying the notions
of heat energy and reversibility in isothermal processes and emphasizing the
usefulness of relative entropy. Without loss of generality, we first treat R as a finite
system, before taking the thermodynamic limit of suitable quantities.

Consider an isothermal process of � ∨ R from time t0 = τ s0 until some time
t1 = τ s1, for s0 and s1 fixed, in the quasi-static limit where τ → ∞, and for an
initial state ρ = ωβ . Then we have the following results.

(i) Reversible isothermal processes are the same as “quasi-static” isothermal
processes (τ � τR). This just means that the true state of the system
coincides with the instantaneous equilibrium state, asymptotically when
τ → ∞.

For reversible isothermal processes, the entropy of a system � cou-
pled to a heat bath R is defined by

S�
rev(t) = − lim

T D
kB T r

(
Pβ

t

[
log Pβ

t − log PR])
(26)

= lim
T D

[
kBω

β
t (βH�(t)) + kB log

Zβ(t)

ZR − kB log d

]
(27)

= lim
T D

[
1

T R
(
U�

rev(t) − F�(t)
)] − kB log d, (28)

where F�(t) = −kB log Zβ (t)
ZR is the free energy of �, and Pβ

t denotes the
instantaneous equilibrium state of � ∨ R at time t. Using the isothermal
theorem, one may replace ω

β
τ s by the true state ρτ s of � ∨ R, up to an

error that vanishes in the quasi-static limit: Hence, in the thermodynamic
limit,

T R�S�
rev = ωβ

τ s1
(H�(s1)) − ωβ

τ s0
(H�(s0)) −

∫ s1

s0

dsωβ
τ s(Ḣ�(s))

= �U� − �A + o(1) (29)

= �Q + o(1), (30)

with

�A = F�(τ s1) − F�(τ s0) + o(1).

Here, we have made use of the isothermal theorem in the second step and
the 1st Law of Thermodynamics in Eq. 30. We have just sketched the proof
of the following claim, which asserts the equivalence of the definition of
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entropy in equilibrium statistical mechanics and relative entropy in non-
equilibrium quantum statistical mechanics, in the quasi-static limit.

Clearly, Eq. 30 and Eq. 24 imply that

(ii) �S�
rev = �S� + o(1), as t → ∞.

Furthermore, if one slowly removes the contact between R and � the state
of � approaches a Gibbs state at inverse temperature βR, independently
of the nature of the diathermal contact. This is part of the 0th Law of
Thermodynamics.

(iii) If H�(t) → H�
∞ ∈ O� then ρτ s tends to the Gibbs state for H�

∞ at inverse
temperature (βR, as τ → ∞ and s → ∞; (for a more precise formulation
of this result, see Ref. 5).

6. CLAUSIUS’ AND CARNOT’S FORMULATIONS OF THE 2ND LAW

We consider a thermodynamic system � coupled diathermally to heat baths
R1, . . . ,Rn , with n ≥ 2. We have shown that, for diathermal contacts,

−∞ < S�(t) ≤ 0, (31)

and

Ṡ�(t) =
∑

i

1

Ti

δQRi(t)

dt
. (32)

Suppose that at least two reservoirs are at different temperatures. Under
certain conditions on the coupling, and for the class of idealized model systems
discussed above (see Assumption (A), Sec. 3), one can show that the state of the
coupled system, ρt , converges to a non-equilibrium steady state (NESS),

ρNESS := ω∗ − lim
t→∞ ρ0 ◦ αt ,

(or, more generally, w∗ − limT →∞ 1
T

∫ T
0 ρ0 ◦ αt dt). This has been proven recently

in several examples using different approaches: In Refs. 19, 38, and 39 algebraic
scattering theory is used, and one has to establish the existence of scattering endo-
morphisms. The results are based on work of Refs. 11, 24, and 36. As an alternative
approach in Refs. 27, 34, and 35, a NESS is related to a zero-energy resonance
of the adjoint of the so called C-Liouvillean. In this setting, one can prove an
adiabatic theorem for states close to non-equilibrium steady states; see Ref. 1.

6.1. Clausius’ formulation of the 2nd Law

Theorem.
Assume that

H�(t) → H�
∞ ∈ O� ⊗ OR,
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as t → ∞. If

ρt →t→∞ ρNESS,

then

(i)
n∑

i=1

δQRi

dt
→ 0 (33)

(i i) Ṡ�(t) → −E ≤ 0 (34)

(i i i) lim
t→∞

n∑

i=1

1

Ti

δQRi

dt
= − E ≤ 0, (35)

where E is the entropy production rate.
Clausius’ formulation of the Second Law of Thermodynamics is a straight-

forward corollary of this theorem. We consider two resevoirs, R1 and R2, with
T1 > T2. Denote by PR(t) := δ

dt QR(t), the heat current out of reservoir R. It
follows from (i) that

lim
t→∞PR1 (t) + PR2 (t) = 0, (36)

and from (iii) that

lim
t→∞

(
1

T1
− 1

T2

)
PR1 (t) ≤ 0. (37)

Since T1 > T2, it follows that PR1 = limt→∞ PR1 (t) ≥ 0, i.e., heat flows from the
hot reservoir to the cold one. For small enough coupling, one can usually show
strict positivity of the entropy production rate, E , by computing E perturbatively;
(see Refs. 19, 27, 34, and 35). A study of transport phenomena between two reser-
voirs formed of free fermions at different temperatures/chemical potentials and
coupled through bounded local interactions has been presented in Ref. 19. After
showing convergence of the true state of the coupled system to a NESS by using
scattering theory, and establishing strict positivity of the entropy production rate,
these authors show that the Onsager reciprocity relations and Ohm’s Law hold to
first non-trivial order in the coupling constant, for contacts allowing exchange of
particles between the reservoirs. Furthermore, in Ref. 28 and 29 linear response
theory is studied from the point of view of the algebraic formulation of quan-
tum statistical mechanics, and the Green-Kubo formula and Onsager reciprocity
relations for heat fluxes generated by temperature gradients are established.

Next, we discuss Carnot’s formulation of the Second Law of Thermodynam-
ics. For the class of models discussed above, we consider a cyclic thermodynamic
process, with H�(t + τ∗) = H�(t), for some period τ∗ < ∞. For t ∈ [0, τ∗), let

ω
per
t := lim

N→∞
ρt + Nτ∗,
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which is a time-periodic state with period τ∗. For some class of model systems,
with small enough coupling, one can show that, after very many periods, the state
of the coupled system approaches ωper; see Ref. 3 (and also Ref. 20) for precise
formulations and proofs.

6.2. Cyclic thermodynamic processes and time-periodic states

For the class of models considered in Assumption (A) of Sec. 3, if
H�(t + τ∗) = H�(t), for some period τ∗ < ∞, and the interaction Hamiltonian
||I �∨(Vn

i=1)Ri || is sufficiently regular and satisfies a Fermi Golden Rule condition
then

ρt+Nτ∗ →N→∞ ω
per
t ,

for t ∈ [0, τ∗).

This is proven in Ref. 3 for fermionic reservoirs, by introducing the so
called Floquet Liouvillean and relating the time-periodic state to a zero-energy
resonance of the latter.11 The existence of the limit and the absolute upper bound
on the relative entropy S�(t) imply that the entropy production per cycle,

�E := − lim
N→∞

∫ τ∗

0
dt Ṡ�(t + Nτ∗), (38)

is non-negative. Furthermore, for specific models, such as the one considered in
Ref. 3, one can actually prove strict positivity of entropy production per cycle,
which can be computed perturbatively, for small enough coupling.

We now discuss Carnot’s formulation of the Second Law of Thermodynam-
ics. Suppose � is coupled to two reservoirs R1 and R2, with T1 > T2. For a
thermodynamic quantity f, we set

� f := lim
N→∞

[ f ((N + 1)τ∗) − f (Nτ∗)],

which is the change of f in one cycle, after very many periods. Suppose the
state of the coupled system converges to ωper, after very many periods. Since
H�(t + τ∗) = H�(t), it follows that

�U� = 0. (39)

Furthermore, from the fact that �E ≥ 0, it follows that

�QR1

T1
+ �QR2

T2
= −�E ≤ 0. (40)

11 One can also prove this result for fermionic reservoirs using scattering theory and a norm-convergent
Dyson-Schwinger series, as in Refs. 19 and 20.
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Suppose that the system � is a heat engine, ie, performs work during each
period,

�A� = �QR1 + �QR2 ≥ 0. (41)

The fact that T1 ≥ T2 and the arguments used in the proof of Clausius’ for-
mulation imply that �QR1 ≥ 0. The following result yields Carnot’s formulation
of the 2nd Law of Thermodynamics.

6.3. Carnot’s formulation of the 2nd Law

Assume that T1 > T2. Then

0 ≤ η� := �A

�QR1
= 1 + �QR2

�QR1
(42)

≤ 1 − T2

T1
:= ηCarnot. (43)

It is important to note that this result follows from the absolute upper bound
on relative entropy and the existence of time periodic states in the large-time limit,
without any further assumptions. The difference ηCarnot − η� can be computed
explicitly in terms of the entropy production per cycle,3 which is a quantity that
can be computed perturbatively; see Ref. 19. Inequality Eq. 40 can easily be
generalized to

n∑

i=1

�QRi

Ti
≤ 0,

for an arbitrary number, n < ∞, of reservoirs. This can be used to prove that a
certain notion of entropy increases in adiabatic processes.
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25. V. Jaksić and C. A. Pillet, On a model for quantum friction II. Fermi’s golden rule and dynamics
at positive temperature, Commun. Math. Phys. 176:619–644 (1996).
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