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Abstract Multiple-point statistics are widely used for the simulation of categorical
variables because the method allows for integrating a conceptual model via a training
image and then simulating complex heterogeneous fields. The multiple-point statis-
tics inferred from the training image can be stored in several ways. The tree structure
used in classical implementations has the advantage of being efficient in terms of
CPU time, but is very RAM demanding and then implies limitations on the size of
the template, which serves to make a proper reproduction of complex structures dif-
ficult. Another technique consists in storing the multiple-point statistics in lists. This
alternative requires much less memory and allows for a straightforward parallel al-
gorithm. Nevertheless, the list structure does not benefit from the shortcuts given by
the branches of the tree for retrieving the multiple-point statistics. Hence, a serial
algorithm based on list structure is generally slower than a tree-based algorithm. In
this paper, a new approach using both list and tree structures is proposed. The idea
is to index the lists by trees of reduced size: the leaves of the tree correspond to dis-
tinct sublists that constitute a partition of the entire list. The size of the indexing tree
can be controlled, and then the resulting algorithm keeps memory requirements low
while efficiency in terms of CPU time is significantly improved. Moreover, this new
method benefits from the parallelization of the list approach.
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1 Introduction

Spatial features of geological structures play a key role in reservoir modeling be-
cause their characteristics (such as size, shape, and connectivity) have a deep impact
on flow and transport processes (Journel and Zhang 2006; Renard 2007). Hence,
reproducing complex and realistic structures is a crucial issue in geostatistical sim-
ulations. Multiple-point statistics allows for stochastically generating complex het-
erogeneous fields by integrating a conceptual model chosen by the user. Several case
studies have shown the applicability of the method (Caers et al. 2003; Liu et al. 2004;
Comunian et al. 2011; Hajizadeh et al. 2011). Moreover, de Iaco and Maggio (2011)
or Kessler et al. (2012) use several criteria emphasizing that multiple-point statistics
gives better results than traditional simulation methods based on bi-point statistics
(variograms, transiograms).

Multiple-point statistics was introduced by Guardiano and Strivastava (1993), and
the first efficient algorithm, snesim, was developed by Strebelle (2002). The method
consists in storing the multiple-point statistics inferred from the training image in a
catalog. Then each node of the simulation grid is sequentially simulated according to
a conditional probability distribution function, which is computed by retrieving from
this catalog the entries that are compatible with the neighborhood of the current node.
In other algorithms, such as simpat (Arpat and Caers 2007) and filtersim (Zhang et al.
2006; Wu et al. 2008), the simulation proceeds by sequentially patching patterns also
provided by a training image. These latter methods allow continuous variables to be
considered, as well as the direct sampling algorithm proposed by Mariethoz et al.
(2010), where neither a catalog nor a database is required because the training image
is directly sampled for the simulation of each node.

The original multiple-point statistics algorithm snesim (Strebelle 2002) uses a
large amount of memory to store the statistics in tree structures. This implies
some limitations on the size of the template and then complex structures cannot
be properly reproduced. Zhang et al. (2012) proposed to use compact search trees
for overcoming the memory limitations. Another way to reduce the memory re-
quirements consists in storing multiple-point statistics in a list instead of a tree, as
in the parallel algorithm impala (Straubhaar et al. 2011). Many extensions, appli-
cable to these classical multiple-point statistics algorithms, have been developed,
such as post-processing techniques (Strebelle and Remy 2005; Stien et al. 2007;
Suzuki and Strebelle 2007; Mariethoz et al. 2010), simulations involving nonstation-
ary training images (Chugunova and Hu 2008; Straubhaar et al. 2011), soft probabil-
ities (Allard et al. 2012), and connectivity conditioning (Renard et al. 2011).

In this paper, a new approach for classical multiple-point statistics that consists in
mixing the tree and the list structures to store multiple-point statistics is proposed.
The new approach benefits from the advantages of both storage techniques: The list
allows for reducing memory requirements and parallelization, whereas the tree allows
for accelerating the computation of the conditional probability distribution function.
The method consists in indexing the entries of the list containing all the patterns found
in the training image by a tree of reduced size. More precisely, the list is sorted in lex-
icographical order according to the data event (pattern). The tree has similar branches
as in the usual search tree, but the cells contain only the pointers to the beginning and
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the end of the corresponding part of the list. The depth of such a tree can be cut ev-
erywhere without losing any information and its size is controlled by two parameters.
The resulting algorithm benefits directly from the parallelization of the list approach
and constitutes a new version of impala (Straubhaar et al. 2011). It is presented in
detail in this paper and numerical tests show that a significant gain of CPU time is
obtained, while the memory requirements are still low. Finally, the performance of
the parallel version is evaluated by performing numerical experiments.

2 Principles of Multiple-Point Statistics Algorithms

In this section, we recall the basic concepts of multiple-point statistics and introduce
some notations. The aim is to populate a simulation grid (SG) with a categorical vari-
able s (facies) in a stochastic framework and in such a way that the structures within
a given training image (TI) are reproduced. For this, multiple-point statistics of order
N +1 are used as follows. Let τ be a search template defined as a set of N lag vectors
h1, . . . , hN , and for a node u, let d(u) = {s(u+h1), . . . , s(u+hN)} be the data event
d at u. Assume that the categorical variable takes the values s = 0, . . . ,M − 1, and
that the value s = −1 is assigned to the unsimulated nodes in SG. Then the simulation
consists in: defining a random path visiting all the nodes in SG; and for each succes-
sive node u of this path, randomly drawing a facies s(u) according to the conditional
probability distribution function (CPDF)

P
(
s(u) = k

∣
∣ d(u)

)

= #{v ∈ TI : s(v) = k and s(v + h) = s(u + h) ∀h ∈ τ s.t. s(u + h) �= −1}
#{v ∈ TI : s(v + h) = s(u + h) ∀h ∈ τ s.t. s(u + h) �= −1} .

(1)

Note that if the denominator is equal to zero, the farthest informed node in the search
template centered at u is dropped, that is the last component in d(u) not equal to −1
is set to −1, until the denominator does not vanish.

3 Using Lists for Multiple-Point Statistics

3.1 Storing the Statistics in Lists

Storing the multiple-point statistics inferred from the TI allows for avoiding having
to scan the entire TI to compute the CPDF (1) at each node of the SG. The storage
technique proposed by Straubhaar et al. (2011) consists in recording every distinct
data event (pattern) found in the TI in a list. Using the notations above, an element
of the list is a pair of vector (d = (s1, . . . , sN ), c = (c0, . . . , cM−1)), where ci is the
number of occurrences of the data event {s(v +h1) = s1, . . . , s(v +hN) = sN } found
in the TI having the facies s(v) = i at the node v. This list is built by scanning the TI
once at the beginning of the simulation. This concept is illustrated in Fig. 1.
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Fig. 1 Training image (facies
code 0 for white nodes and
facies code 1 for gray nodes),
search template, and
corresponding list obtained by
scanning the TI in such a way
that the search template always
remains entirely inside the TI

Note that in the example of Fig. 1, only the nodes v in the TI for which the search
template centered at v is entirely inside the TI are scanned. It is also possible, how-
ever, to scan all the nodes of the TI: in that case, the central node of the template visits
all the nodes of the TI, including those along the boundaries. In that situation, a new
value for lacking facies is used to code the data event nodes falling outside the TI.
This approach is useful because the region in the boundary of the TI corresponding
to such data events can be important when using a large search template on a coarse
multigrid level. Adding a code for lacking facies is also very useful when training im-
ages are incomplete and reconstruction must be performed (Mariethoz et al. 2012).
Moreover, storing the statistics in a list allows for nonstationary TI (Straubhaar et al.
2011) to be efficiently dealt with. In such a case, an auxiliary variable is used for
describing the nonstationarity and this additional information is stored in the list.

3.2 Retrieving Conditional Statistics from the List

To compute the CPDF (1) the list is systematically scanned to retrieve all the el-
ements that are compatible with the conditioning data event. This is described in
detail in Straubhaar et al. (2011) and summarized here. An element (d, c) of the
list is considered as compatible with the conditioning data event d(u) if every in-
formed component of d(u) is equal to the corresponding component in d , that is
di = di(u) = s(u + hi), for all i such that s(u + hi) �= −1. The numerator of the
CPDF (1) is given by the sum of the k-th counter ck of every element compatible
with d(u), and the denominator by the sum of all the counters c0, . . . , cM−1 of these
elements.

4 Indexing the List by a Tree

To avoid having to scan all the elements of the list to retrieve those that are compatible
with a given data event, we propose to index the list by a tree. The branches of that
tree are defined as introduced by Strebelle (2002) for the search tree in classical
multiple-point statistics algorithm. But, in the proposed approach, the cells contain
only pointers to the elements of the list. In the following, we first provide a general
description of the proposed structure for the indexing tree, and then show how to
build and use it, and giving a detailed example.
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4.1 Structure of the Indexing Tree

The list is sorted lexicographically according to the data events as in a previous ap-
proach. In a situation with M facies, the indexing tree is an M-ary tree. Each cell
of the tree is divided into M subcells which can have or not a child cell. The levels
in the tree correspond to successive nodes in the template and are numbered from
1 (root) to a certain depth. The subcells in a cell are numbered from 0 to M − 1.
A subcell position in the tree is defined by a path {i(1), i(2), . . . , i(k)}, where i(j) is
the identification number of a subcell in a cell of level j . At the location given by the
above path, the subcell contains the index of the first element in the list for which the
data event d begins by i(1), i(2), . . . , i(k), and one plus the index of the last of those
elements. Each subcell in the tree corresponds to a contiguous part of the list, called
a sublist. The following properties characterize the tree:

(P1) The subcells in the root cell provide a partition into M sublists of the whole list.
(P2) The subcells in a child cell constitute a partition into M sublists of the sublist

attached to the parent subcell.

Because all the multiple-point statistics are stored in the list, the indexing tree can
be cut anywhere. This tree allows for locating the elements of the list that can be
compatible with a given data event and then reducing the number of elements that
must be scanned to compute the CPDF (1).

It is important to emphasize that the statistics required to compute the CPDF (1)
are retrieved from the list, and hence, reducing the size of the indexing tree does not
change the computation of the CPDF (1). On the contrary, reducing the size of the
classical search tree as in snesim requires diminishing the size of the template, which
means that some information is lost and that the results could be deteriorated. The
indexing tree is used to target the parts of the list to be scanned, hence one has to
build a tree allowing for an efficient search in the list, while keeping the memory
burden under control. As indicated earlier, note that in the case where all the nodes
of the TI are scanned for building the list, a new facies for lacking value is used, and
appears in some data events stored in the list. In this situation, each cell of the tree is
divided into (M + 1) subcells and it becomes an (M + 1)-ary tree.

4.2 Building an Indexing Tree of Reduced Size

As a consequence of the properties (P1) and (P2), the set of all the sublists attached
to a subcell, which has no child cell (such a subcell is called a leaf of the tree) forms a
partition of the whole list. The idea for obtaining an indexing tree allowing an efficient
computation of the CPDF (1) is to impose that the size of the sublists in the leaves
of the tree are smaller than a given size. Moreover, for avoiding too many recursions
for this computation when the data event d(u) is partly informed, a maximal depth
can also be imposed. Then, defining the depth of the tree as the number of its levels
minus one, we consider the parameters

dmax: maximal depth of the tree, (2)

smax: maximal size for the sublists in the leaves of the tree. (3)
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Fig. 2 Illustration of the indexing tree for the example displayed in Fig. 1. See the text for a detailed
explanation

The construction of the indexing tree then starts form the root cell (level 1), and is
pursued by creating subcells and applying the following rule

A child cell of a subcell is created if and only if
− the subcell has a level l < 1 + dmax, and
− the size of its corresponding sublist is greater than smax.

(4)

The parameters (2) and (3) allow for controlling the size of the tree and ensuring that
the memory usage remains efficient. If a search template of size N is used, setting
dmax to N − 1 or more implies no constraint on the depth of the tree. Note that the
maximal indexing tree obtained with the parameter smax = 1 (and dmax = N − 1) is
not necessarily of depth N −1. The sensitivity to both parameters in terms of memory
requirements and CPU performances is studied in Sect. 5.

4.3 Illustrative Example

The list of Fig. 1 is used to illustrate how to build an indexing tree step by step. The
parameter smax is set to 3 and no constraint is considered on the depth of the tree
(dmax is set to infinity) for this example. The resulting indexing tree is shown on the
left side of Fig. 2, beside the list on the right side of Fig. 2. The hatched rectangles
drawn in Fig. 2 beside the numbers of the elements of the list highlight the sublists
indexed by the tree. The horizontal hatchings correspond to the subcells of the root
cell (level 1) of the tree, the vertical hatchings to the subcells in level 2 of the tree,
and the slanting hatchings to the subcells in level 3.

The first index in a subcell is the number indicating the position of the first element
of the corresponding sublist, and the second index is one plus the number of the last
element of this sublist; then the size of the sublist is simply obtained by subtracting
the first index from the second one. The size of the sublists are explicitly written in
Fig. 2 below the subcells that are leaves of the tree.
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This indexing tree is built step by step as follows. First, the root cell (level 1) is
built: it is made up of two subcells corresponding to two sublists of 4 and 6 elements.
They both have more than 3 (= smax) elements. Then a child cell (in level 2) is ap-
pended to each subcell of the root cell. Among the four subcells in level 2, only the
third one corresponds to a sublist containing more than 3 elements. Then, for this sub-
cell only, a child cell is created (in level 3). The sublists attached to this cell contain
2 elements, hence, the indexing tree is complete.

4.4 Using an Indexing Tree for Retrieving Conditional Statistics

Assume a tree of depth D indexing the list of multiple-point statistics, and assume
that the data event d(u) at the node u to be simulated has n informed nodes (com-
ponents not equal to −1) at positions i1 < · · · < in. In this situation, the tree is re-
cursively explored in the following way for getting the parts of the list that must be
scanned to retrieve the elements compatible with d(u):

(1) Compute the maximal explored level L = max{ij : ij � 1 + D}, that is L is set
to the last position in i1 < · · · < in that does not exceed the number of levels in
the tree. In other words, L is the last level in the tree corresponding to a position
of an informed node in d(u).

(2) Start to explore the root cell (level l = 1), and do the next step recursively.
(3) For the current cell, according to its level l in the tree, do:

(3a) if the lth component in d(u) corresponds to an informed node (l = ij for a
certain j ), then: if l = L or the subcell of index dl(u) in the current cell has
no child cell, then get the list indices stored in this subcell, else explore the
child cell of this subcell and go to (3) (recursion step),

(3b) otherwise, for each subcell of the current cell: if it has no child cell, then get
the list indices stored in it, else explore its child cell and go to (3) (recursion
step).

The list indices obtained by this exploration give all the parts of the list that have to
be scanned for retrieving all the elements of the list that are compatible with the data
event d(u). Then the CPDF (1) is computed as explained in Sect. 3.2 and the node
u is simulated. Note that the condition given by the maximal level L avoids some
useless recursions.

Example Assume that a node u is simulated according to the multiple-point statis-
tics given by the list in Fig. 1. Also, assume that the data event centered at u is
d(u) = (−1,0,1,−1), that is the nodes i1 = 2 and i2 = 3 are informed with facies 0
(white) and 1 (gray), respectively. By using the indexing tree of depth D = 2 in
Fig. 2 and following the method above, we have L = 3, and the sublists that have to
be scanned are those corresponding to the first subcell in the level 2 of the tree, and to
the second subcell in the level 3 of the tree; that is the elements {L0} and {L6,L7} of
the whole list are checked. All these elements are compatible with d(u) and the sum
of the corresponding counters gives twice the facies 0 and twice the facies 1 at the
central node. Hence, the CPDF (1) is a probability of 0.5 for each facies. As another
example, assume that d(u) = (1,−1,−1,1), that is 2 nodes are informed at positions
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i1 = 1 and i2 = 4, and contain the facies 1 (gray). Then L = 1, and only the sublist
{L4, . . . ,L9} given by the right subcell of the root cell is scanned. In this sublist, the
elements L5, L7, and L8 are compatible with d(u) and the sum of the counters gives
once the facies 0 (white) and 4 times the facies 1 (gray) at the central node, and then
the CPDF is a probability of 0.2 and 0.8 for the facies 0 and 1, respectively.

5 Sensitivity Analysis to the Parameters for Building the Indexing Tree

How do we fix the parameters dmax (2) and smax (3) involved in the construction
of the tree? In this section, numerical tests are performed to test the sensitivity of
the (serial) algorithm to each of these parameters. Based on this sensitivity analysis,
parameters will be proposed to make the algorithm as efficient as possible in terms
of computation time and memory load. Three examples are considered using input
parameters corresponding to realistic conditions of simulation:

(I) two-dimensional TI of size 250 × 250 with 2 facies, SG of size 300 × 300,
3 multigrids, and disc-shape search templates containing 100, 60 and 20 nodes
from the coarse multigrid to the fine one;

(II) two-dimensional nonstationary TI of size 820 × 208 with 8 facies and 1 aux-
iliary variable, SG of size 820 × 208, 3 multigrids, and disc-shape search tem-
plates containing 128, 68, and 36 nodes from the coarse multigrid to the fine
one;

(III) three-dimensional TI of size 100 × 100 × 60 with 4 facies, SG of size 50 ×
50 × 40, 3 multigrids, and spherical search templates containing 618, 250, and
56 nodes from the coarse multigrid to the fine one.

The training images used in these examples are shown in Fig. 3. Note that for each
test, the multigrid approach is used for insuring a proper reproduction of the struc-
tures, while keeping the search template size reasonable. Moreover, the size of the
specified search templates decreases from coarse to fine multigrid level. Indeed, the
nodes simulated at the fine multigrid level represent the major part of the simulation
grid (about 75 % and 87.5 % in the two- and three-dimensional cases, respectively),
then specifying search template of decreasing size saves a considerable amount of
time, whereas the quality of the results are affected only minimally.

The procedure for every test is the following. The TI is entirely scanned, that is,
an additional facies for lacking value is used and the indexing trees are (M + 1)-ary
trees where M is the number of facies. First, the list-based algorithm is used to gener-
ate a set of realizations (10 for examples (I) and (II), and 5 for example (III)). In this
situation, no tree is built and the lists are entirely scanned to compute the CPDF (1)
required for the simulation of each node. Then the same set of 10 realizations (pro-
vided by the same random seed) is generated using the new approach with different
values of the parameters dmax and smax controlling the indexing trees. For each choice
of these parameters, the real time spent and the memory requirements are compared
to the case where the list-based algorithm (reference) is employed.

The tested values for the two parameters dmax (2) and smax (3) are set as a fraction
of the size (number of nodes) of the search template N and the size (number of
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Fig. 3 Training images for examples (I–III): (a) TI for example (I), 250 × 250, 2 facies (from Strebelle
2002); (b) TI for example (II), 820 × 208, 8 facies (courtesy of Backer Hughes), the relative vertical
location is used as an auxiliary variable; (c) TI for example (III), 100 × 100 × 60, 4 facies (courtesy of
total)

elements) of the list NL

dmax = pd · N, (5)

smax = ps · NL. (6)

Indeed, since each level of multigrid has its own search template and its own list, the
values of dmax and smax depend on the level of multigrid. The results are shown in
Fig. 4 for the three examples: The left maps represent the additional memory load and
the right maps the fraction of real time spent for the new approach compared to the
list-based algorithm. The absolute values for the reference are given in Table 1. All
tests presented in this paper are performed using processors Intel(R) Xeon(R) CPU
E5620, 2.40 GHz on 64-bits systems.

These tests show that in comparison with the list-based algorithm, the real time
spent can be divided by more than 3 for a cost of an additional memory load less
than 10 %. To place this result in perspective, the algorithm based on classical search
trees was compared to the list-based algorithm in Straubhaar et al. (2011). The time
required by the classical search tree was approximately half of the time required by
the list (serial version), whereas the memory burden was quickly multiplied by 25.
Note that for the three examples, the high values are not represented in the figures.
The maximal value for additional memory load is respectively around 260 %, 315 %,
10 % (in the top left corner in Figs. 4(a), 4(c), and 4(e)) for examples (I), (II), (III),
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Fig. 4 Sensitivity to parameters for the indexing trees for example (I–III): (left) additional memory load
used for storing the indexing trees in percent of the amount of memory required by the lists, as a function of
ps and pd , (a) example (I), (c) example (II), (e) example (III); (right) real time in percent of the reference
time (list-based algorithm) as a function of ps and pd , (b) example (I), (d) example (II), (f) example (III).
A ceiling value of (a) 10 %, (b) 30 %, (c) 10 %, (d) 50 %, (e) 1 %, (f) 40 % is applied for the results shown
in this figure
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Table 1 Amount of memory
required for storing the lists in
MB and real time spent in
seconds for the list-based
algorithm (reference) of the
three examples

Example Mem (MB) Time (sec)

(I) 7.65 123

(II) 30.75 934

(III) 461.80 2,320

whereas the values for real time fraction approximately reach 45 %, 60 %, and 60 %
(in the bottom in Figs. 4(b), 4(d), and 4(f)). Hence, the parameters corresponding to
these area must be avoided.

To accelerate the algorithm, the parameter pd should be chosen rather large and
ps small. We propose to fix the parameter pd to 90 %. The sensitivity analysis to the
parameter ps is given in more detail in Fig. 5: the plots in the first column represent
the additional memory load as a function of ps , the plots in the second column the
real time spent as a function of ps , and the plots in the third column the real time
spent as a function of the additional memory load. Obviously, the memory load is
decreasing when ps is increasing (Figs. 5(a), 5(d), and 5(g)). The behavior of the real
time spent is more complicated: if we reduce the value of ps (reading each plot in
the second column of Fig. 5 from right to left), the real time spent decreases because
the scanned parts of the list are better targeted, and then suddenly increases, which
is the result of much more recursions done in the indexing tree during the simulation
of each node, because the number of branches in the trees explodes. The plots in the
third column of Fig. 5 summarize the two first ones and give the trend of the real time
spent as function of the additional memory load.

Finally, for the three examples that were studied, very good performances were
obtained by limiting the depth of the indexing tree to 90 % of the search template
size and by limiting the sizes of the sublists corresponding to a leaf of the tree to
around 1 % of the total length of the list. We expect these results to be rather robust,
but we also expect that the optimal parameters will slightly vary depending on the
complexity of the TI, the number of facies, and other inputs for the multiple-point
statistics algorithm.

6 Parallel Algorithm

6.1 Strategy

This new approach straightforwardly benefits from the parallelization developed ear-
lier for the lists (Straubhaar et al. 2011). The strategy of parallelization allows for
an implementation both on machines with distributed memory using MPI (Message
Passing Interface) technology as well as on machines with shared memory using
OpenMP. The strategy is to subdivide the list into partial lists and to distribute these
partial lists over the available processors; then the presented method consisting in
building an indexing tree for a list can be separately applied on each processor.
More precisely, assume that p processors, numbered from 0 to p − 1, are used.
Then a list L = {L(0), . . . ,L(NL − 1)} sorted in lexicographical order is distributed
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Fig. 5 Sensitivity to parameter ps , with pd = 90 % (fixed), for the indexing trees: (left) additional mem-
ory load used for storing the indexing trees in percent of the amount of memory required by the lists, as a
function of ps , (a) example (I), (d) example (II), (g) example (III); (middle) real time in percent of the ref-
erence time (list-based algorithm) as a function of ps , (b) example (I), (e) example (II), (h) example (III);
(right) real time as a function of additional memory load, both in percent of the reference, (c) example (I),
(f) example (II), (i) example (III)

over all the processors in the following way. The partial list Lj = {L(k) : k ≡ j

mod p and 0 � k < NL} is stored into the memory space dedicated to the proces-
sor of index j . Hence, each processor has its own local list, and then builds its own
indexing tree, as explained in Sect. 4.2. Then the simulation of each successive node
in the SG is parallelized as follows. Each processor retrieves from its local list the oc-
currence counters provided by the elements compatible with the data event centered
at the current node in the SG. This is done by using the new approach explained in
Sect. 4.4. Then the counters retrieved by every processor are gathered by a commu-
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Fig. 6 Training image for
example (IV), 200 × 160 × 200,
4 facies (courtesy of Mines Paris
Tech)

nication between them, and used together to compute the CPDF (1), and finally the
current node is simulated.

6.2 Numerical Tests

According to the tests of Sect. 5, we choose to set the parameters pd = 90 % and
ps = 1.2 � for the indexing trees. The performances of the parallel algorithm is ex-
perimentally evaluated on four cases: the examples (I) to (III) whose input parameters
are given in Sect. 5, and the following more substantial example:

(IV) three-dimensional TI of size 200 × 160 × 200 with 4 facies (Fig. 6), SG of
size 120 × 96 × 120, 3 multigrids, and spherical search templates containing 618,
250 and 56 nodes from the coarse multigrid to the fine one.

The number of realizations is set to 10 for two-dimensional examples (I and II),
and set to 5 for three-dimensional examples (III and IV). For each example, the new
parallel algorithm (based on MPI) is launched using different numbers of processor(s)
between p = 1 and p = 48. Then the CPU time (maximal CPU time over all the
processors used) of each run is retrieved. Let Tp be the CPU time when p processors
are used. The first way to evaluate the performance is to see how Tp decreases when
p increases. The plot of Tp as a function of p is shown in Fig. 7 for each example.
In this figure, the CPU time required by the list-based algorithm (not using trees) is
also drawn for comparison. In particular, the time required by the two approaches
becomes close from a certain number of processors, showing that the indexing trees
can be useless when the corresponding lists are sufficiently small, provided by the
subdivision of the entire list into partial lists.

The evaluation is also given by the speed-up and the efficiency, respectively, de-
fined as

Sp = T1

Tp

and Ep = Sp

p
. (7)
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Fig. 7 CPU time in seconds as a function of the number of processors used, for the parallel algorithm
based on lists and indexing trees (new approach) and the algorithm based on lists only: (a) for example (I),
(b) for example (II), (c) for example (III), (d) for example (IV)

These measurements can be compared to the ideal case Sp = p and Ep = 1, which
corresponds to the situation where the time is divided by p when the number of
processors is multiplied by p. Note that the efficiency is a normalization of the speed-
up. The speed-up and efficiency curves for examples (I) to (IV) are shown in Fig. 8.

The curves of CPU times drawn on Fig. 7 are strongly decreasing from p = 1
processor to a certain number of processors, showing that the parallelization of the
proposed algorithm is worthy in each of the four examples. The performances of the
parallelization depend on the size of the problem to be solved. Large problems bene-
fit from a parallel run using a large number of processors, whereas time required for
completing small problems is penalized by the communications between processors,
which are not negligible compared to the actual computations. This classical observa-
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Fig. 8 Speed-up and efficiency for the new parallel algorithm based on lists and indexing trees:
(a) speed-up, (b) efficiency

Table 2 Approximate number of elements in each entire list, for the examples used for the evaluation of
parallelization

Multi-grid level Ex. (I) Ex. (II) Ex. (III) Ex. (IV)

Coarse 54,000 93,000 580,000 6,397,000

Middle 23,000 33,000 353,000 5,817,000

Fine 1,000 12,000 91,000 1,343,000

tion for parallel implementations is emphasized in Figs. 7 and 8 for the new parallel
algorithm proposed in this paper, since examples (I) to (IV) involve increasing com-
putational burden due to the increasing size of the lists used, as shown in Table 2.
Note that Fig. 7(a) shows that the communications between processors are rapidly
prohibitive provided increasing CPU times from a small number of processors; the
reason is that the example (I) is a small problem. On the contrary, the best speed-
up and efficiency observed are for example (IV), which depicts the largest problem
presented.

7 Conclusions

Tree-based multiple-point statistics algorithms are limited by the important memory
usage available. On the contrary, list-based implementations demand low memory
requirements but are generally slower in serial versions, because the branches of the
tree speeds up the retrieval of the multiple-point statistics. The new approach pre-
sented in this paper consists in storing the multiple-point statistics in lists and then
indexing the lists by trees. The indexing trees allows for a substantial gain of time
when retrieving the multiple-point statistics required for the simulation of each node
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as they provide shortcuts to access the information contained in the lists. Since all the
statistics are stored in the lists, the indexing trees are of reduced sizes, and thus use
a smaller amount of memory. Their construction is controlled by two parameters that
are empirically set based on numerical tests, for keeping a tree of small size and opti-
mizing the computational time. Hence, this new method benefits from both structures
of tree and list: improved CPU performances and low memory requirements. More-
over, since the statistics are stored in lists, all the features of the list-based algorithm
are still available for the new method (nonstationary simulations using auxiliary vari-
ables, simulation by zones, rotations, affinities). In particular, the proposed method
benefits from the parallelization of the lists, and is therefore well-suited for multicores
desktop machines or High Performance Computing clusters. Thus, the resulting new
parallel algorithm constitutes an important improvement of the list-based algorithm
impala (Straubhaar et al. 2011), in terms of CPU performances.
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