
Comput Optim Appl (2007) 36: 321–341
DOI 10.1007/s10589-006-9003-y

Matching-based preprocessing algorithms to the
solution of saddle-point problems in large-scale
nonconvex interior-point optimization

Olaf Schenk · Andreas Wächter ·
Michael Hagemann

Published online: 22 February 2007
© Springer Science+Business Media, LLC 2007

Abstract Interior-point methods are among the most efficient approaches for solving
large-scale nonlinear programming problems. At the core of these methods, highly
ill-conditioned symmetric saddle-point problems have to be solved. We present com-
binatorial methods to preprocess these matrices in order to establish more favorable
numerical properties for the subsequent factorization. Our approach is based on sym-
metric weighted matchings and is used in a sparse direct LDLT factorization method
where the pivoting is restricted to static supernode data structures. In addition, we
will dynamically expand the supernode data structure in cases where additional fill-
in helps to select better numerical pivot elements. This technique can be seen as an
alternative to the more traditional threshold pivoting techniques. We demonstrate the
competitiveness of this approach within an interior-point method on a large set of test
problems from the CUTE and COPS sets, as well as large optimal control problems
based on partial differential equations. The largest nonlinear optimization problem
solved has more than 12 million variables and 6 million constraints.

Keywords Nonconvex nonlinear programming · Interior-point method ·
Saddle-point problem · Numerical linear algebra · Maximum weight matching

O. Schenk (�) · M. Hagemann
Departement of Computer Science, University of Basel, Klingelbergstr. 50, 4056 Basel,
Switzerland
e-mail: olaf.schenk@unibas.ch

M. Hagemann
e-mail: michael.hagemann@unibas.ch

A. Wächter
IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
e-mail: andreasw@watson.ibm.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159154258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

322 O. Schenk et al.

1 Introduction

In recent years, a large amount of work has been devoted to the problem of solving
large symmetric indefinite systems in saddle-point form efficiently. One reason for
this surge in interest is due the success of interior-point methods in nonlinear pro-
gramming, which at their core require the solution of a series of linear systems in
saddle-point form. Consider a nonlinear programming problem given by an objective
function f (x) : Rn → R and constraint functions c(x) : Rn → R

m, which are both as-
sumed to be twice continuously differentiable. The objective is to find a local solution
of the optimization problem

min
x∈Rn

f (x) (1.1a)

s.t. c(x) = 0, (1.1b)

x ≥ 0. (1.1c)

For simplicity in the notation we assume without loss of generality that all variables
have only a lower bound. Also note that problems with general inequality constraints
can be transformed into the above formulation by introducing slack variables.

In an interior-point optimization framework, the solution of (1.1) is found by a se-
ries of Newton-type iterations that require in each step the solution of a linear system
of equations of the form

Kx =
[

H A

AT −C

]
x = b (1.2)

where the n × n matrix H is symmetric and potentially indefinite, C is a diagonal
regularization matrix which is typically small and often zero, and the n × m matrix
A has full column rank. See Sect. 2 for a detailed description of these matrices. For
a detailed survey on solution techniques for large linear saddle-point systems the
interested reader should consult [2].

Commonly, sparse direct factorization methods for symmetric indefinite systems
are used to solve (1.2). These methods compute, for example, sparse Bunch–Kaufman
[6] or Duff–Reid [14] factorizations

K = PQLDLT QT P T (1.3)

where Q is a pivoting permutation matrix used for numerical stability, P is a fill-in
minimization permutation matrix, L is unit lower triangular, and D is a block diag-
onal matrix with blocks of dimension 1 and 2. Unfortunately, until recently, sparse
symmetric indefinite factorization methods were relatively inefficient compared to
symmetric positive definite solvers [22]. However, with the invention of fast combi-
natorial algorithms [11, 36], which improve the diagonal dominance of the linear sys-
tems, the situation has dramatically changed. The use of matching-based preprocess-
ing steps for (1.2) leads to symmetric indefinite sparse direct solvers that are almost
as efficient as their positive definite counterparts. The key idea is to transform the
matrix K in (1.2) into

K̂ = PMDsKDT
s P T

M, (1.4)

Matching-based preprocessing algorithms to the solution of saddle-point problems 323

such that the permuted system has a greater block-diagonal dominance than the origi-
nal matrix, and to use factorization methods that honor the block-diagonal dominance
of (1.4). Here, PM is a permutation matrix that permutes large-off diagonal entries
to be close to the diagonal, and the diagonal matrix Ds is a scaling matrix such that
both columns and rows of K̂ have unit infinity-norm.

The paper is organized as follows. Section 2 provides background on interior-
point methods and discusses the requirements for factorization algorithms to solve
(1.2). We briefly review the supernodal factorization approach for the direct solution
of saddle-point matrices in Sect. 3. The matching algorithms used to reorder the ma-
trix before the factorization are discussed in Sect. 4. Section 5 introduces the test
problems and gives various performance statistics and comparisons of the proposed
methods.

2 Optimization algorithm

Over the past ten years, a number of primal–dual interior-point methods for general
nonlinear continuous optimization problems, such as (1.1), have been proposed (see
[19] for a comprehensive survey). They can be derived in roughly two different ways,
which we outline in the following. We contrast the two approaches in order to em-
phasize the importance of a proper handling of the nonconvex case.

The more recent point of view was developed in the 1980’s, initially for problems
in which f (x) and c(x) are linear. Here, the perturbed primal–dual equations

∇f (x) + ∇c(x)λ − z = 0, (2.1a)

c(x) = 0, (2.1b)

XZe − μe = 0 (2.1c)

play a central role. The vectors λ and z are the Lagrangian multipliers for the equality
and bound constraints, and X and Z denote the diagonal matrices with the vector
elements of x and z on the diagonal. The vector e denotes the vector of all ones,
i.e., e = (1, . . . ,1)T , of appropriate dimension. For μ = 0, Eqs. (2.1) together with
“x, z ≥ 0” are the first-order optimality conditions for (1.1). Methods in this class
obtain a point satisfying those conditions by applying Newton’s method to (2.1),
where μ takes on strictly positive values, and, in a homotopy approach, is eventually
driven to zero. The steps are obtained from

[
Wk Ak −I

AT
k 0 0

Zk 0 Xk

](
�xk

�λk

�zk

)
= −

(∇f (xk) + Akλk − zk

c(xk)

XkZke − μke

)
. (2.2)

Here Ak = ∇c(xk), and Wk denotes the Hessian of the Lagrangian function for (1.1)
w.r.t. x. Once a step has been computed, an appropriate step size is chosen that among
other things ensures that non-negativity conditions (x, z > 0) are satisfied for each
iterate. Using the fact that the Jacobian of the system of Eq. (2.1) is non-singular at
a non-degenerate local solution (x∗, λ∗, z∗) of (1.1), it is possible to derive methods
that converge superlinearly toward (x∗, λ∗, z∗); see, e.g., [23].

324 O. Schenk et al.

A number of methods have been proposed that apply the primal–dual strategy as
outlined above directly to nonlinear optimization problems (e.g., [15, 40]). Progress
towards the solution is ensured by monitoring the norm of the optimality conditions
((2.1) with μ = 0) and driving it to zero. While this is appropriate for problems where
every solution of (2.1) is a solution for (1.1) (for example, when (1.1) corresponds to
a convex optimization problem), we believe it is not suitable in the general nonconvex
case. In a sense, these methods ignore the optimization aspect of the problem, and re-
duce the algorithm to finding a root of the optimality conditions. However, in practice,
this can easily lead to convergence to stationary points that are not minimizers.

A different point of view of interior-point methods, originating from research di-
rectly for general nonlinear optimization problems, has been discussed and analyzed
in detail by Fiacco and McCormick [16] in the 1960s. Given the original problem in
the form (1.1), a sequence of corresponding barrier problems,

min
x∈Rn

ϕμ(x) = f (x) − μ

n∑
i=1

ln
(
x(i)

)
(2.3a)

s.t. c(x) = 0, (2.3b)

is solved to increasingly tighter tolerances, while again the barrier parameter μ is
driven to zero. Here, it is possible to use techniques (for the solution of the individual
barrier problems) that have been developed for general (nonconvex) optimization,
such as SQP-type methods. In particular, we may use globalization approaches that
have been proposed to handle the case where not all stationary points satisfying the
first order optimality conditions are local minimizers. In the following, we restrict
our discussion to line search algorithms, such as the one implemented in IPOPT [41],
the code used for the numerical results presented in Sect. 5.

The search directions are obtained from solving the linear system
[

W̃k Ak

AT
k 0

](
�xk

�λk

)
= −

(∇ϕμ(xk) + Akλk

c(xk)

)
, (2.4)

where W̃k is an approximation of the Hessian of the Lagrangian for the barrier prob-
lem (2.3). One can show that these steps, together with

�zk = μX−1
k e − zk − Σk�xk, (2.5)

correspond to solutions of (2.2), if W̃k = Wk + Σk with Σk = X−1
k Zk . Therefore, at

least close to the solution, the algorithms derived from both points of views are very
similar, and fast local convergence can be achieved by either.

However, the crucial difference between the two classes of algorithms lies in how
they behave when the iterates are not close to a solution. SQP-type method use glob-
alization techniques based on a merit function or a filter method (the approach used
in IPOPT, see [42] for details). Here, it is crutial that the search directions gener-
ated from (2.4) have appropriate descent properties to guarantee that progress can
be made for the globalization framework, so that overall convergence to non-optimal
stationary points is less likely or can be avoided. To ensure this, SQP-type line search
methods usually require that the projection of W̃k (or a modification thereof) onto

Matching-based preprocessing algorithms to the solution of saddle-point problems 325

the null space of AT
k is positive definite, or, equivalently, that the matrix in (2.4) is

non-singular and has exactly m (the number of constraints) negative eigenvalues [35].
In contrast to this, a method that uses the unmodified Hessian matrix in (2.2) might

generate steps that are increasing the objective function even for arbitrarily small
step sizes, if the current iterate is feasible and the projection of W̃k is indefinite. We
therefore strongly believe that it is desirable to include the fact that one is dealing
with a minimization problem in the design of an optimization method for nonconvex
optimization.

2.1 Requirements for direct solvers

A number of algorithms for the factorization of indefinite symmetric systems provide
information about the inertia of the factorized matrix on the fly, e.g., [6]. In the context
of an SQP-type line search optimization method it is therefore possible to ensure the
required descent properties by performing a “trial” factorization for systems of the
form (2.4), where the matrix W̃k is modified according to some heuristics, until the
inertia of the matrix is correct.

The method implemented in IPOPT is a primal–dual interior-point algorithm that
generates iterates for the variables, (xk, λk, zk), using steps from the linear system
(2.2), but for the reasons just given, instead of solving this nonsymmetric system
directly, it solves a “regularized” form of (2.4), namely,

[
Wk + Σk + δxI Ak

AT
k −δcI

](
�xk

�λk

)
= −

(∇ϕμ(xk) + Akλk

(̧xk)

)
, (2.6)

and obtains the search direction for the bound multipliers from (2.5). The perturbation
parameter for the Hessian, δx ≥ 0, is chosen to ensure that the matrix in (2.6) has
the correct inertia, and that therefore the search direction has the required descent
properties. In addition, a small perturbation parameter δc ≈ 10−8 might be chosen
in case the matrix Ak appears to be column rank-deficient, to ensure that the matrix
in (2.6) is non-singular. The heuristic for choosing δx and δc implemented in IPOPT

is described in [41]; it usually attempts first to work with δx = δc = 0 to obtain the
pure primal–dual Newton direction for fast convergence, and only if the inertia is not
correct with this choice are other values tried.

Another approach for modifying the Hessian matrix is to use an inertia controlling
factorization method (see, e.g., [17]), which modifies the matrix on the fly during the
factorization and ensures the desired descent properties.

Using an iterative solver for the computation of a good search direction from (2.2)
or (2.6) appears difficult, since it seems not possible to ensure the required descent
properties. A hybrid approach has been used in trust-region algorithms (see, e.g., [7]),
where a matrix of the form (2.4), with W̃k replaced by Σk , is factorized and used to
compute the feasibility component of the search direction, and an iterative method,
working in the null space of the constraint Jacobian, is used to compute the remaining
component [7]. If the inertia of the linear system is not correct, this iterative procedure
will encounter directions of negative curvature, which now can be exploited explic-
itly, so that a good descent search direction is obtained. Other iterative procedures for
the solution of saddle point problems have been proposed, but they usually require

326 O. Schenk et al.

either the matrix H in (1.2) to be positive definite, at least in the null space of AT

(e.g., [3, 21]), or C to be non-singular (e.g., [18]).
However, in this work we use Level-3 BLAS supernodal left-looking direct solver

and we investigate various pivoting strategies based on weighted graph matchings.

3 Supernodal factorizations methods

We use a Level-3 BLAS supernodal left-looking factorization as described in [27, 33,
38] and discuss two additional pivoting techniques for symmetric indefinite systems
that are described below. The first pivoting technique has also been used in [38]—the
second variant is novel and is used to improve the accuracy.

3.1 Pivoting variant I: supernodal Bunch–Kaufman

An interchange among rows and columns of a supernode of diagonal size ns , referred
to as Supernode-Bunch–Kaufman (SBK) pivoting, has no effect on the overall fill-in
and this is the mechanism for finding a suitable pivot in our SBK method. However,
there is no guarantee that the numerical factorization algorithm would always succeed
in finding a suitable pivot within a diagonal block related to a supernode. When the al-
gorithm reaches a point where it cannot factor the supernode based on the previously
described 1 × 1 or 2 × 2 pivoting, it uses the pivot perturbation strategy described
in [38]. The magnitude of the potential pivot is tested against a constant threshold of
ε · ‖A‖1, where ε is the square root of the machine precision. If the pivot is smaller,
it is set to sign(aii) · ε · ‖A‖1—this perturbation trades off some numerical stability
for the ability to keep the pivots from getting too small. The result of this pivoting
approach is that the factorization is, in general, not accurate and iterative refinement
might be necessary.

1. γ1 := |ar1| = maxk=2,...,ns
|ak1|

with diagonal block of size ns

2. γr ≥ γ1 is the magnitude of the largest
off-diagonal in the r−row of the block

3. if max(|a11|, γ1) ≤ ε · ‖A‖1:
4. use pivot perturbation:

ã11 = sign(a11) · ε · ‖A‖1
5. use perturbed ã11 as a 1 × 1 pivot.
6. else if |a11| ≥ αγ1 :
7. use a11 as a 1 × 1 pivot,
8. else if |a11| · γr ≥ αγ 2

1 :
9. use |a11| as a 1 × 1 pivot,

10. else if |arr | ≥ αγr :
11. use |arr | as a 1 × 1 pivot,
12. else

13. use

(
a11 ar1
ar1 arr

)
as a 2 × 2 pivot.

Fig. 1 Supernode Bunch–Kaufman pivot selection with half-machine precision perturbation

Matching-based preprocessing algorithms to the solution of saddle-point problems 327

Figure 1 describes the usual 1 × 1 and 2 × 2 Bunch–Kaufman pivoting strategy
[6] within the diagonal block corresponding to a supernode of size ns . The pivoting
strategy is supplemented with half-machine precision perturbation techniques. The
Bunch–Kaufman pivoting method computes two scalars γ1 and γr . The scalar γ1
is the largest off-diagonal element, e.g., |ar1|, in the first column of the diagonal
block corresponding to the supernode of size ns . The scalar γr is the largest off-
diagonal element in the corresponding row r . The scalar α = (

√
17 + 1)/8 is chosen

to minimize the element growth [6]. With this choice, the element growth in the
diagonal block after k steps is bounded by the factor (2.57)k−1. The algorithm than
selects either 1 × 1 and 2 × 2 pivots for the factorization. If both |a11| and |γ1| are
too small, e.g., smaller than ε · ‖A‖1, we apply the pivot perturbation technique as
described above.

3.2 Pivoting variant II: use all preselected 2 × 2 pivots

The 1 × 1 and 2 × 2 pivoting search of the SBK method is applied within the block
diagonal of a supernode. In the extreme case, the supernode exists of only one column
and the SBK pivoting can degenerate to diagonal pivoting. Therefore any permutation
that symmetrically permutes large-off diagonal entries close to the diagonal or that
identifies suitable 2 × 2 pivots prior to the numerical factorization would further im-
prove the accuracy. In Sect. 4, we will discuss these permutations which are based on

(a) Matrix K (b) Factor L with six supernodes

(c) Zero elements in K to increase (d) Factor L with five supernodes
supernode size

Fig. 2 a and b Matrix and factor of supernodal Bunch–Kaufman pivoting with supernodes
{(1), (2), (3), (4,5), (6), (7,8)}. b and c Matrix and factor of preselected 2 × 2 pivots with additional
zero elements and supernodes {(1,2), (3), (4,5), (6), (7,8)}

328 O. Schenk et al.

combinatorial graph algorithms. The strategy in Sect. 4 results in permutation matri-
ces that, if applied to (1.2), provide a permuted system K̃ of the saddle-point system
K such that good initial 2 × 2 diagonal pivots are found prior to the numerical fac-
torization. In order to enforce the use of these preselected pivot blocks during the
LDLT factorization, we merge the 2 × 2 column structure in L in such a way that
these initial 2 × 2 pivot structure is maintained in the factor L.

This is illustrated in Fig. 2. In the pivoting variant I we will restrict the pivoting
search within diagonal-blocks of the supernodes as shown in Fig. 2 (a) and (b). In
the pivoting variant II we will identify 2 × 2 and enforce the use of these preselected
pivot blocks by adding additional zero elements to the structure of K . As a result,
the size of the supernode increases, e.g. we will merge column/row 1 and 2 into one
supernodes of size 2, in which a 2×2 Bunch–Kaufman pivoting is performed instead
of two 1 × 1 diagonal pivot elements.

4 Symmetric matchings for a-priori pivoting

Matching algorithms work on the associate graph representations of the matrices. In
our case, the algorithms work on the bipartite graph GA = (Vr ,Vc,E), where Vr

and Vc are vertex sets of cardinality nK (where nK is the size of the matrix K),
representing the rows and columns of the matrix respectively, and E = {(i, j) |
aij �= 0} is the set of edges connecting the vertices in Vr and Vc .

A matching M in GA is, in general, a subset M ⊆ E with the property that each
vertex v ∈ {Vr ∪ Vc} is at most incident to one edge in e ∈ M. If every vertex v

is incident to exactly one edge in M, the matching is called a perfect matching.
A maximum weight matching is a matching whose matched edges e ∈ M maximize
a weight function w(·), with

w(M) =
∑

(i,j)∈M
(S)ij (4.1)

where S is a weight coefficient matrix for the edges of K , with S = K as a simple
case. The problem of finding it is known as the linear sum assignment problem or
bipartite weighted matching problem. In general, the weight function (4.1) does not
define a unique matching. In our case we are interested in a perfect maximum weight
matching, i.e., a matching with maximum weight under the condition that all rows
and columns are matched. If such a matching does not exist, the matrix is structurally
rank deficient. Furthermore, we want to avoid small or zero entries in the matching.
Therefore we apply a simple logarithmic transformation to S, with Sij = log |Kij |
which yields a maximum product matching.

The use of combinatorial techniques in the solution of indefinite linear systems
goes back to the early eighties. Duff [9] introduced a matching method to permute
non-zero entries of the matrix onto the diagonal. Olschowka and Neumaier [36] pro-
posed to use maximum weight matchings as a form of a-priori pivoting. The first
implementations of this idea for nonsymmetric sparse matrices were provided by
Duff and Koster [12] and Gupta and Ying [24].

Gilbert and Duff [11] were the first to introduce an algorithm that maintains sym-
metry for symmetric indefinite problems. They proposed to form 2 × 2 diagonal

Matching-based preprocessing algorithms to the solution of saddle-point problems 329

pivots based on the information gathered through symmetrized maximum weight
matchings. The matchings were symmetrized by examining the cycle structure of
the matching and splitting cycles of length longer than two. Since then, several au-
thors have conducted research in this area. Duff and Pralet [13] elaborate the idea
from the original talk and compare various strategies. Schenk and Gärtner combine
the matching approach with restricted Bunch–Kaufman [38] pivoting in supernodes,
to improve performance and parallelism. Furthermore Hagemann and Schenk inves-
tigate preconditioning techniques based on weighted matchings in [25]. In this report,
we build on the results in [38], and introduce a novel technique to determine sym-
metric weighted matchings in saddle-point systems of the form (1.2).

The basic idea of the symmetric a-priori pivoting is to form 2 × 2 diagonal blocks
based on the matched off-diagonal entries of the matrix. In order to find diagonal
2 × 2 blocks, we ideally want a symmetric matching of maximum weight, i.e., a
matching of maximum weight where (i, j) ∈ M ⇔ (j, i) ∈ M. Given the matching,
the corresponding permutation PM, which reorders the off-diagonal matched entries
(i, j) and (j, i) into 2 × 2 diagonal blocks, only needs to order nodes i and j con-
secutively. This is illustrated in Figs. 3 (a) and (b). Furthermore, since we factorize
the reordered matrix, we also want to minimize the fill-in by applying a fill-reducing
reordering like METIS [26]. In order to maintain the diagonal block structure, we
compress the matrix by merging the structure of the rows and columns belonging to
a 2 × 2 diagonal block. See Fig. 3 (c) for an illustration. This yields the reordering P ,
which depends on M and PM. It has been shown that this combination can be very

(a) Illustration of Ms in K (b) PMKPT
M

(c) Compressed 5 × 5 matrix

Fig. 3 a Symmetric matching Ms with the 2-cycles {(1,6)(6,1)}, {(3,7)(7,3)} and {(5,8)(8,5)}. b Re-
ordered matrix. c Compressed graph

330 O. Schenk et al.

cost effective, because the compressed graph is only of dimension n, which often
significantly reduces the runtime of METIS [25].

Duff and Pralet [13] showed that the problem of finding symmetric maximum
weight matchings in a symmetric matrix is equivalent to finding a non-bipartite
matching. Since these general matching algorithms are much more expensive than bi-
partite matching algorithms, the symmetric maximum weight matchings are typically
only approximated. In the following we describe two such approximation techniques.

4.1 Matching variant: complete matching in K and symmetrization

The idea introduced in [11] is to determine a bipartite maximum weight matching of
the matrix, and to symmetrize it based on the cycle structure of the matrix. This is
necessary, because maximum weight matchings in symmetric bipartite graphs are in
general not symmetric. In terms of the cycle structure, a matching M is symmetric,
iff it only contains cycles of length one or two. Longer cycles are composed of entries
that do not have “symmetric” counterparts. This is illustrated in Fig. 4. The matching
M contains a cycle of length three with the entries ((3,7), (7,4), (4,3)). There are
three possibilities to split this cycle into a 1-cycle and a 2-cycle. This corresponds to
choosing one diagonal entry in the matrix: (3,3), (4,4) or (7,7). In Fig. 4, (4,4) was
chosen as the singleton cycle, and entry (7,3) is included into the matching to make
it symmetric. See [13, 38] for a more detailed examination of splitting approaches.

(a) Find matching M and cycles (b) Choose splitting of cycles
longer than two

(c) Symmetrized matching

Fig. 4 After a matching is found, the cycle structure is examined, and cycles of length longer than two
are split. The gray areas are not accessed in the respective step

Matching-based preprocessing algorithms to the solution of saddle-point problems 331

The matching algorithm also provides, as a byproduct, a row scaling Dr and a
column scaling Dc. These vectors are the dual variables from the corresponding
minimization problem of the maximum product matching. The scaling can be sym-
metrized if the matrix is symmetric:

Ds = √
Dr · Dc. (4.2)

With this scaling, both the columns and the rows have unit infinity-norm. Further-
more, all matched entries are guaranteed to have an absolute value of one:

∣∣(DsKDT
s)ij

∣∣ is

{= 1 if (i, j) ∈M,
≤ 1 otherwise.

(4.3)

This kind of scaling is considered optimal for factorizations [32].
The downside of this combinatorial approach is that the maximum weight bipartite

matching can be relatively expensive. The runtime of the algorithm is in the order of
O(nK(τ + nK) lognK), where τ is the number of non-zero entries in the matrix. Al-
though, in practice it has been observed that it behaves more as O(nK) [38]. However,
depending on the structure of the matrix, the matching can dominate the runtime of
the linear solution step. Therefore we examine another approach, which determines
an approximate symmetric matching by taking the symmetric block structure of the
problem into account.

4.2 Matching variant: constraint matching in AT

If we focus on finding favorable 2 × 2 diagonal pivots and assume that only diagonal
entries are matched in H , we can approximate a global symmetric maximum weight
matching by determining a row-perfect maximum weight matching in the constraint
block AT only. Expanded to the whole matrix, the corresponding entries in A are
matched as well, and the matching is completed with diagonal entries from H . See
Fig. 5 for an illustration. With the notation M(i) = j , if (i, j) ∈ M, and using MA

to denote the maximum product matching in AT , we can write

Ms(i) :=
{

j + n if (j, i) ∈MA,
j if (i − n, j) ∈MA,
i otherwise.

PM is then constructed as in the previous section. This approach yields a good selec-
tion of 2 × 2 pivots and nicely scaled blocks A and AT (as in (4.3)), but the scaling
of the entries in H is as yet not accounted for. This is achieved by scaling AT before
the matching.

In the following we denote the scaling vectors acquired by the matching of AT as
uA ∈ R

m for the row scaling, and vA ∈ R
n for the column scaling for AT . The global

scaling is denoted as Ds as in (1.4). The individual entries of these scaling vectors
are identified in parentheses. Before we determine a maximum product matching
in AT , we scale its columns by the reciprocals of the infinity-norms of the respective
columns in H , which are larger than one:

v̂A(i) = 1/max
(
1,‖H(:, i)‖∞

)
, i = 1, . . . , n.

332 O. Schenk et al.

(a) Match rows in scaled (b) Expand matching in A and
constraint block AT unmatched rows and columns of H

Fig. 5 Steps for constraint matching. The gray areas are not referenced in the respective step

This ensures that all values in the scaled matrix have a magnitude of at most one.
Since all matched entries in AT are scaled to one, too, and the column scalings vA of
unmatched columns are not decreased by the matching algorithm, this also ensures
that all matched entries in H are scaled to one (see condition (4.3)), if we define

Ds(i) =
{

vA(i)v̂A(i) for i ≤ n,
uA(i − n) for i > n.

In the actual implementation, vA and v̂A are the same vector, and vA is changed
during the matching process.

By matching in AT it is possible to detect certain structural rank deficiencies,
which can, for example, stem from redundant constraints in the optimization problem
formulation. This information could potentially be helpful for the determination of δc,
or for the complete elimination of the respective constraint conditions, but as yet we
have not investigated these possibilities.

5 Numerical experiments

In this section we present a number of numerical results to explore the robustness
and efficiency of different direct linear solvers within the interior point code IPOPT.
The solvers used for the comparisons is the PARDISO solver with the different order-
ing strategies, as well as the Harwell routines MA27 and MA57 (Version 3.0) [10].
The Harwell solvers implement the threshold Duff–Reid factorization [14] for indef-
inite symmetric matrices, and provide the inertia of the factorized matrix within the
possible numerical accuracy exactly.

We used the default parameters for the Harwell routines, except that we choose
the pivot tolerance to be εpiv = 10−8 to reduce the fill-in otherwise generated by the
default value εpiv = 10−2. With this small tolerance, the provided solution is usually
sufficiently accurate. However, if, during the iterative refinement applied to the non-
symmetric primal–dual system (2.2), IPOPT detects that the solution is not accurate
enough, the pivot tolerance is step-wise increased (up to at most 10−4) and used until
the end of the optimization (for details, see Sect. 3.10 in [41]). No prior scaling of the

Matching-based preprocessing algorithms to the solution of saddle-point problems 333

Table 1 Overview and abbreviations for the tested solvers

MA27 Initial εpiv = 10−8, default parameters

MA57 Initial εpiv = 10−8, default parameters, Version 3.0

PARDISO1 SBK pivoting, complete matching

PARDISO2 SBK pivoting, preselected 2 × 2 pivots, complete matching

PARDISO3 SBK pivoting, preselected 2 × 2 pivots, constraint matching

linear systems (e.g., using an equilibration method such as those implemented in the
Harwell routines MC19 or MC29) is performed.

The PARDISO code is used in IPOPT as follows: At the beginning of the optimiza-
tion the scaling matrix Ds and the reorderings P and PM are computed based on
the symmetric matching. At a later point, whenever PARDISO perturbs pivots during
the Supernodal-Bunch–Kaufman factorization, the reorderings and scalings are re-
computed using the new matrix values, and the matrix is factorized again. This is a
heuristic to keep the inertia estimates accurate.

In order to compare the effects of the proposed approaches, we examine the solvers
and solver variants listed in Table 1.

5.1 Standard NLP test sets

For the first set of experiments we ran the IPOPT algorithm1 with the linear solvers
MA27, MA57, and with the factorization algorithm in PARDISO Version 2.2, with
default options, on two standard test sets for nonlinear optimization.

The first test set consists of 721 problems from the CUTE [5] collection, as pro-
vided by Benson [1] in the AMPL modeling language [20]. Here, we omitted 16
problems which are unbounded, infeasible, or have too few degrees of freedom. The
size of the problems varies between 1 and 50000 variables (including slack variables
for reformulated inequality constraints) and between 0 and 14000 constraints. The
second test consists of 65 COPS [4] problems (Version 3.0).2 Those problems have
150 to 20496 variables, and 0 to 20098 constraints. We note here that the AMPL pre-
processor was disabled for the CUTE problems, and enabled for the COPS problems.

The results were obtained on a AMD dual-Opteron 2.2 GHz PC running Linux. All
codes were compiled using GCC and GFortran version 4.0.0. The main goal of these
experiments is to assess the robustness of the different PARDISO options; in particular,
we wanted to explore whether the inertia information provided by the Supernode-
Bunch–Kaufman factorization in PARDISO is sufficiently exact and can be used in
nonconvex optimization.

The performance in terms of robustness for the CUTE problems is summarized
in Table 2. Detailed inspection of the results shows that the number of iterations is
in most cases identical for the different linear solvers, and that PARDISO2 and PAR-
DISO3 in general provide very similar inertia information compared to the Harwell

1Development version of the C++ implementation, as of November 9, 2005.
2We excluded the first instance of the tetra example since the gradient of the objective function could
not be evaluated at the starting point provided by AMPL.

334 O. Schenk et al.

Table 2 Number of problems
solved using different linear
solvers for CUTE problems

Solver Solved Exceeded 30 min time limit Failed

MA27 694 5 22

MA57 696 1 24

PARDISO1 689 1 31

PARDISO2 696 1 24

PARDISO3 693 1 27

Fig. 6 Performance plot comparing runtimes on COPS problems

codes. As expected, the quality of the required inertia information of PARDISO is in-
creased, when the “all preselected 2×2” pivots are enforced. The constraint matching
(PARDISO3) appears to yield almost as good results as the full matching approach.
With the exception of the PARDISO1 approach, all solvers seem to be comparably
robust. Since more than 60% of the CUTE problems are solved in less than 0.1 CPU
seconds, we do not present a comparison of the runtimes. Instead, we assess the run-
time behavior using the COPS problems.

All of the COPS problems could be solved within the time limit of 30 CPU minutes
by MA27, PARDISO2 and PARDISO3. The comparison of the runtimes is presented
in Fig. 6, using Dolan–Moré performance profiles [8]. Those profiles compare the
relative performance of the individual options for each problem to the option that did

Matching-based preprocessing algorithms to the solution of saddle-point problems 335

best for this problem. For example, the left-most position of the curve tells us in what
percentage of problems the considered option had the best runtime (e.g., MA27 was
best in about 57% of the problems). Further to the right we can see how far behind an
option is (e.g., in about 55% of the problems, PARDISO1 was not more than 21 = 2
times worse than the best solver for each individual instance). Finally, the right-most
position of the curve indicates the robustness of an option (e.g., PARDISO1 could
solve about 97% of the problems).

As we can see, using the Supernodal-Bunch–Kaufman factorization from Sect. 3
combined with weighted matchings orderings from Sect. 4, the PARDISO code (op-
tions 2 and 3) works slightly more efficiently than MA57, and the older MA27 sub-
routine performs best. We want to stress the following observations from the CUTE
and COPS experiments. Firstly, MA27 is still surprisingly effective on both test sets.
The primarily reason is that the saddle-point matrices from these test sets are rela-
tively small and the overwhelming majority of the matrices can be solved within a
second of factorization time. Secondly, even though the PARDISO code has no mathe-
matical guarantee that it is able to compute the inertia of the factorized matrix exactly,
the implemented heuristics using the options 2 and 3 usually seems to provide very
good information.

However, closer examination of the results shows that NLPs, which are degenerate
so that the iteration matrix is singular in every iteration, are not always handled well,
because the heuristics implemented in IPOPT to detect such structural degeneracy
rely on the detection of singularity of the matrix by the linear solver. Since PARDISO

always perturbs zero and small pivots, it is not able to detect this situation.

5.2 Optimal control problems with discretized PDEs

In order to assess the efficiency of the linear solvers for large-scale optimization prob-
lems, we applied the IPOPT algorithms to optimal control problems based on partial
differential equations, which were discretized to obtain an NLP formulation of the
form (1.1). The size of the resulting optimization problem can be varied by changing
the number of grid points in the discretized domain.

The problems we considered are the eight boundary control examples from [28]
(Bndry1–Bndry8) and the six distributed control examples from [29] (Dist1–
Dist6). All involve a two-dimensional elliptic PDE as the constraint. We also con-
sidered the four examples from [31] that involve a two-dimensional parabolic PDE
(Para1–Para4);3 see the references for a detailed description of the problems
and the discretized NLP formulation. The problems were originally implemented in
AMPL by Mittelmann [30]; however, since we wanted to solve problems in size be-
yond the capabilities of AMPL, we reimplemented the NLP formulation in C++. In
contrast to the original AMPL formulation, the objective functions are multiplied by
1/h2, where h = 1/(N + 1) is the mesh size; without this scaling, the components
of the objective function gradient are O(h2), which leads to a badly scaled NLP for-
mulation for large N . Table 3 shows the number of variables and constraints as a
function of the number N of discretization points (per dimension). The size of the

3Those correspond to examples 5.1, 5.2.I, 5.2.II, 5.2.III in [31].

336 O. Schenk et al.

Table 3 Size of NLP formulation for PDE control problems as function of discretization parameter N

Problem Number of variables Number of variables with Number of

name with upper bounds lower and upper bounds equality constraints

Bndry1–4 N2 4N N2

Bndry5–8 N2 + 4N 4N N2 + 4N

Dist1–3 N2 N2 N2

Dist4–5 N2 + 4N N2 N2 + 4N

Dist6 0 2N2 + 4N N2 + 4N

Para1–3 0 N N2 + N

Para4 0 N2 + 2N N2 + N

matrix in the linear system (2.6) for a problem is the sum of all numbers in a row of
the table.4

These discretized control problems were solved with IPOPT, using the adaptive
barrier parameter strategy, which chooses a different value for μ in every iteration,
based on a quality-function (see [34] for details). As demonstrated in [34], this option
is usually able to reduce the number of iterations of the optimization algorithm com-
pared to the default monotone Fiacco–McCormick approach, at the price of some
additional computational work per iteration. Since in the considered problems the
factorizations of the linear system constitute the main part of the computation, this
strategy reduced the overall computation time.

In the first set of experiments we compare the performance of the Harwell subrou-
tines with PARDISO, using the method PARDISO1, PARDISO2 and PARDISO3. Here,
we use the pivot tolerance εpiv = 10−4 for MA27 and MA57 in all runs, since the
IPOPT default of 10−8 turned out to be too small, and lead to an increased runtime
due to inaccurate steps.

We solved all 18 problems, each for the sizes N = 100, 200, 300, 400, using the
same computer as for the previous results. The comparison in terms of CPU time is
presented in form of performance profiles in Fig. 7. More detailed information about
the CPU times is given in Table 4, where the average CPU times for each problem
class and size is listed.

For most of these problems, PARDISO is clearly the fastest linear solver. Even for
these large problems, the PARDISO2 and PARDISO3 options perform very similarly,
though. This is due to the fact that these problems have very regular structure and
even the maximum weighted matching on the largest matrices is typically completed
in a few seconds. Furthermore, in its current implementation, the PARDISO3 option
incurs an additional transpose operation on A. In the future, we plan to evaluate these
approaches on more irregular problems.

4Note that for some of the optimal control problems the Hessian matrix Wk in (2.6) has very few non-
zero elements, and therefore the saddle-point matrix (2.6) can become very ill-conditioned at the end of
the optimization process, similarly as for interior-point methods for linear optimization. For example, in
Para4, the number of non-zero elements in Wk is only 3

√
n.

Matching-based preprocessing algorithms to the solution of saddle-point problems 337

Fig. 7 Performance plot comparing runtimes on PDE control problems

Table 4 Average CPU seconds for each problem class and size

Problem N MA27 MA57 PARDISO1 PARDISO2 PARDISO3

Bndry 100 13.46 6.39 2.23 2.29 2.42

Bndry 200 213.59 59.72 14.22 14.72 15.46

Bndry 300 956.40 174.85 44.57 46.69 47.82

Bndry 400 2803.61 465.82 103.92 105.00 108.15

Dist 100 14.49 8.72 4.12 4.09 4.11

Dist 200 342.09 82.24 26.87 26.41 26.48

Dist 300 1322.3 363.55 79.05 78.20 78.24

Dist 400 3578.52 1024.55 185.40 179.37 177.12

Para 100 11.11 9.29 6.65 4.70 4.70

Para 200 171.44 144.05 42.63 33.25 33.42

Para 300 1915.97 593.77 138.39 112.77 114.00

Para 400 8666.20a 4096.36a 401.69a 259.94 261.67

aOne problem was not solved within the time limit of 4 hours

338 O. Schenk et al.

5.2.1 Parallel solution

In our final experiments we explore the parallel scale-up of the PARDISO code (only
using the PARDISO2 method), solving the discretized PDE optimal control problems
for instances with several million variables. The reader is referred to [37, 39] for
a detailed discussion of the parallel numerical factorization and solution algorithms
in PARDISO. All results were obtained on an 8-way IBM computer with 1.45 GHz
Power 4+ processors and 32 GB of memory, running AIX 5.1. From each problem
class we picked the first instance, and used the same options for IPOPT as before. The
results are shown in Table 5. The table shows the number of grip points N for each
problem, the fraction of runtime for the linear solver PARDISO compared to IPOPT,
and the numbers of processors available to the direct solver. The one entry in the
table marked with a ∗ has unexpectedly large wall clock time, because the memory
requirement were so large that swapping occurred.

We see that the speed-up for 2 CPUs is on average 1.67, we have 2.65 for 4 CPUs,
and 3.53 for 8 CPUs. The Para1 example scales best, with a speed-up of up to 5.2
for 8 CPUs.

We note that the largest problem instance solved had n = 12,500,000 variables
and m = 6,250,000 constraints. It was solved in about 2.7 hours with 4 processors.

Table 5 Wall clock time (in minutes) and speedup (in brackets) for parallel performance

Problem N % time in Number of CPUs

PARDISO 1 2 4 8

Bndry1 500 94.24 2.98 2.03 (1.5) 1.54 (1.9) 1.34 (2.2)

Bndry1 750 95.49 9.12 5.82 (1.6) 4.10 (2.2) 3.53 (2.6)

Bndry1 1000 96.01 20.50 12.63 (1.6) 8.61 (2.4) 7.08 (2.9)

Bndry1 1500 96.97 67.02 40.19 (1.7) 26.71 (2.5) 20.98 (3.2)

Bndry1 2000 97.62 149.03 85.03 (1.8) 52.98 (2.8) 40.48 (3.7)

Bndry1 2500 97.77 284.05 163.02 (1.7) 100.07 (2.8) 71.90 (4.0)

Dist1 500 87.58 4.51 3.10 (1.5) 2.33 (1.9) 2.06 (2.2)

Dist1 750 89.75 13.12 8.56 (1.5) 6.08 (2.2) 5.16 (2.5)

Dist1 1000 91.94 29.87 18.50 (1.6) 12.59 (2.4) 10.30 (2.8)

Dist1 1500 93.95 93.00 55.17 (1.7) 35.81 (2.6) 28.11 (3.3)

Dist1 2000 95.55 238.00 139.08 (1.7) 89.07 (2.7) 69.00 (3.4)

Dist1 2500 96.13 428.05 252.02 (1.7) 161.00 (2.7) 237.05* (1.8)

Para1 500 97.14 4.61 2.72 (1.7) 1.67 (2.8) 1.25 (3.7)

Para1 750 97.73 14.93 8.43 (1.8) 5.03 (3.0) 3.61 (4.1)

Para1 1000 97.89 30.21 18.27 (1.7) 10.12 (3.0) 7.00 (4.3)

Para1 1500 98.26 104.02 56.80 (1.8) 32.41 (3.1) 22.01 (4.7)

Para1 2000 98.69 267.05 147.05 (1.8) 80.08 (3.3) 53.03 (5.0)

Para1 2500 98.76 474.03 255.08 (1.9) 140.05 (3.4) 92.03 (5.2)

Matching-based preprocessing algorithms to the solution of saddle-point problems 339

6 Conclusion

We presented an analysis of direct solution methods based on restricted pivoting and
combinatorial preprocessing for the solution of large-scale saddle-point problems
stemming from interior-point optimization methods. We integrated the direct solver
PARDISO into the IPOPT optimization package and investigated several preprocessing
and pivoting strategies.

The results indicate that the combination of the preprocessing step based on
weighted symmetric matchings, and the static factorization with Supernodal-Bunch–
Kaufman pivoting provides sufficient accuracy both in terms of inertia information
(an important requirement for solving nonconvex nonlinear optimization problems),
as well as accuracy of the solution. By combining these approaches, however, the
performance could be increased by an order of magnitude. Furthermore, the static
scheduling allows for an efficient parallelization of the method, yielding speed-ups
of up to a factor 5.2 on 8 CPUs.

The combinatorial preprocessing turns out to be very cost effective, and by lever-
aging the inherent block structure of the problem, we could further reduce the worst
case complexity of the matching algorithms, without compromising the accuracy.

Let us briefly recall the main ingredients necessary for this progress: At the heart
of the approach lies the use of symmetric matchings in the factorization stage of
the Supernodal-Bunch–Kaufman method. The method itself is complementary to
the often used threshold pivoting strategies. Furthermore, the approximate constraint
matching approach is also of importance for the computation of orderings and scal-
ings at a manageable cost. And last, we emphasize that these results, of course, reflect
our selected problem class: to compute the factorization and the inertia for highly in-
definite symmetric matrices defined by an interior point method for nonconvex non-
linear programming.

Acknowledgements The authors thank Andrew Conn for valuable suggestions and Iain Duff for a tem-
porary license from HSL. In addition, we would also like to thank the referees for providing constructive
criticism which improved both presentation and content of the paper.

References

1. Benson, H.Y.: AMPL formulation of CUTE models. See http://www.sor.princeton.edu/~rvdb/ampl/
nlmodels/cute/

2. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14,
1–137 (2005)

3. Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in interior point methods
for optimization. Comput. Optim. Appl. 28, 149–171 (2004)

4. Bondarenko, A.S., Bortz, D.M., Moré, J.J.: COPS: Large-scale nonlinearly constrained optimiza-
tion problems. Technical Report ANL/MCS-TM-237, Argonne National Laboratory, Argonne, USA
(1998, revised October 1999)

5. Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, P.L.: CUTE: Constrained and unconstrained testing
environment. ACM Trans. Math. Software 21, 123–160 (1995)

6. Bunch, J.R., Kaufman, L.: Some stable methods for calculating inertia and solving symmetric linear
systems. Math. Comput. 31, 163–179 (1977)

7. Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for large-scale nonlinear program-
ming. SIAM J. Optim. 9, 877–900 (1999)

340 O. Schenk et al.

8. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91, 201–213 (2002)

9. Duff, I.S.: Algorithm 575: permutations for a zero-free diagonal [F1]. ACM Trans. Math. Software 7,
387–390 (1981)

10. Duff, I.S.: MA57—A new code for the solution of sparse symmetric definite and indefinite systems.
ACM Trans. Math. Software 30(2), 118–144 (2004)

11. Duff, I.S., Gilbert, J.R.: Maximum-weighted matching and block pivoting for symmetric indefinite
systems. In: Abstract book of Householder Symposium XV, pp. 73–75 (17–21 June 2002)

12. Duff, I.S., Koster, J.: The design and use of algorithms for permuting large entries to the diagonal of
sparse matrices. SIAM J. Matrix Anal. Appl. 20, 889–901 (1999)

13. Duff, I.S., Pralet, S.: Strategies for scaling and pivoting for sparse symmetric indefinite problems.
SIAM J. Matrix Anal. Appl. 27(2), 313–340 (2005)

14. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear equations. ACM
Trans. Math. Software 9, 302–325 (1983)

15. El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the Newton
interior-point method for nonlinear programming. J. Optim. Theory Appl. 89, 507–541 (1996)

16. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization
Techniques. Wiley, New York (1968). Reprinted by SIAM (1990)

17. Forsgren, A., Gill, P.E.: Primal-dual interior methods for nonconvex nonlinear programming. SIAM
J. Optim. 8, 1132–1152 (1998)

18. Forsgren, A., Gill, P.E., Griffin, J.D.: Iterative solution of augmented systems arising in interior meth-
ods. Technical Report NA-05-03, University of California, San Diego (2005)

19. Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev. 44,
525–597 (2002)

20. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Program-
ming. Thomson, Danvers (1993)

21. Gould, H.S.D.N.I.M., Schilders, W.H.A., Wathen, A.J.: On iterative methods and implicit-
factorization preconditioners for regularized saddle-point systems. Technical Report RAL-TR-2005-
011, Rutherford Appleton Laboratory (2005). SIMAX (to appear)

22. Gould, N.I.M., Hu, Y., Scott, J.A.: A numerical evaluation of sparse direct solvers for the solution of
large sparse, symmetric linear systems of equations. Technical Report RAL-TR-2005-005, Rutherford
Appleton Laboratory (2005, to appear)

23. Gould, N.I.M., Orban, D., Sartenaer, A., Toint, P.L.: Superlinear convergence of primal–dual interior
point algorithms for nonlinear programming. SIAM J. Optim. 11, 974–1002 (2001)

24. Gupta, A., Ying, L.: On algorithms for finding maximum matchings in bipartite graphs. Technical
Report RC 21576 (97320), IBM T.J. Watson Research Center, Yorktown Heights (25 October 1999)

25. Hagemann, M., Schenk, O.: Weighted matchings for preconditioning symmetric indefinite linear sys-
tems. SIAM J. Sci. Comput. 28, 403–420 (2006)

26. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput. 20, 359–392 (1998)

27. Liegmann, A.: Efficient solution of large sparse linear systems. Ph.D. thesis, ETH Zürich (1995)
28. Maurer, H., Mittelmann, H.D.: Optimization techniques for solving elliptic control problems with

control and state constraints. part 1: Boundary control. Comput. Optim. Appl. 16, 29–55 (2000)
29. Maurer, H., Mittelmann, H.D.: Optimization techniques for solving elliptic control problems with

control and state constraints. part 2: Distributed control. Comput. Optim. Appl. 18, 141–160 (2001)
30. Mittelmann, H.D.: AMPL models. See ftp://plato.la.asu.edu/pub/ampl_files/
31. Mittelmann, H.D.: Sufficient optimality for discretized parabolic and elliptic control problems. In:

Hoffmann, K.-H., Hoppe, R., Schulz, V. (eds.) Fast Solution of Discretized Optimization Problems.
Birkhäuser, Basel (2001)

32. Neumaier, A.: Scaling and structural condition numbers. Linear Algebra Appl. 263, 157–165 (1997)
33. Ng, E., Peyton, B.: Block sparse Cholesky algorithms on advanced uniprocessor computers. SIAM J.

Sci. Comput. 14, 1034–1056 (1993)
34. Nocedal, J., Wächter, A., Waltz, R.A.: Adaptive barrier strategies for nonlinear interior methods.

Technical Report RC 23563, IBM T.J. Watson Research Center, Yorktown Heights, USA (March
2005)

35. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999)
36. Olschowka, M., Neumaier, A.: A new pivoting strategy for Gaussian elimination. Linear Algebra

Appl. 240, 131–151 (1996)
37. Schenk, O., Gärtner, K.: Two-level scheduling in PARDISO: Improved scalability on shared memory

multiprocessing systems. Parallel Comput. 28, 400–441 (2002)

Matching-based preprocessing algorithms to the solution of saddle-point problems 341

38. Schenk, O., Gärtner, K.: On fast factorization pivoting methods for symmetric indefinite systems.
Electr. Trans. Numer. Anal. 23, 158–179 (2006)

39. Schenk, O., Gärtner, K., Fichtner, W.: Efficient sparse LU factorization with left–right looking strategy
on shared memory multiprocessors. BIT 40, 158–176 (2000)

40. Ulbrich, M., Ulbrich, S., Vicente, L.N.: A globally convergent primal–dual interior-point filter method
for nonlinear programming. Math. Program. 100, 379–410 (2004)

41. Wächter, A., Biegler, L.T.: On the implementation of a primal–dual interior-point filter line search
algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

42. Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: Motivation and
global convergence. SIAM J. Optim. 16, 1–31 (2005)

	Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization
	Abstract
	Introduction
	Optimization algorithm
	Requirements for direct solvers

	Supernodal factorizations methods
	Pivoting variant I: supernodal Bunch-Kaufman
	Pivoting variant II: use all preselected 2x2 pivots

	Symmetric matchings for a-priori pivoting
	Matching variant: complete matching in K and symmetrization
	Matching variant: constraint matching in AT

	Numerical experiments
	Standard NLP test sets
	Optimal control problems with discretized PDEs
	Parallel solution

	Conclusion
	Acknowledgements

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

