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Abstract A weight of evidence is a calibrated statistic whose values in [0, 1] indicate the degree of agreement

between the data and either of two hypothesis, one being treated as the null (H0) and the other as the alternative

(H1). A value of zero means perfect agreement with the null, whereas a value of one means perfect agreement

with the alternative. The optimality we consider is minimal mean squared error (MSE) under the alternative

while keeping the MSE under the null below a fixed bound. This paper studies such statistics from a conditional

point of view, in particular for location and scale models.
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1 Introduction

Let Y be a random variable whose distribution is either F (under H0) or G (under H1). A (non
randomized) statistical test is a binary 0− 1 random variable T = T (Y ). The event {T = 1} is
called the rejection region and optimality is defined by

EY ∼F [T (Y )] ≤ α and EY ∼G[1 − T (Y )] minimal.

Tests are often defined via test statistics S as {T = 1} = {S > cv}, where cv is a so-called
critical value. If this is the case, a test can be converted to a [0, 1]-valued variable p(Y ), the
p-value, in the following manner

p(Y ) = PZ∼F {S(Z) > S(Y )}.
The p-value is informally interpreted as measuring the degree of concordance between the null
hypothesis and the data, with larger values indicating better concordance. A weight of evidence
formalizes this interpretation of the p-value mathematically. It takes values close to 0 if the null
hypothesis is true and close to 1 if the alternative holds. Let 0 ≤ W (Y ) ≤ 1 be such a statistic.
Its effectiveness can be measured for q ≥ 1 by EY ∼F [W (Y )q] and EY ∼G[(1 − W (Y ))q], which
we will in the following call type-I risk and type-II risk. Admissible weights W minimize

EY ∼G

[(
1 − W (Y )

)q] + λEY ∼F [W (Y )q], (1)

for some λ ≥ 0. If F,G have densities f, g we can write (1) as
∫ ((

1 − W (y)
)q

g(y) + λW (y)qf(y)
)
dy.
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The optimal W is such that for all possible variations δ(Y ), we have
∫ ( − δ(y)

(
1 − W (y)

)q−1
g(y) + λδ(y)W (y)q−1f(y)

)
dy ≥ 0,

which for q > 1 implies λW (y)q−1f(y)− (1−W (y))q−1g(y) ≡ 0 and for q = 1,
∫

δ(y)
(
λf(y)−

g(y)
)
dy ≥ 0. Thus, for q > 1,

1 − W (y)
W (y)

=
(
λ

f(y)
g(y)

)1/(q−1)

, (2)

and for q = 1,

W (y) =
{

0, if λf(y) − g(y) > 0;
1, else.

(3)

These admissible weights of evidence are functions of the likelihood ratio f(y)/g(y). In the
case of q = 1, we obtain the Neyman-Pearson tests with rejection (W = 1) if g/f ≥ λ and
non-rejection (W = 0) if g/f < λ. This weight switches from choosing one hypothesis to a
preference for the other one without any intermediate region. For big values of q the opposite
behavior occurs. The corresponding weights of evidence have a large zone of indifference and
choose clearly one of the two hypothesis only when the likelihood ratio is very small or very big.
The choice q = 2 seems a good compromise and the corresponding optimal weights of evidence
have been introduced by Blyth and Staudte[1,2]. The constant λ > 0 is chosen to bound the
type-I risk and thus to calibrate the value of the weight of evidence. Since bigger values of
λ imply smaller values of W and thus smaller type-I risk and bigger type-II risk, we have to
choose its smallest possible value without violating the bound.

In this paper, we study weights of evidence in the context of structural models, that is
parameters defined by groups of transformations applied to a random vector with a fixed distri-
bution. We determine the optimal weight of evidence under the conditioning principle (Section
2). We then show how the optimal weight changes when uncertainty about the underlying
distribution is introduced, in particular when allowing for outliers with the use of heavy-tailed
distributions (Section 3).

2 Optimal Weights of Evidence for Transformation Models

The quality of a weight of evidence as described in the introduction is to be determined by its
risks, that is a sample space average. Such a weight of evidence can reduce overall risks by
allowing relatively large local risks in those regions of the sample space that are less probable
either under the null or the alternative hypothesis. If a more uniform behavior of the loss is
desired, the risk properties conditional on suitable subsets of the sample space are of interest.
In the case of transformation models, a canonical ancillary division of the sample space into
such subsets exists. In this section, we discuss the resulting weights of evidence.

Let EEE ∈ R
n be a random vector with a known absolutely continuous n-dimensional distri-

bution F and consider YYY = θ0(EEE) where θ0: Rn → R
n is a measurable transformation of R

n.
About θ0 it is only known that it belongs to a set, Θ, of transformations which under compo-
sition, (θ1θ2)(yyy) = θ1

(
θ2(yyy)

)
, form a locally compact topological transformation group (see [5],

first chapter) with the property that θ1 �= θ2 → θ1(EEE) �= θ2(EEE). We can thus form products and
inverses of these transformations and there is an identity transformation. The distribution of
YYY is equal to F (θ−1

0 (yyy)), from which it follows that the likelihood is equal to

L(θ) = f(θ−1(yyy))J(θ−1, yyy), (4)
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where J(θ−1, ·) is the Jacobian of the transformation θ−1. Within this structure we wish to
draw inferences about θ0 given an observed value yyy of YYY . This is done by acting conditionally
on the set

〈yyy〉 = {θ(yyy): θ ∈ Θ} ⊂ R
n,

which is the the orbit of the transformation group containing the observation. In cases of interest
to statisticians, the group Θ has a p-dimensional representation, each orbit is of dimension
p ≤ n, and the set containing all orbits, the orbit space A, is of dimension n − p. The
orbit obtained from yyy = θ0(eee) for any fixed θ0 ∈ Θ is the same as that obtained from eee,
that is {θ(eee): θ ∈ Θ} = {θ(θ0(eee)

)
: θ ∈ Θ}. It follows that the distribution on A induced by

the random vector YYY is the same as the one induced by EEE, which implies that the particular
orbit picked by the data is an ancillary to the inference problem. This is fundamental to the
conditioning argument. Special cases are translations (location problem) and scalings (scale
problem). Inferences based on the conditional distribution given the orbit are straightforward
because of the reduction in dimension. The above problem is, in more traditional terms, about
a parametric family with a p-dimensional parameter and a p-dimensional statistic, namely the
position of YYY within the orbit 〈yyy〉.

To compute conditional expectations such as Eθ0(W (YYY )2|〈yyy〉) we need a coordinate system
for each orbit. The appropriate tool for this are isomorphisms between the orbit and the group
Θ. These are mappings

T : Rn → Θ

that satisfy
T (θ(YYY )) = θT (YYY ) for all YYY ∈ R

n and for all θ ∈ Θ (5)

and are called equivariant statistics. Choosing such a statistic partitions the information in the
data YYY into two parts, YYY ≡ 〈yyy〉 ⊕ T (YYY ). If we act conditionally, the choice of T is irrelevant
since within any orbit all equivariant maps have a very simple structure. If T and T ′ are two
equivariant statistics, it follows from (5) that for an arbitrary zzz = θ(yyy) ∈ 〈yyy〉

T (zzz)−1T ′(zzz) = T (θ(yyy))−1T ′(θ(yyy)
)

= T (yyy)−1T ′(yyy) (6)

is constant. Note that T (zzz)−1 refers to the inverse within the transformation group. The
formulas are somewhat simplified if we use the particular equivariant map T ∗ that satisfies

T ∗(yyy) = identity. (7)

Let I ⊂ Θ and consider the probability measure on Θ describing the conditional sampling
distribution of the estimator T ∗

νθ0(I|〈yyy〉) = Pθ0{T ∗(YYY ) ∈ I|〈yyy〉} = P{T ∗(EEE) ∈ θ−1
0 I|〈yyy〉}. (8)

This measure is absolutely continuous with respect to any left-invariant Haar measure µ on Θ,
which by definition satisfies µ(I) = µ(θI) for all µ-measurable subsets I ⊂ Θ and for all θ ∈ Θ,
where θI denotes {θη: η ∈ I} ⊂ Θ (see [9]). When restricted to 〈yyy〉, the mapping T ∗ is bijective
and assigns to t ∈ Θ the inverse (T ∗)−1(t) = t(yyy). From (8) it thus follows that the conditional
density of T ∗(YYY ) given the orbit 〈yyy〉 is equal to

dνθ0(t|〈yyy〉) ∝f
(
θ−1
0 t(yyy)

)
J(θ−1

0 t, yyy)dµ(t) (9)

∝ L(t−1θ0)dµ(t), (10)

where µ is a left-invariant Haar measure and where we made use of (4). The normalizing
constant in (9) is

m(〈yyy〉) =
∫

Θ

f(θ−1
0 t(yyy))J(θ−1

0 t, yyy)dµ(t), (11)
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which due to the left-invariance of µ does not depend on θ0. We now have all the necessary
tools to prove the following result.

Proposition 1. Suppose YYY = (Y1, · · · , Yn) is equal to θ(EEE) with θ ∈ Θ, a compact topological
group of transformations of R

n, and EEE having an absolutely continuous distribution F with
density f . The optimal weight of evidence W (yyy) for distinguishing between H0 : θ = θ0 and H1 :
θ = θ1 is a statistic such that Eθ1((1−W )2) is minimal subject to the constraints Eθ0(W

2|〈yyy〉) ≤
α for all orbits. It is of the form

1 − W (yyy)
W (yyy)

= λ(〈yyy〉)L(θ0)
L(θ1)

, (12)

where L(θ) is the likelihood function, L(θ) = f
(
θ−1(yyy)

)
J(θ−1, yyy), and λ(〈yyy〉) is the smallest

positive real such that ∫

Θ

W
(
t(yyy)

)2
L(t−1θ0)dµ(t) ≤ αm(〈yyy〉). (13)

Proof. The conditionally optimal weight of evidence minimizes

E〈YYY 〉
{
Eθ1

(
(1 − W (Y1, · · · , Yn))2|〈YYY 〉) + λ(〈yyy〉)Eθ0(W (Y1, · · · , Yn)2|〈YYY 〉)

}

and thus ∫

Θ

(
[1 − W (t(yyy))]2dνθ1(t|〈yyy〉) + λ(〈yyy〉)W (

t(yyy)
)2

dνθ0(t|〈yyy〉)
)

for all orbits. The point-wise minimizer of the integrand, evaluated at t = identity ∈ Θ, thus
satisfies

1 − W (y1, · · · , yn)
W (y1, · · · , yn)

= λ
dνθ0(identity|〈yyy〉)
dνθ1(identity|〈yyy〉)

and (9) gives the desired result (12). The value of λ has to be chosen in such a manner that
the conditional type-I risk is bounded by α, that is

∫

Θ

W (t(yyy))2L(t−1θ0)dµ(t)
/∫

Θ

L(t−1θ0)dµ(t) ≤ α,

which together with (11) proves (13).

Example 1. Let y1, · · · , yn be a sample from a uniform distribution on the interval [θ −
0.5, θ+0.5]. We wish to compute the optimal weight for θ0 = 0 vs. θ1 = 0.2. The transformation
group for this problem consists of the mappings

θr(y1, · · · , yn) = (y1 + r, · · · , yn + r), r ∈ R.

The transformation group Θ is the additive group on the reals and the left-invariant Haar
measure is proportional to the Lebesgue measure.

The optimal unconditional weight satisfies

1 − W (y1, · · · , yn)
W (y1, · · · , yn)

=
λL(θ0)
L(θ1)

=
λ

n∏

i=1

{−0.5 ≤ yi ≤ +0.5}
n∏

i=1

{−0.5 ≤ yi − 0.2 ≤ +0.5}
,

where {a ≤ y ≤ b} denotes the indicator function of the interval [a, b] evaluated at y. If the
true value of θ = θ0 = 0, the numerator on the right hand side is equal to one, whereas the
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denominator is either equal to one or to zero; thus W is either equal to 1/(1 + λ) or 0. It is
non-zero, if yi ∈ [−0.3, 0.7] for all i, which happens with probability 0.8n. The constant λ > 0
must be chosen to ensure E0[W 2] = 0.8n/(1 + λ)2 = α. Clearly, for positive λ, only the values
α ≤ 0.8n are possible. For α = 0.8n the weight W ≡ 1, which has zero type-II risk, is optimal.

Conditionally on an observed configuration 〈yyy〉 = {(y1 + r, · · · , yn + r): r ∈ R}, the optimal
weight is the same as above, except that the proportionality constant depends on the orbit
λ = λ〈yyy〉, which now has to be such that E0[W 2|〈yyy〉] ≤ α. It is also more convenient to
reparametrize the weight and to write W (θr(yyy)) = W (r), which satisfies

1 − W (r)
W (r)

=
λ〈yyy〉

n∏

i=1

{−0.5 ≤ yi + r ≤ +0.5}
n∏

i=1

{−0.5 ≤ yi + r − 0.2 ≤ +0.5}
.

If the true value of θ = θ0 = 0, the conditional distribution on the orbit 〈yyy〉 has density (see 9)

dνθ0=0(θr|〈yyy〉) ∝
n∏

i=1

{−0.5 ≤ yi + r ≤ +0.5},

that is r is uniformly distributed on the interval [rL = −min(yi)− 0.5, rU = −max(yi) + 0.5].
Two cases must be distinguished. First, if rU − rL ≤ 0.2, then the intervals [rL, rU ] and
[rL+0.2, rU +0.2] do not overlap and W (r) = {rL+0.2 < r < rU +0.2} and has zero conditional
type-I and type-II risk. Second, if rU − rL > 0.2, then the numerator in (1 − W (r))/W (r) is
equal to one for all values of r in the interval [rL, rU ], whereas the denominator is equal to one
for r ∈ [rL + 0.2, rU + 0.2]. This implies that the conditional weight is equal to

W (r) =

⎧
⎪⎨

⎪⎩

0, if rL < r ≤ rL + 0.2,
1/(1 + λ〈yyy〉), if rL + 0.2 < r ≤ rU ,

1, if rU < r ≤ rU + 0.2.

The conditional type-I risk is equal to E0[W 2|〈yyy〉] = ((rU −rL −0.2)/(rU −rL))/(1+λ〈yyy〉)2,
since the conditional probability for rL + 0.2 < r ≤ rU equals (rU − rL − 0.2)/(rU − rL). The
conditional type-I risk only take values between zero and (rU − rL − 0.2)/(rU − rL). When
α ≥ (rU − rL − 0.2)/(rU − rL), the trivial weight W ≡ 1 is the optimal choice.

The conditional and unconditional solutions can be quite different. For n = 3, for example,
0.8n = 0.512, whereas (rU − rL − 0.2)/(rU − rL) can take any value between zero to 0.8. If
(rU − rL − 0.2)/(rU − rL) ≤ 0.512, that is max(yi)−min(yi) ≥ 0.59(= 1− 0.2/0.488), then the
unconditional solution uses too large a λ-value and thus has a decreased conditional type-I risk.
If the opposite is true, the unconditional solution is dangerous, because in order to control the
conditional type-I risk, a larger λ-value ought to be used.

2.1 Fiducial Probabilities

The more traditional inference for the parameter of a transformation model is by way of con-
fidence sets and we are next exploring its link with weights of evidence. As before, let EEE ∈ R

n

be a random vector with a known absolutely continuous n-dimensional distribution F and and
let yyy be an observed value of YYY = θ(EEE), with the help of which we want to make inferences
about the parameter θ. For any equivariant statistic T we have T (EEE) = T (θ−1(YYY )) = θ−1T (YYY )
(see 5), which reveals T (θ−1(YYY )) to be a pivot, that is a function of the parameter and the data
with a constant distribution. Inversion of the pivot allows us to construct confidence sets. If
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one does not wish to appeal to the conditioning argument, one proceeds by choosing a subset
I ⊂ Θ such that P{T (EEE) ∈ I} = 1 − α. It then follows that

Pθ{θ−1T (YYY ) ∈ I} = Pθ{θ ∈ T (YYY )I−1} = 1 − α,

so that C = T (yyy)I−1 ⊂ Θ is a 1 − α confidence set. In these last equations the set I−1 consists
of the inverses of the elements of I. With conditioning, the same applies except that the
conditional coverage probability P{T (EEE) ∈ I|〈yyy〉} now determines our confidence coefficient.

The data-dependent probability measure assigning to subsets of C ⊂ Θ their conditional
confidence coefficient,

φyyy(C) = P{T (EEE) ∈ C−1T (yyy)|〈yyy〉}, (14)

was called fiducial measure by R. A. Fisher[3] (for example, Ch. III.3). In the form given here
these probabilities were developed by Fraser[4] who later called them structural probabilities.
If the parameter is one-dimensional, then the density dφyyy is also called a confidence density.
The conditional approach offers two important advantages. First, the confidence coefficient
is valid for subsets 〈yyy〉 of the sample space and not merely globally. Second, the method is
unique, since the dependence of (14) on the choice of the equivariant statistic T is only seeming.
Starting with another equivariant statistic T ′ instead of T , we have for all zzz ∈ 〈yyy〉 the equality
T (zzz) = T ′(zzz)T ′(yyy)−1T (yyy) (see 6). Thus,

P{T ′(EEE) ∈ C−1T ′(yyy)|〈yyy〉} =P{T (EEE) ∈ C−1T ′(yyy)T ′(yyy)−1T (yyy)|〈yyy〉}
=P{T (EEE) ∈ C−1T (yyy)|〈yyy〉},

which shows that φyyy defines a canonical, data-dependent distribution on the parameter space.
It has the property that a set C ⊂ Θ with φyyy(C) = 1 − α is a confidence set for the unknown
θ with exact confidence coefficient 1 − α, valid both conditionally and unconditionally. To
compute φyyy we will again use the particular equivariant map T ∗ (see 7). Now, by (8)

φyyy(C) = P{T ∗(EEE) ∈ C−1|〈yyy〉} = νidentity(C−1),

which implies (see 9 and 10) that

dφyyy(θ) ∝ f
(
θ−1(yyy)

)
J(θ−1, yyy)dµ(θ−1) = L(θ)dµ(θ−1). (15)

Note that dµ(θ−1) defines a right-invariant measure on Θ (see [9] III.14). An intuitive weight
of evidence for H0 : θ = θ0 versus H1 : θ = θ1 is based on the ratio of the fiducial densities,
(1−W )/W = λdφyyy(θ0)/dφyyy(θ1). Our formula shows that this is not optimal in the sense of the
conditional risk, since we obtain the likelihood ratio modified by a ratio of Haar measures.

Example 2. In this example, we apply the general theory to the scale model. In this case,
the transformation group can be represented by the positive reals R+, assigning to s ∈ R+ the
transformation θs(EEE) = (sE1, · · · , sEn). The random variable EEE = (E1, · · · , En) has indepen-

dent and identically distributed components with distribution F and thus F (eee) =
n∏

i=1
F (ei).

The group structure is given by θ−1
s (eee) = eee/s and (θsθt)(eee) = θst(eee). The orbit of an observed yyy

is equal to 〈yyy〉 = {syyy: s ∈ R+}, which is called the scale configuration. A left-invariant measure
in this group is given by dµ(s) ∝ ds/s, where ds denotes the Lebesgue measure. The Jacobian
of the transformation θs is J(θs, yyy) = sn. An equivariant estimator is a map T : Rn → R+ such
that for all positive s, T (syyy) = sT (yyy). The conditional density of T ∗(YYY ) given the orbit 〈yyy〉 is
proportional to

dνθ0(θ|〈yyy〉) ∝ θn−1
n∏

i=1

f(θyi/θ0)

and the confidence density is proportional to sL(s)ds = s1−n
n∏

i=1

f(yi/s)ds.
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3 Robustness of Weights of Evidence

The optimality of the weights of evidence as defined up to now deals with properties when
averaging over sets of samples generated with a known model. However, this model is itself
uncertain and should not to be relied on to the extent of being the sole factor in judging the
quality of an inference. There are several ideas for dealing with this difficulty.

3.1 Robustness Indicators

The effect of a single observation or of a small set of observations on the conclusions drawn from
a weight of evidence ought not be overwhelming. If we conclude that there is a lot of evidence
for θ1 using all the data but very little evidence for θ1 when setting one of the observations
aside, then we should probably weigh the evidence more carefully. This comment shows that we
ought to analyze the sensitivity of any weight of evidence, whether proposed as optimal under
some model or obtained in some other way, to changes in the data. The sensitivity of a weight
of evidence to an arbitrary additional value is most conveniently defined as a change in the
value of log((1 − W )/W ), because on this logistic scale changes close to 0 and 1 are magnified
and because the normalizing constant λ cancels out. Thus, the function

SC(∆) = log
(1 − W

W
(y1 + ∆, y2, · · · , yn)

)
− log

(1 − W

W
(y1, · · · , yn)

)

is our measure of sensitivity (Note that in order to make the constants cancel, the sample size
needs to remain constant under contamination).

Example 3. In the location case, a weight of evidence, optimal when averaging over the
whole sample space, has sensitivity

SC(∆) = log
(f(y1 − θ0 + ∆)

f(y1 − θ1 + ∆)

)
− log

(f(y1 − θ0)
f(y1 − θ1)

)
,

whether or not a single observation can provide overwhelming evidence is determined by whether
of not this is bounded, and this in turn is determined by the limiting behavior of log(f(x)) as
|x| → ∞. Suppose log(f(x)) ∼ −M |x|k for large values of |x| and for some k > 0. It then
follows that

log
(
f(y1 − θ0 + ∆)

) − log
(
f(y1 − θ1 + ∆)

) ∼ M
|∆|k
∆

k(θ0 − θ1).

The logarithm of the likelihood ratio under a large contamination is thus unbounded for k > 1,
tends to a constant for k = 1 and tends to zero when k < 1. The Gaussian distribution
for example has k = 2, exponential tails correspond to k = 1 and Weibull tails can have
k < 1. In the Gaussian case, one has SC(∆) = ∆(θ0 − θ1). Heavy-tailed distributions have
log(f(x)) ∼ −M log(|x|) and the corresponding log likelihood ratio under large contamination
tends to zero. The example shows that the weights of evidence derived from an assumed model
are as a rule sensitive to outlying observations, unless the model satisfies certain tail conditions.

Example 4. For the scale model, one has

SC(∆) = log
(f((y1 + ∆)/θ0)

f((y1 + ∆)/θ1)

)
− log

(f(y1 − θ0)
f(y1 − θ1)

)
,

With log(f(x)) ∼ −M |x|k for large values of |x|, we find

log
(
f((y1 + ∆)/θ0)

)
− log

(
f
(
(y1 + ∆)/θ1

)) ∼ M |∆|k(θ−1
1 − θ−1

0 ).
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The situation is even worse than in the location case in that all such distributions have an
unbounded sensitivity and one has to turn to heavy-tailed laws in order to obtain bounded
sensitivities.

The conditionally optimal weight of evidence are more difficult to analyze because the con-
stant of proportionality depends on the configuration and, of course, the configuration changes
between (y1 + ∆, y2, · · · , yn) and (y1, · · · , yn).

The sensitivities defined above can be formalized to an influence function for weights of
evidence, defined as the Gâteaux derivative of the functional corresponding to log((1−W )/W ).
For weights derived from the log likelihood, we have

1
n

log
(1 − W

W
(y1, · · · , yn)

)
= cte(n) +

1
n

n∑

i=1

ρF (yi, θ0) − 1
n

n∑

i=1

ρF (yi, θ1), (16)

where ρF (x, θ) = log(fθ(x)). The term of interest to us is, in functional form,

lw(G) =
∫ ∞

−∞
ρF (y, θ0)dG(y) −

∫ ∞

−∞
ρF (y, θ1)dG(y),

where G denotes the distribution of the observations. This quantity could be called the mean
information per observation from G in favor of Fθ0 and in disfavor of Fθ1 . In the particular
case, where G = Fθ0 , it coincides with Kullback’s information number. The Gâteaux derivative
of (18) in the direction of the Dirac measure ∆x is defined as the derivative with respect to t,
evaluated at t = 0, of lw((1 − t)G + t∆x) − lw(G) and is equal to

IF(x) = ρF (x, θ0) − lw(G).

Optimal weights of evidence subject to the condition of a bounded influence function have been
studied in Morgenthaler and Staudte[8].

Example 5. For Fθ(x) = Φ(x − θ), the Gaussian location model, one finds

IF(x) = (x − µG)(θ0 − θ1),

where µG denotes the mean of the distribution G.

3.2 Optimal Robust Weights of Evidence for Transformation Models

The study of influence and breakdown properties shows that methods derived from heavy-tailed
distributions are automatically resistant to outliers, gross errors and other wild values. In the
context of transformation models, it is therefore natural to consider families of possible models,
including heavy-tailed ones, and to derive optimal methods in this context. Morgenthaler and
Tukey[6] or Morgenthaler[7] give an introduction to related ideas. In the simplest such case we
consider two distributions, F and G, for EEE and two hypotheses θ0 and θ1 in Θ. Since we have
two distributions, we also have two likelihood functions, LF (θ) and LG(θ). Let 0 ≤ πF and
0 ≤ πG and consider the corresponding optimal weight WF or G that solves the problem

Minimize πF EF

(
(1 − W{θ1(EEE)})2) + πGEG

(
(1 − W{θ1(EEE)})2),

subject to EF (W 2{θ0(EEE)}) ≤ α and EG(W 2{θ0(EEE)}) ≤ α. (17)

Example 6. For the location model and sample size n = 1, this problem is equivalent to
the problem of minimizing with respect to W the integral

∫ ∞

−∞

((
πF f(y − θ1) + πGg(y − θ1)

)(
1 − W (y)

)2 +
(
λF f(y − θ0) + λGg(y − θ0)

)
W 2(y)

)
dy,
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subject to the constraints in (17). In this expression λF , λG are Lagrange multipliers. The
solution is

1 − WF or G(y)
WF or G(y)

=
λF LF (θ0) + λGLG(θ0)
πF LF (θ1) + πGLG(θ1)

, (18)

which for (πF , πG) = (1, 0) or = (0, 1) leads us almost back to (3), were it not for the fact that
both constraints in (17) must be satisfied. For n > 1, the same expression holds. Determining
the correct values of the Lagrange multipliers requires in general the numerical computation of
n-dimensional integrals.

This example shows that in a situation where, in addition to the unknown parameter value,
uncertainty about the underlying distribution is mixed in, the weighing of the evidence still relies
on a kind of likelihood ratio. The new “likelihood” is a mixture of the likelihoods included in
the model, with the mixing weights depending on the orbit of the data 〈yyy〉 and on user specified
weights πF , πG. Instead of a single Lagrangian constant, used to calibrate the weight of evidence
in order for it to have bounded type-I risk, there are now two such constants thus allowing the
weight to have bounded type-I risk under both distributions. A conditional version of (17) is

Minimize πF EF ((1 − W{θ1(EEE)})2) + πGEG((1 − W{θ1(EEE)})2),
subject to EF (W 2{θ0(EEE)}|〈yyy〉) ≤ α and EG(W 2{θ0(EEE)}|〈yyy〉) ≤ α, (19)

which describes a weight of evidence with good conditional properties when sampling from F
or from G.

Proposition 2. Suppose YYY = (Y1, · · · , Yn) is equal to θ(EEE) with EEE having an absolutely
continuous distribution, either equal to F or equal to G with densities f and g, respectively.
The parameter θ ∈ Θ is an element of a compact topological group of transformations of R

n

with left-invariant Haar measure µ. Based on a realization yyy of YYY , we wish to weigh the merits
of H0 : θ = θ0 and H1 : θ = θ1. The solution WF or G of (19) is of the form

1 − WF or G(yyy)
WF or G(yyy)

=
λF (〈yyy〉)LF (θ0) + λG(〈yyy〉)LG(θ0)

πF LF (θ1) + πGLG(θ1)
, (20)

where πF ≥ 0 and πG ≥ 0 are arbitrary, and λF (〈yyy〉) and λG(〈yyy〉) are the smallest positive reals
such that both ∫

Θ

WF or G(t(yyy))2LF (t−1θ0)dµ(t) ≤ mF (〈yyy〉)α

as well as the analogous inequality for G hold (see (11) for the definition of mF and mG).

Proof. We wish to minimize

EF
〈YYY 〉

{
πF EF,θ1

(
(1 − W )2|〈YYY 〉) + λF (〈yyy〉)EF,θ0(W

2|〈YYY 〉)}

+ EG
〈YYY 〉

{
πGEG,θ1

(
(1 − W )2|〈YYY 〉) + λG(〈yyy〉)EG,θ0(W

2|〈YYY 〉)}.

This can be written as an integral over A of

πF mF (〈yyy〉)EF,θ1((1 − W )2|〈yyy〉) + λF (〈yyy〉)mF (〈yyy〉)EF,θ0(W
2|〈yyy〉)

+ πGmG(〈yyy〉)EG,θ1((1 − W )2|〈yyy〉) + λG(〈yyy〉)mG(〈yyy〉)EG,θ0(W
2|〈yyy〉).

The optimal weight evaluated at 〈yyy〉 thus satisfies

1 − W

W
=

λF mF dνF,θ0(identity|〈yyy〉) + λGmGdνG,θ0(identity|〈yyy〉)
πF mF dνF,θ1(identity|〈yyy〉) + πGmGdνG,θ1(identity|〈yyy〉)

and the proposition follows from (10) and (11).



256 S. Morgenthaler, R.G. Staudte

Example 7. In this example we compare different weights of evidence for H0 : θ = 1 and H1 :
θ = 2 with θ being a scale parameter. The observed data are yyy = (0.554,−0.166, 4.116,−0.213,
−0.501). The data analyst who thinks that these observations were generated by a normal
distribution will find mnormal = 2.93 × 10−5 and a value of the weight of evidence equal to
Wnormal = 0.93. He or she will conclude that the evidence in favor of H1 is substantial.

Another data analyst, considering the data as being generated by a Cauchy distribution,
will conclude the opposite, since in this case, mCauchy = 4.00×10−4 = 43×mnormal and a value
of the weight of evidence equal to WCauchy = 0.06.

The weight (20) with π1 = π2 = 1 and using as possible generating distributions both the
Cauchy and the normal provides an intermediate compromise. In this case the analyst will find
Wnormal or Cauchy = 0.10, that is, relatively weak evidence in favor of H1. Since the weight of
the observed orbit is much larger in the Cauchy case then in the normal case, the compromise
favors the conclusion reached under the Cauchy scenario.

4 Conclusions

Weighing empirical evidence in favor or disfavor of a hypothesis is an archetypical statistical
problem to which many different solutions have been proposed. We studied this problem in
its simplest form, namely the comparison of two simple hypotheses, and by formulating it as
an estimation problem. The restriction of the weight to the interval [0, 1] is arbitrary, but
important when using the Lq loss function as we did. Not surprisingly, the optimal solution
turns out to be a function of the likelihood ratio. In the context of statistical models where
the parameter is an element of a transformation group, the same result holds, except that the
calibration of the weight of evidence is done conditionally on the ancillary statistic.

In the final section, we examined the robustness properties of such weights and showed that
optimal weights based on heavy-tailed distributions are less sensitive to outliers. This suggests
the use of models in which the shape of the error distribution is not completely determined,
but rather given by a range of possibilities. The optimal weights for such models were derived
in the paper.
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