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Abstract. The appearance of compartmentalization is recognized as a key step in biogenesis. The
study of the dynamical behaviour of amphiphilic close membranes at equilibrium or under some
external stress (osmotic pressure or dehydration process) can be useful in order to better elucidate
the role of vesicles in the origin of life and to get insight into the molecular and membrane properties
that bring to a spontaneous vesicle division. A Monte Carlo approach to simulate the evolution of
close membranes under an external stress will be presented. This approach is mainly based on the
accepted surface energy model introduced by Helfrich (1973) and Seifert (1997a). Some preliminary
results will be also illustrated and possible developments and limits of this method discussed.
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1. Introduction

The appearance of compartmentalization has been claimed by different authors
(Deamer and Oro’, 1980; Goldrach, 1958; Morowitz et al., 1988), as a key step
in biogenesis: the continuum of chemical processes that led from an essentially
random mixture of organic and inorganic molecules to the first assemblies recog-
nizable as living systems. The presence of a boundary that separates the inside from
the outside appears to be per se fundamental to individuate a living organism (Fleis-
chhaker, 1990) since all known life forms are cellular and each cell is separated
from the essentially aqueous outside environment by a thin bilayer water-insoluble
membrane composed of both lipid and protein (Singer and Nicolson, 1972). Then,
from the knowledge of contemporary living organisms it seems only reasonable to
include the self-assembly of amphiphilic molecules into bilayer membranes as an
essential step in the evolution of life on earth.

In most experimental conditions, amphiphilic molecules can self-assemble
spontaneously into spherical closed bilayered shells with only a small amount
of external work (for instance mild shaking) (Small, 1986). These aggregates
are called vesicles and they consist of a water pool encapsulated into a bilayer
membrane of lipids. They have flexible surfaces and can show a huge variety
of morphologies and topologies depending on the material properties and on the
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environment physicochemical parameters. Possible routes that bring from simple
molecules to the synthesis of amphiphiles able to form vesicles have been hy-
pothesized (Ourisson and Nakatani, 1999) and experimental works that show
evolutionary autocatalytic pathways from surfactant precursor molecules to this
aggregates in presumable prebiotic environments have also been published by Luisi
and coworkers (Bachmann, 1992; Blöchliger, 1998; Wick, 1995). Dehydration-
hydration cycles have been also proposed (Deamer and Barchfeld, 1982) as
mechanisms for the encapsulation of macromolecules or ions inside vesicle: during
drying vesicles flatten and fuse to form lamellar structures and then, when rehyd-
ration occurs, lamellae swell and disperse into large vesicles. Finally, experimental
conditions where a vesicle ancestor can split into two daughter aggregates with the
same topology have been reported (Döbereiner et al., 1993; Wick et al., 1995). In
this framework, the study of the dynamical behaviour of amphiphilic membranes
at equilibrium or under some external stress (osmotic pressure increase due to a de-
hydration process) can be useful in order to better elucidate the role of membranes
in the origin of life and to get insights into the molecular and membrane properties
that bring to a spontaneous vesicle fission, i.e. without involving complex proteins
as in modern cells.

2. Surface Energy of Lipidic Membranes

Helfrich was the first to point out the role of curvature in the description of ves-
icle conformation (Helfrich, 1973) by expressing the surface energy of a flexible
membrane in terms of the mean curvature (H), and Gaussian curvature (K):

E ≡ κ

2

∮
surface

(2H − c0)
2dA + κG

∮
surface

KdA , (1)

where A is the surface area, c0 is the spontaneous curvature and κ and κG are
the bending rigidity and the Gaussian bending rigidity respectively. The mean
curvature and the Gaussian curvature at a point on a surface are the average and
the product of the principal curvatures at that point, the principal curvatures being
the minimum and maximum curvatures of curves on the surface lying in planes
including the tangent vector at the given point. A spontaneous curvature c0 can
arise either from a different chemical composition of the two membrane layers, or
from different environments on both sides of the bilayer.

The surface energy together with constraints on the total area (assuming a fixed
number of lipids) and the enclosed volume (assuming no osmotic stress) defines the
spontaneous-curvature (SC) model. Therefore, neglecting effects due to convection
and thermal fluctuations, vesicles will acquire the shape that minimises the surface
energy at given constrains.

Seifert extended the theoretical work of Helfrich introducing the difference
between inner and outer layer areas (Döbereiner et al., 1997; Seifert, 1997a, b).
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During years, several works have been then published where Euler–Lagrange equa-
tions were analytically solved to find the best shape in quasi-equilibrium vesicular
systems under specific constrains (Kralj-Iglic et al., 1999; Seifert, 1997a; Seifert
and Wintz, 1996). One limitation of this approach is that it cannot handle systems
under strong stressing conditions, such as high osmotic pressure or long-range
deformation and, furthermore, the temporal evolution of membranes cannot be
addressed, but only minimum energy membrane conformations can be determined.

To follow the time evolution of many-particle systems, Molecular Dynam-
ics (MD) is normally used. This method is based on Newton dynamics and
semi-empirical force-fields that specify inter-molecular force laws. Although this
approach can provide atomic detailed descriptions of lipid membranes and it can re-
produces local bilayer properties (Goetz and Lipowsky, 1998; Lindahl and Edholm,
2000; Tieleman et al., 1997), it is computationally very expensive to be feasible
for studying a vesicle as a whole (Ben-Shaul, 1996; Tieleman et al., 1997) since a
very large amount of interacting molecules has to be taken into account. Another
problem is that MD can permit the investigation of the system time evolution in
the range of nanoseconds (Tieleman et al., 1997) that is a very short time scale
compared to vesicle conformation changes.

Recently, another possibility for studying the conformations of lipid vesicles has
been developed. By using a triangularized surface approach, the lipidic membrane
is represented at a mesoscopic level as a collection of vertices of connected tri-
angles and the curvature energy is minimized numerically by the gradient descent
method (Brakke, 1992) or by using a Monte Carlo approach (Brakke, 1992; Koibu-
chi and Yamada, 2000a, b). Koibuchi and Yamada adopted a simplified Polyakov’s
rigid string model (Polyakov, 1986) that worked out to be very efficient in ana-
lyzing the dynamics of flexible membranes (Brakke, 1992; Koibuchi and Yamada,
2000a, b). Furthermore, these authors introduced an approximate formula to estim-
ate the energy of triangularized surfaces that is computationally less expensive than
Equation (1). The surface energy was split into two contributions:

E = c1E1 + c2E2 , (2)

where the first term, called the area energy, depends on the size of the surface,
whereas the second one estimates the bending energy, c1 and c2 being two ad-
justable parameters. Two different pairs of expressions have then been proposed
and tested to estimate these two energetic contributions: the first based on the
triangle sides (edge):

E1 =
∑

surface

edge2 (3)

E2 =
∑
edge

(
1 − cos ϑedge

)
(4)
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and the second one, based on the triangle areas (Atr):

E1 =
∑

surface

Atr (5)

E2 =
∑

surface

1

Atr

3∑
i=1

edge2 (
1 − cos ϑedge

)
(6)

θ being the angle between the normal lines of two adjacent triangles. It is pos-
sible to demonstrate that the three formulae of the surface energy, Equations (1)
and (2) along with the definitions (3)–(6), are equivalent for an implemented
triangularization (Koibuchi and Yamada, 2000a).

Following this idea, we have developed a computer program based on a Monte
Carlo algorithm to simulate the time evolution of a close membrane that undergoes
conformation changes in order to minimise the surface energy under physical per-
turbations. In the next section, this program and the parameters needed to run in
silico experiments of vesicle transformations will be presented.

3. Setting Up In Silico Experiments

The use of a triangular mesh rather than a smooth and continuous surface permits
to reduce the calculation of geometrical properties, as for instance volume and
surface, into an easy and automatic task (Piotto, 2000). A triangulated surface
(trSurface) can be considered a suitable representation if surface integrals, analytic-
ally calculated on the continuous surface, are equal to summations over all triangles
within the expected accuracy. It should be clear that increasing the number of used
triangles can improve the calculation accuracy at the cost of increasing the com-
putational time. Working on a triangularized mesh Gaussian (K) and mean (H)

curvature can be also easily estimated (Piotto, 2000) and consequently the bilayer
surface energy can be evaluated and numerically minimised accordingly Helfrich’s
(Helfrich, 1973) or the Koibuchi’s (Koibuchi and Yamada, 2000b). Hamiltonians,
as reported in Equations (1) and (2)–(6), respectively.

The iterative MC procedure used to find the minimal energy conformation of
a given structure is the traditional Metropolis Method (Metropolis et al., 1953). It
simply consists in randomly changing the state of the system, i.e. the position of
some vertices of the triangularized surface, and storing the new conformation if
its energy (E2) is less than before (E1). When the energy results are to be higher,
the new conformation will be accepted or rejected if an acceptance probability law
(P = exp[−(E2 − E1)/kBT ]) is randomly satisfied, where T is temperature and
kB the Boltzman’s constant. The acceptance condition is verified if generating a
pseudo-random number u, uniformly distributed between 0–1, will result u < P .
Whereas a Monte Carlo procedure can be computationally very expensive to con-
verge to the minimal energy conformation, an obvious advantage is its robustness
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and the wide range of membrane transformations that can encompass. Given a
trSusface oscillating around the surface energy minimum conformation, an external
perturbation can be simulated opportunely modifying the expression of the surface
energy. In the case of an external osmotic stress an additive energetic contribution
EV has to be considered in the definition of energy:

E ≡ κ

2

∮
surface

(2H − c0)
2dA + κG

∮
surface

KdA + Ev (7)

or

E = c1E1 + c2E2 + EV . (8)

According to Seifert (Seifert, 1997a), this osmotic energetic term can be approx-
imated as follows:

Ev ≈ RTcV0

2

(
V

V0
− 1

)2

, (9)

where R is the gas constant, V is the volume of the vesicle and c is the concentra-
tion of molecules caught within the vesicle. Subscript 0 indicates the equilibrium
value.

It is worthwhile to mention that the second term on the right side of Equation
(7) is constant for a given topology and then it can be neglected for any vesicle
transformation at constant genus (Seifert, 1997a).

The osmotic perturbation can be introduced by suddenly setting V0 � V (os-
motic shock) or more smoothly imposing a linear decrease of V0 with time (slow
dehydration). The energy minimization can be then performed setting different
constrains, for instance keeping the vesicle surface A constant along with the
spontaneous curvature c0 and/or the reduced volume that is the ratio between the
vesicle volume and the volume of a sphere of equal surface. In Figure 1 a diagram
of some possible in silico experiments of vesicular evolution at constant topology
is illustrated.

To perform all these kind of simulations we developed a C++ object-oriented
computer program called EM-solv. This program has been compiled and linked
to the AVS/Express graphical libraries that supply all the necessary graphic tools
for the real time visualization of the simulations. Triangularized surfaces of any
topology can be easily imported from input data files or automatically generated
by using a friendly graphical user interface. A wide variety of geometrical surface
properties can also be calculated and it is possible to set parameters to simu-
late stress conditions and analyse the MC evolution of the system in real time.
Moreover, EM-solv can export simulation outcomes in the most common graphic
data file formats and produce compressed videos as well. All the algorithms and the
data structures implemented in EM-solv have been designed and optimized for the
simulation of flexible membranes (Piotto and Mavelli, 2003). EM-solv has been
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Figure 1. Scheme of the in silico experiments: different simulation types reported along with the
required constrains and physical meanings.

firstly tested on a set of transformations with fixed topology in order to validate
the method and to evaluate the best set of parameters to investigate dynamics and
division of vesicles in prebiotic conditions. All the parameters needed to start a
simulation are listed in Table I. It should be stressed that running in silico experi-
ments requires the same attentions of test-tube experiments, since only an accurate
choice of parameters can lead to successful results. It is worth to mention that
the symmetry of the initial triangularized vesicle is critical in determining the
convergence time of the algorithm. Whereas a nonsymmetrical vesicle converge
to the conformation corresponding to a minimum of energy in tens of iterations, a
high symmetrical surface (sphere like) does not converge even after thousands of
iterations.

4. Results

Herein the attention will be focused on a spherical vesicle that undergoes an os-
motic perturbation, i.e. a fixed topology transformation with the only constrains of
constant surface. The adopted surface energy will be the Koibuchi and Yamada’s
formula defined by Equations (8), (5), (6), and (9). Simulation results obtained
using Equation (7) will be not illustrated, since they are substantially in agreement
with those shown. The target systems are vesicles of POPC (palmitoyl-oleoyl-
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Figure 2. Relaxation of a 200 nm diameter vesicle undergoing an external osmotic stress. A smooth
variation of the external aqueous ionic strength corresponds to a smooth deflation of the triangular
vesicle, on top. The case of an osmotic shock is shown on bottom. The colour map of the surface
mean curvature shows the roughness difference between the two cases.

phosphatidylcholine), and oleic acid/oleate, since they have been extensively
studied (Blöchliger, 1998; Wick et al., 1995) as prototypes of minimal cells. The
most remarkable aspect of the simulation is that the time evolution of triangularized
vesicles accurately represents the experimentally observed dynamics of real vesi-
cular systems such as oleate/oleic acid giant vesicles (Blöchliger, 1998; Wick et
al., 1995). In fact, spheres or ellipsoids can only roughly approximate real vesicles
because, even if these shapes correspond to the optimal equilibrium structures,
thermal fluctuations and convective motions continuously perturb them. Moreover,
the osmotic energy term, Equation (9), can strongly perturb the vesicle geometry
because of the different energy scale of the osmotic and the surface contributions
(Seifert, 1997a). When the osmotic term Ev in Equation (8) vanishes the energy
area E1 and the bending energy E2 are responsible for the smoothness of the
membrane, vice versa in presence of an osmotic stress a variety of morphologies
can appear since, in some cases, Ev can overcome of some orders of magnitude the
first two contributions. Consequently the smoothness of the membrane is not guar-
anteed and geometrically highly stressed conformations can appear. Figure 2 shows
two relaxation paths of a vesicle of approximately 200 nm in diameter undergoing
an osmotic shock (far from equilibrium process), on bottom, or a gently osmotic
stress (quasi-equilibrium process), that simulates a slow dehydration process, on
top.
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Figure 3a. Surface Energy and Volume time evolution of a 200 nm diameter vesicle undergoing to a
gently osmotic stress: quasi-equilibrium process.

The surface energy and volume diagrams versus time are reported in Fig-
ures 3a, b.

When the osmotic energy is comparable with the area and the bending en-
ergy the vesicle remains always in a quasi equilibrium state: its surface energy
increases slowly as a consequence of the osmotic stress and conversely its volume
decreases regularly up to the equilibrium value, see Figure 3a. Throughout the time
evolution the vesicle does not show high curvature regions. These results confirm
the supposed large molecule encapsulation mechanism (Deamer and Barchfeld,
1982) based on dehydration-hydration cycles showing as during a slow dehydration
vesicles tend to flatten.

On the other hand, if the osmotic energy is much larger than the area and the
bending energy (osmotic shock), the vesicle deflates rapidly (see Figure 3b) and
the membrane appears rough and inhomogeneous. In this region, conformations
with high bending energy appear, and in some cases higher genus structures can be
formed. In these conditions, the vesicle fission process can occur. Moreover, if the
osmotic perturbation exceeds the mechanical limits of the membrane, the vesicle
can collapse.

5. Conclusions

Monte Carlo simulations of triangulated vesicles worked out to be an extremely
powerful tool to investigate vesicle transformations. The main achievement of this
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Figure 3b. Surface Energy and Volume time evolution of a 200 nm diameter vesicle undergoing an
osmotic shock: far from equilibrium process.

approach is to account for the hugely different behaviour of vesicles in quasi-
equilibrium states or in far from equilibrium conditions. In the first case vesicle
dynamics consists in fluctuations around a minimal energy conformation and the
simulation results are in good qualitative agreement with the analytical approach
due to Helfrich and Seifert. On the other hand, far from equilibrium processes can
be also studied by means of MC simulations, and the formation of high bending
energy structures can be also elucidated as a consequence of a strong perturba-
tion. In the present work we illustrated a simulation of lipid vesicles undergoing
an osmotic stress due to a slow or a quick evaporation, in order to simulate the
behaviour of vesicles in a prebiotic water pool. The method can be extended to
analyse transformations of membranes with varying spontaneous curvature c0 and
vesicular aggregates with different topology.

Furthermore, the knowledge of surfactant molecular properties can be used
to parameterize triangulated membranes, and consequently to help the design of
vesicular systems composed of mixed amphiphiles capable to show complex cellu-
lar behaviours, like divisions, channels formation, and invaginations, triggered by
simple chemical-physical perturbations.
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