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Abstract. Evidence indicates that sexually decep-
tive Chiloglottis R.Br. (Orchidaceae) taxa specifi-
cally attract their thynnine wasp (Tiphiidae)
pollinators through the floral odour mimicry of
female wasp sex pheromones. We use amplified
fragment length polymorphisms (AFLPs) to recon-
struct the species-level phylogeny of Chiloglottis,
make a preliminary evaluation of genetic distinc-
tions between species, and compare the historical
association among orchids and their pollinators
using wasp sequence data from a previous study.
AFLPs show large differences between three sub-
generic clades relative to that found among species
within each clade. Interspecific genetic barriers are
indicated by AFLP discontinuities among species
unlike in previously reported DNA sequence data.
However, such barriers are demonstrated clearly in
only one of the two pairs of sympatric species
sampled more intensively. We interpret these pat-
terns as indicating either (i) a rapid and recent
radiation of species within each clade following
histories of stasis or extinction, or (ii) alternating
cycles of divergence and gene flow acting to
homogenize genetic differences among species
within each of the three clades.

Key words: Adaptive radiation, AFLP, cospecia-
tion, cryptic species, pseudocopulation, sexual
deception, ethological isolation.

One of the most enduring questions in evolu-
tionary biology is how the association between
adaptive change and reproductive isolation
can drive ecological divergence and in turn
lead to evolutionary radiation (Schluter 2000).
Closely related, interfertile sexually deceptive
orchid species are thought to be isolated, at
least in sympatric comparisons, by the specific
attraction of pollinators (Ehrendorfer 1980,
Paulus and Gack 1990, Bower 1996). Orchids
employing this mode of pollination provide no
reward to their male hymenopteran pollinators
but deceive them by mimicking the female
insects. In particular, the orchids employ a
chemical mimicry of the female insect’s sex
pheromone (Schiestl et al. 1999, 2003). Floral
odour is thought to be the key trait responsible
for pollinator attraction and is therefore likely
to be under strong pollinator-mediated selec-
tion (Ayasse et al. 2000, Schiestl 2004, Mant
et al. in press). Crucially, it is also floral odour,
by mimicking species-specific sex pheromones,
that mediates pollinator specialisation and
establishes pre-zygotic ethological isolation
(Mant et al. 2002, Schiestl and Ayasse 2002).
For these reasons, it has been proposed that
the highly specialized nature of pollination by
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sexual deception has led to adaptive radiations
driven by changes in floral scent (Stebbins and
Ferlan 1956, Stebbins 1970, Paulus and Gack
1990, Nilsson 1992, Grant 1994, Soliva et al.
2001, Mant et al. 2002).

Phylogenetic investigations into three inde-
pendently derived sexually deceptive lineages
reveal strikingly similar evolutionary histories.
Nuclear and/or chloroplast DNA sequence
data on Ophrys (Soliva et al. 2001, Bateman
et al. 2003), Chiloglottis (Mant et al. 2002) and
Caladenia (Jones et al. 2001) all show broad
agreement in the tempo of cladogenesis. The
low or non-existent DNA sequence variation
between species within each of these genera
could be attributed to rapid species diversifi-
cation via pollinator shifts. However, the
evolutionary stability of pollinator-mediated
reproductive isolation has only recently begun
to be evaluated using genetic data. The
observed lack of DNA sequence divergence
may be the result of persistent or even episodic
gene flow among closely related species.
Genetic differentiation among species could
be hampered by a breakdown of pollinator
specificity in sympatry, or where range expan-
sion leads to pollinator replacement and
hybridisation with neighbouring orchid popu-
lations. Recent microsatellite studies in Ophrys
(Soliva and Widmer 2003, Mant et al. in press)
argue along these lines by suggesting that low
genetic differentiation among sympatric spe-
cies is evidence of gene flow occurring across
species boundaries.

A complication in studying sexually
deceptive orchids is that taxonomic bound-
aries at the species-level are notoriously
difficult to establish from morphology alone.
This is perhaps demonstrated by the degree
of synonymy found in the approximately 140
species of Ophrys (Delforge 1995), not to
mention the large number of postulated
Ophrys hybrids. However, a long history of
poorly co-ordinated taxonomic contributions
has no doubt contributed to the confusion.
In Australia, there has been a dramatic
increase in the number of species with Chilo-
glottis expanding from nine known species

(Clements 1989) to the present 22 described
and several undescribed species (Jones 1991,
1997, 1998; Bower and Brown 1997). Differ-
ences among sexually deceptive species in
physiologically active floral odour com-
pounds have been found, including qualita-
tive differences between C. trilabra and
C. seminuda (Mant et al. 2002) and quanti-
tative odour differences between Ophrys fusca
and O. bilunulata (Schiestl and Ayasse 2002).
However, diagnostic morphological charac-
ters for species are often minor and open to
question, as in the cryptic C. reflexa and
C. trilabra. As a consequence, it is difficult to
ascertain the level of gene flow or hybridisa-
tion that might be occurring among closely
related sexually deceptive taxa attracting
distinct pollinators.

Pollinator specificity has been demon-
strated to be the rule among Chiloglottis
species. Bower (1996), following early observa-
tions by Stoutamire (1975), employed a series
of behavioural choice tests among translocated
flowers from different Chiloglottis populations
and species to demonstrate the specificity of
response by thynnine wasps (Hymenoptera:
Tiphiidae). A single Neozeleboria species was
shown to be the confirmed or potential polli-
nator of eight Chiloglottis species (Bower
1996). Stoutamire (1975) also documented the
pollinators of different forms of C. gunnii from
Tasmania that have subsequently been de-
scribed as separate taxa (C. gunnii, C. gram-
mata and C. triceratops, Jones 1998). Thus, this
experimental approach has enabled morpho-
logically similar Chiloglottis taxa to be differ-
entiated by their attraction of distinct
pollinators (Bower and Brown 1997). The
pollinator status of the remainder of the
Chiloglottis species sampled in this paper have
been documented in a series of unpublished
reports (C. C. Bower, unpublished data) and in
Bower (2001a, unpubl. data). Thus, although
published accounts for all species are at present
lacking, the evidence published to date is
indicative of a pollination system in which
pollinator responses are specialised. Observa-
tions of pollinator specificity have also been
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made in the other sexually deceptive genera of
the Diurideae (Bower 2001la,b; Stoutamire
1975, 1983; Peakall 1989, 1990; Peakall and
Beattie 1996; Alcock 2000).

A caveat to the use of pollinators in the
diagnosis of cryptic orchid taxa is that unam-
biguous species boundaries should also be
demonstrated in the pollinators themselves.
For Chiloglottis, the majority of wasp pollina-
tors sampled in this paper are morphologically
distinct, although many await formal taxo-
nomic treatment (G. R. Brown, unpubl. data).
For an example of species differences in a
Neozeleboria Rohwer species group that in-
cludes pollinating and non-pollinating taxa see
Brown (1998). In lieu of a full taxonomic
treatment of the primary pollinating genus,
Neozeleboria (Brown, unpubl. data), we pres-
ent, by way of an example, a tabulation of the
morphological differences among three closely
related pollinator species (see Table 2).

In some cases, however, a real problem of
morphological crypsis among wasp taxa is as
evident as that indicated in putative Chiloglot-
tis taxa. Examples include different geograph-
ically separated forms of N. monticola, which
show divergent responses to orchid taxa
indicative of pheromonal-races (Bower 2001a,
unpubl. data; Mant, Peakall and Schiestl,
unpublished data). Gas chromatography with
electroantennogram (GC-EAD) experiments
support the recognition of wasp taxa by
demonstrating species-specific pheromone re-
sponses (Mant et al. 2002, Schiestl et al. 2003)
and further studies using GC-EAD and syn-
thetic compounds are underway to test indi-
cations of morphologically cryptic wasp taxa.

The genus Chiloglottis shows a highly
specialized association with the thynnine
wasp genus, Neozeleboria. Subgeneric groups
within Chiloglottis also display a degree of
specialization, such that related orchids tend
to use related Neozeleboria as pollinators
(Mant et al. 2002). Taxonomic associations
of this nature in plant-pollinator interactions
are more usually found in mutualistic sys-
tems, such as the fig—fig wasp and the yucca—
yucca moth interactions. At least in the case

of Ficus, the association with pollinators
shows patterns consistent with cospeciation
(Weibes 1979). In sexually deceptive orchids,
however, pollination is achieved in an essen-
tially ‘‘parasitic” or deceptive interaction
based on sexual lures. The orchid is wholly
reliant on the wasp for sexual reproduction,
whereas the insect may be disadvantaged by
disruptions to its mating system (Wong and
Schiestl 2002). Notwithstanding the differ-
ences from mutualistic systems, orchid species
may still track divergences occurring in the
pollinators to which they are specialized.
Such a process may lead to matching phylo-
genetic patterns consistent with cocladogene-
sis. By contrast, non-matching orchid and
wasp phylogenies would suggest a lack of
cospeciation where, instead, orchids fre-
quently colonize or switch onto novel pollina-
tors. An alternative model suggests the
historical association among Chiloglottis and
Neozeleboria reflects a process of ‘“‘preferen-
tial pollinator switching” among a limited
taxonomic pool of pollinators. Under this
model, phylogenetic constraints in thynnine
wasp sex pheromones and emergence phenol-
ogy may account for the tendency of related
orchids to use related wasps as pollinators
(Mant et al. 2002). To examine these com-
peting hypotheses, we use the enhanced
phylogenetic power offered by more variable
AFLP markers (over DNA sequences) to test
for congruence among Chiloglottis and its
Neozeleboria pollinators.

In this paper, we examine amplified
fragment length polymorphisms (AFLPs)
within Chiloglottis for molecular markers
that are informative among closely related
species and populations within species. The
following questions are posed: Are observa-
tions of ethological isolation among Chilo-
glottis  taxa  correlated  with  genetic
discontinuities? Are molecular phylogenetic
patterns consistent with the adaptive radia-
tion of Chiloglottis through shifts in pollin-
ators? Does the association between
Chiloglottis and its wasp pollinators reflect
a history of cocladogenesis?
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Materials and methods

Taxon sampling. All the Chiloglottis species sam-
pled in Mant et al. (2002) were included in this
AFLP phylogenetic study (see Table 1 for voucher
details). In addition, several other taxa were
included for which pollinator information is either
lacking or, in the case of the selfing C. cornuta, for
which pollinators are absent. To make some
account of intraspecific variation we have included
multiple samples from each species. In the majority
of cases (except C. anaticeps, C. platyptera, C. trun-
cata, C. trullata and C. diphylla) more than one
population of each species was sampled, preferably
across a wide geographical scale. The first four of
these exceptions are geographically restricted which
limited our capacity for intraspecific sampling. To
test for species differences in AFLPs, we have
sampled more intensively two species pairs that
have overlapping geographic ranges. These are C.
trilabra (9 individuals, 4 locations) and C. reflexa (8
individuals, 4 locations) from NSW and C. gram-
mata (7 individuals, 5 locations) and C. triceratops
(5 individuals, 5 locations) from Tasmania. Pollina-
tors for the DNA sequence study (Mant et al. 2002)
were collected following established methods
(Stoutamire 1975; Peakall 1990; Bower 1996,
2001). Orchids flowers were collected and offered
as ‘baits’ to patrolling wasps. Testing and collection
of wasp responders occurred in areas of close
proximity to where orchids were sampled. Wasps
were identified by Graham Brown (Museum and
Art Gallery of Northern Territory). Morphological
differences among three closely related (Mant et al.
2002) pollinator taxa were recorded and tabulated
(Table 2) with reference to Bower and Brown
(1997).

AFLP procedures.The (AFLP) procedure was
performed using a modified version of the methods
of Vos et al. (1995). Conditions followed the
general protocol described by Invitrogen Life
Technologies using fluorescently-labelled EcoRI
primers. Total DNA was extracted from silica-
dried leaf material using Qiagen Kits, as described
in Mant et al. (2002).

Each DNA sample was cut with restriction
endonucleases, EcoRI and Msel, and the resulting
fragments ligated to known double-stranded adapt-
ers using reagents purchased from Invitrogen™
(Cat. No. 10482-016). To approximately 200 ng of
DNA were added 5 ul 5X reaction buffer, 13 ul
H20 and the 2 ul of EcoRI/Msel as directed in the

Invitrogen AFLP Core Reagent Kit. Digestion was
carried out at 37°C for 6 hours. Ligation products
were subjected to pre-amplification using primers
that match the adapter sequence with the addition
of an additional base at the 3" end. PCR reactions
were performed on 5 ul undiluted ligation product
in 28 ul reactions containing pre-amplification
primer-mix I (Invitrogen™, Australia), BSA, 10X
PCR Buffer (Sigma-Aldrich P-2192: 100 mM Tris-
HCI, ph 8.3; 500 mM KCI; 15 mM MgCl; 0.01%
gelatin) and 0.5 units Taq (Promega, Australia).
Pre-amplification reactions were performed on a
Hybaid OMN-E thermal sequencer using the
following temperature profile: 20 cycles of (94°C
30 s, 56°C 1 min; 72°C 1 min).

After a two-fold dilution with TE buffer, the
PCR products were amplified using Msel and
EcoRI primers with three additional selective bases.
PCR reactions contained the following: 10X PCR
Buffer, BSA, Msel primer, EcoRI primer, 0.05
units Taq (Promega, Australia). PCR conditions
used a touch down procedure starting with (94°C
30 s, 66°C 30 s; 72°C 2 min) with the annealing
temperature reduced by 1°C over each of the next
ten cycles, followed by 20 cycles at (94°C 20 s, 56°C
30 s; 72°C 2 min), and finished with 72°C for 30
min. Six different combinations of two Msel
primers and three EcoRI primers were chosen
because they had a suitable number of fragments:
(MseCAT/EcoACT, MseCTA/EcoACT, MseCAT/
EcoAGC, MseCTA/EcoAGC; MseCAT/EcoAGC;
MseCTA/EcoACA). Fluorescent labels (FAM or
HEX) were added to the EcoRI-primers allowing
accurate sizing using an ABI 3700 capillary elec-
trophoresis system with internal size markers in
each reaction. Primers were tested for reproduc-
ibility across different restriction-ligation digests of
the same individuals, in addition to different pre-
amplifications and selective amplifications.

AFLP data analysis. Fragments between 70
and 450 base pairs were scored as either present or
absent using Genotyper® Version 2.5 (Perkin Elmer
Applied Biosystems). Each size class was treated as
a dominant binary character in the recognition that
AFLP heterozygotes are not usually detected. The
calculation of genetic distances for the AFLP data
set and subsequent Analysis of Molecular Variance
(AMOVA) followed the method of Peakall et al.
(1995) and Maguire et al. (2002) using the software
GenAIEx V5 (Peakall and Smouse 2004). Individual
pairwise genetic distance was calculated as:
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Table 1. AFLP vouchers. Species are arranged alphabetically within each of the three main Chiloglottis
clades (F: Formicifera clade; R: Reflexa clade; V: Valida clade). NP: National Park, NR: Nature Reserve.
Undescribed geographical forms of C. formicifera and C. pluricallata that have distinct pollinators are
listed with an abbreviated geographical location

Clade Taxon Voucher & Lat/Long Locality
species
code
F C. formicifera CF119 33 525 151 02E NSW: Royal NP
F C. formicifera CF124 31 18 135S 149 02 16E  NSW: Warrumbungles NP
F C. formicifera-TENT  CFF120 28 58 00S 152 04 52E  NSW: Tenterfield region
F C. formicifera-TENT CFF122 28 51 00S 151 58 00E NSW: Giraween NP
F C. platyptera CPT188 31 55 48E 151 20 45S  NSW: Barrington Tops
F C. trullata CTA123 23 51 04S 149 05 35E  QLD: Blackdown NP
F C. trullata CTA126 23 51 04S 149 05 35E  QLD: Blackdown NP
F C. truncata CTUI121 27 14 47S 152 03 37E  QLD: Crows Nest
F C. truncata CTUI121 27 14 47S 152 03 37E  QLD: Crows Nest
F C. truncata CTU125 27 14 47S 152 03 37E  QLD: Crows Nest
F C. trapeziformis CTZ118 33 06 16S 145 04 34E  NSW: Orange
F C. trapeziformis CTZ189 3334 12S 150 14 27E  NSW: Mt York
R C. anaticeps CA105 31 07 195 152 20 20E  NSW: Stokes Mt
R C. anaticeps CAl12 31 07 19S 152 20 20E  NSW: Stokes Mt
R C. anaticeps CAl13 31 07 19S 152 20 20E  NSW: Stokes Mt
R C. diphylla CD156 33 30 56S 150 29 19E  NSW: Bilpin
R C. diphylla CD157 33 30 56S 150 29 19E NSW: Bilpin
R C. reflexa CR158 3335355 150 16 02E  NSW: Mt Victoria
R C. reflexa CR159 33 35355 150 16 02E  NSW: Mt Victoria
R C. reflexa CR160 34 24 02S 150 50 26E  NSW: Robertsons Lookout
R C. reflexa CR168 34 24 02S 150 50 26E  NSW: Robertsons Lookout
R C. reflexa CR169 34 40 09S 150 42 39E  NSW: Barren Grounds
R C. reflexa CR170 34 21 00S 150 47 00E NSW: Macquarie Pass
R C. reflexa CR171 34 40 09S 150 42 39E NSW: Barren Grounds
R C. reflexa CR173 34 24 02S 150 50 26E  NSW: Robertsons Lookout
R C. seminuda CSM153 33 32 26S 150 38 0SE  NSW: Kurrajong Heights
R C. seminuda CSM154 33 43 4585 150 26 34E  NSW: Hazelbrook
R C. sphyrnoides CSP109 31 39 60S 151 48 44E  NSW: Giro SF
R C. sphyrnoides CSP110 31 3720S 152 11 11E  NSW: Styx State Forest
R C. sylvestris CSY108 29 28 24S 152 19 07E NSW: Washpool NP
R C. sylvestris CSY152 33 32 26S 150 38 0OSE NSW: Kurrajong Heights
R C. trilabra CT107 30 27 07S 152 18 47E NSW: Cathedral Rocks
R C. trilabra CT116 30 27 07S 152 18 47E NSW: Cathedral Rocks
R C. trilabra CT161 3329 39S 150 24 14E  NSW: Mt Wilson
R C. trilabra CT162 33 30 40S 150 22 24E  NSW: Mt Wilson
R C. trilabra CT163 33 30 40S 150 22 24E  NSW: Mt Wilson
R C. trilabra CT164 3521 26S 148 40 02E  ACT: Namadgi NP
R C. trilabra CT165 3521 26S 148 40 02E  ACT: Namadgi NP
R C. trilabra CT166 3521 26S 148 40 02E  ACT: Namadgi NP
R C. trilabra CT172 33 26 345 149 50 40E  NSW: Sunny Corner NR
v C. chlorantha CCHI128 33 51 16S 150 01 52E  NSW: Kanangra-Boyd NP
v C. chlorantha CCH130 3439 S 150 46 E NSW: Jamberoo
v C. cornuta CCO142 41 16 23S 145 36 58E  TAS: Hellyer Gorge
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Table 1. (Continued)

Clade Taxon Voucher &  Lat/Long Locality

species

code
A% C. cornuta CCO144 41 41 43S 146 46 24E  TAS: Liffey Falls
v C. grammata CGl136 42 54 525 147 15 34E  TAS: Mt Wellington
v C. grammata CG137 41 21 335 147 24 00E =~ TAS: Mt Barrow
\Y% C. grammata CG138 41 20 55S 147 22 46E  TAS: Mt Barrow
v C. grammata CG139 41 42 06S 146 43 24E  TAS: Liffey Falls
v C. grammata CGl143 42 40 47S 146 41 17E TAS: Mt Field NP
v C. grammata CGl146 42 13 34S 147 07 04E  TAS: Table Mt
v C. grammata CG150 42 53 34S 147 15 38E  TAS: Mt Wellington
\Y% C. gunnii CGU148 42 17 29S 147 04 26E  TAS: Bothwell
\Y% C. gunnii CGU151 42 54 52S 147 15 34E  TAS: Mt Wellington
v C. triceratops CTP134 42 40 47S 146 41 17E  TAS: Mt Field NP
A% C. triceratops CTP135 42 54 52S 147 15 34E  TAS: Mt Wellington
v C. triceratops CTP141 42 13 34S 147 07 44E  TAS: Table Mt
v C. triceratops CTP147 41 20 555 147 22 46E  TAS: Mt Barrow
\% C. triceratops CTP149 43 02 54S 147 07 48E  TAS: Pelverata Falls
A% C. valida CV127 3521 26S 148 40 02E  ACT: Namadgi NP
v C. valida CV129 33 26 34S 149 50 40E  NSW: Sunny Corner NR
v C. valida CV131 3520 415 148 49 21E ACT: Namadgi NP
A% C. valida CV133 33 26 34S 149 50 40E  NSW: Sunny Corner NR
v C. pluricallata CP005 31 56 40S 151 26 S8E NSW: Barrington Tops
\" C. pluricallata CP026 31 57 20S 151 25 36E~ NSW: Barrington Tops
v C. pluricallata CP040 31 55428 151 26 40E ~ NSW: Barrington Tops
\Y% C. bifaria CB063 31 58 56S 151 27 33E  NSW: Barrington Tops
A% C. bifaria CB069 31 55 05S 151 33 33E  NSW: Barrington Tops
\Y% C. bifaria CB093 3205235 151 35 00E  NSW: Gloucester Tops
v C. pluricallata CP111 32 31S 151 12E NSW: Hanging Rock NR
v C. pluricallata CP112 32 31S 151 12E NSW: Hanging Rock NR
v C. pluricallata-NE ~ CAPI119 31 29S 152 25E NSW: New England NP
v C. pluricallata-NE ~ CAP120 31 29S 152 25E NSW: New England NP
A% C. pluricallata CP124 31 29S 152 25E NSW: New England NP
\% C. pluricallata CP125 31 29S 152 25E NSW: New England NP

Table 2. Morphological differences among Neozeleboria proxima and its sibling species (reproduced with
modification from Bower and Brown 1997)

Morphological character N. proxima N. sp. nov. 29 N. sp. nov. 30

Fore coax emarginate weakly not strongly

Hypopygium triangular, triangular, subtriangular,
not truncate not truncate truncate

Parameres long, curved normal? normal?

Aedeagus length 0.75 mm 0.525 mm 0.5 mm

Base of femora black orange orange

Anterior pronotum
Metasomal spots

black laterally
reduced, yellow

yellow laterally

not reduced, pale yellow

yellow laterally
not reduced, pale yellow
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E = n(1 — (2nxy/2n)),

where n is the total number of polymorphic bands
and 2nxy is the number of markers shared by two
individuals. Both band presence and band absence
are considered informative in this analysis. This is a
true Euclidean metric as required for AMOVA.
Total genetic variation was partitioned by AM-
OVA into three levels: among the three main clades
(c), among species within clades (s) and within
species. Variation was summarized both as the
proportion of the total variance and as ¢-Statistics
or F-Statistic analogues, ¢gc, ¢cr and ¢gr. In the
statistic, ¢gc represents the correlation of species
within a clade, relative to the clade, while ¢y is the
correlation of species from the same clade, relative
to the total, and ¢gt is the correlation of species
within a clade, relative to the total. In this context,
¢st 1s the AFLP equivalent of Fst among species.
Statistical significance tests were performed by
random permutation, with the number of permu-
tations set to 1000.

Otherwise, the AFLP data were analyzed by
maximum parsimony and UPGMA and neighbor
joining (NJ) clustering using PAUP* version 4.0b
(Swofford 2001). NJ and UPGMA trees were
constructed using Nei and Li distance measure
under the restriction site option in PAUP (Nei and
Li 1979). Support for branches was assessed using
the bootstrap method with 100 replicates (Felsen-
stein 1985). Outgroups were not included in this
study due to difficulties in interpreting AFLP band
homologies between Chiloglottis and related gen-
era. The AFLP trees were left as unrooted net-
works and redrawn according to the root found
using DNA sequence data (Mant et al. 2002).

Testing congruence between orchid and pollina-
tor topologies. Two statistical tests comparing the
phylogenies of Chiloglottis and its thynnine wasp
pollinators were performed to examine the null
hypothesis that the orchids have undergone cocla-
dogenesis with their pollinators. For the wasps, we
used the combined DNA sequence data of three
genes (nuclear wingless and mitochondrial 16S and
cyth) published in Mant et al. (2002, GenBank
numbers and voucher details available therein).
The most parsimonious (MP) tree(s) and its length
were calculated for the orchid and wasp data sets
separately using PAUP* heuristic searches using
TBR branch swapping and 50 random addition
sequence starting trees. The MP tree of one data set
was then forced onto the other data set and the tree

lengths recalculated. The two trees were then
compared using the Templeton test (Templeton
1983). Significantly different scores were inter-
preted as a rejection of the null hypothesis. The
second test followed that used in Mant et al. (2002)
by using a partition homogeneity test as imple-
mented in PAUP*. To examine congruence in
phylogenetic signal, orchid (AFLP) and wasp
(DNA sequence) datasets were treated as two
separate partitions of the one data set, in which
the associated orchid-wasp species pairs were
assigned as terminals. A significant difference
between the tree length of the combined data set
and the summed tree lengths of partitioned AFLP
and DNA sequence data sets was again interpreted
as a rejection of the null hypothesis.

Results

AFLP variation within and among Chiloglottis
clades. The AFLP method produced pres-
ence/absence characters that were highly
reproducible between treatments where it
was examined in replicated samples. A total
of 251 characters was scored across the entire
genus (63, 48, 40, 39, 42, 19 for each primer
combination of mCAT-eACA, -eACT,
eAGC and mCTA-eACA, -eACT, -eAGC).
The partitioning of AFLP variation within
Chiloglottis is shown in Table 3. A UPGMA
tree (Fig. 1) shows three main clusters, corre-
sponding to the Reflexa, Formicifera and
Valida clades recovered under DNA sequence
data (Mant et al. 2002) and illustrated with
representative species in Fig. 2.

Statistical tests by random permutation in
the AMOVA confirmed significant differenti-
ation among clades, among the species within
clades, and among species with respect to the
total. However, the magnitude of the varia-
tion partitioned amongst the three levels
varied greatly, with 73% of the total genetic
variance accounting for the differences among
the clades, with the remainder apportioned
more or less equally among and within the
species in each clade (15% and 12% respec-
tively, see Table 3). A similar disparity in
uncorrected pairwise DNA sequence diver-
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Table 3. Results of Analysis of Molecular Var-
iance (AMOVA) showing percentage of AFLP
variation apportioned among groups and Phi-sta-
tistics. *** P <0.001, **P <0.002

Source % Var, ¢ value
Chiloglottis
Among Clades 73
Among Species/Clades 15
Indiv./Within Species 12
dct 0.726%***
dsc 0.545%**
OsT 0.875%**
C. reflexa v C. trilabra
Among Species 16
Individuals.Within Species 84
st 0.157%**
C. grammata v C. triceratops
Among Species 52
Individuals.Within Species 48
Osr 0.525%*

gences among (28%) versus within (0.2% to
0.3%) each of the three clades was recorded
in Mant et al. (2002). Fixed AFLP band
differences among the three clades were high
(43 to 57) relative to the number of shared
polymorphisms (from 5 to 23). However,
bands unique to individual species were low,
ranging from 1-7 in the Reflexa clade, 0 to 1
in the Formicifera clade and 1-14 in the
Valida clade.

Within the analyses by clade, more varia-
tion was detected within species than among
species within the Formicifera clade and there
were no significant pairwise P-values among
species, reflecting the low sample sizes. Thus,
we were unable to statistically separate any of
the species in this clade (see also the UPGMA
analysis, Fig. 1). For the remaining two clades
there was more overall genetic variation
detected among species than within species
(Table 3). However, individual pairwise P-val-
ues were mostly not significant. The UPGMA
showed clustering along species lines in the
Valida and Reflexa clades with high bootstrap
support. However, relationships among those
species were either not well resolved or
exhibited poor bootstrap support. Among the

two species pairs examined in more detail, C.
grammata and C. triceratops separated along
species lines with high bootstrap support in the
NJ tree (Fig. 3a) and with high significant
genetic differentiation (¢pgr = 0.525, P <0.002).
Among the C. reflexa and C. trilabra samples,
there was low but significant genetic differen-
tiation (¢gr = 0.16, P<0.001), with poor
separation of the species in the NJ tree
(Fig. 3b).

Examining congruence between orchid and
wasp topologies. Figure 4 shows a comparison
of the phylogeny of Chiloglottis (as estimated
by maximum parsimony analysis of AFLPs)
with that of their specific pollinators. Only
those samples are included for which
pollinator molecular data are available (16
plant-pollinator pairs). For the orchids, 182
parsimony informative characters were ana-
lyzed, finding one tree of length 270. For the
wasps, two MP trees of length 1191 were found
on analysis of 334 informative characters from
the three genes. Figure 4 shows the strict
consensus of those two wasp trees. Relation-
ships within the Chiloglottis Reflexa group
differ between parsimony (Fig. 4) and UP-
GMA (Fig. 1) trees. However, maximum par-
simony finds the same topology when all taxa
are included (tree not shown) and when the
two taxa without pollinator data are excluded.

A mixture of matching and non-matching
pattern between orchid and wasp topologies
can be observed (Fig. 4). The topology of the
Reflexa group matches that of its autumn-
emerging pollinators. Analyses using the Tem-
pleton test (Table 4) revealed significantly
longer tree-lengths when the best topologies
of each group were forced onto the alternative
dataset. The test was run with and without the
orchid-pollinator pair, C. grammata and Ei-
rone, as Eirone has previously been shown to
be distantly related to the remaining Neoze-
leboria pollinators of Chiloglottis (data not
shown). However, in all comparisons, the
differences were found to be significant,
leading to an overall rejection of the null
hypothesis of cocladogenesis. The partition
homogeneity test similarly rejects the null
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Fig. 1. UPGMA tree of Chiloglottis (72 samples, 251 AFLP bands, numbers on branches are bootstrap
percentages). The genetic differentiation between the three major groups (Reflexa, Formicifera and Valida) is
greater than that found among the species within each. The Reflexa group is autumn-flowering, whereas the
other two groups flower in spring-summer. Multiple individuals and populations of each sampled species are
generally supported by strong bootstrap percentages. However, relationships among species are not well

supported
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L 1

Fig. 2. Flowers of Chiloglottis species from the Valida, Reflexa and Formicifera clades. The labella are
passively mobile, particularly in the Valida clade, allowing male wasps that are deceived by floral odours and
the insectiform calli to be tipped towards the column during attempted copulation. Pollinia placement is to the
wasp thorax. (a) C. ‘bifaria’ ms. D. L. Jones (C. affinity pluricallata D. L. Jones), scale = 1.5 cm (b) C. sylvestris
D. L. Jones & M. A. Clements, scale = 0.75 cm (¢) C. formicifera Fitzg. scale = 0.75 cm (d) Flowers drawn at
same scale (scale = 4 cm)
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— 0.01 changes

CT 161
CR 168
CR 170
CT 164 Fig. 3. (a) Neighbour joining (NJ)
tree of co-flowering and sympatrically
distributed C. grammata G. W. Carr
CT 166

CT 172

hypothesis of cocladogenesis by finding that
the orchid and wasp datasets comprise a
significant data partition (P <0.01).

Discussion

The pattern of AFLP variation within Chilo-
glottis is largely congruent with DNA sequence

(CG) and C. triceratops D. L. Jones
(CTP) from Tasmania, (b) NJ of the
co-flowering C. reflexa Labill. (CR)
and C. trilabra Fitz. (CT). See Table 1

0.01changes  for |ocalities

data (Mant et al. 2002) in showing a marked
disparity among three sub-generic clades com-
pared to the variation found within each clade.
The three clades are morphologically and
phenologically divergent (Figs. 1 and 2). The
Reflexa clade is entirely autumn-flowering,
with a single flower held on a long peduncle
(between 5 to 15 cm high) and recurved lateral
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Fig. 4. A comparision of orchid and wasp phylogenies as estimated by AFLPs for Chiloglottis and DNA
sequence data for the Thynnine wasp pollinators (Neozeleboria and Eirone). Orchids are aligned with their
respective pollinators. The wasp phylogeny was based on a combined analysis of three genes (nuclear wingless
and mitochondrial 16S and cyth) presented in Mant et al. (2002). GenBank accessions can be found in that
paper. The topology shown is the strict consensus of two MP trees of length 1191 (334 informative characters).
The phylogeny of Chiloglottis (length 270) was based on 182 parsimony informative AFLP characters available
for this reduced taxon set for which pollinator samples were present. The wasp tree is rooted using Eirone and
the root in the orchid tree is the same as that found under DNA sequence data. The boxed taxa highlight cases
of incongruence among the three main clades found in both orchid and wasp trees. Several other topological
disagreements are evident within each of those three clades. Informal clade names: Chiloglottis, A Reflexa B
Formicifera, C Valida; Neozeleboria X Proxima Y Cryptoides Z Monticola

petals. The labellum is narrow in the proximal clade is generally similar to the Reflexa clade in
first third, then expands into a broad triangu- its peduncle length and labellum shape, but
lar to spathulate apex. The C. trapeziformis  flowers in early spring. The late spring to

Table 4. Testing the null hypothesis of cocladogenesis between Chiloglottis and its thynnine wasp polli-
nators. The asterisk indicates significant difference from the shortest tree(s)

Templeton Test Comparing Tree Lengths

Orchid Wasp
Score based on orchid data set 270 424/426
P value (best tree) P < 0.001%*

Score based on wasp data set 1320 1191
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summer-flowering Valida clade differs by the
presence of larger flowers held low to the
ground, a cordate labellum, broad spreading
lateral petals and generally less dense insecti-
form calli on the labellum (Jones 1991, Bower
1996).

Although differentiation among species in
each main clade is usually higher than that
found within species, those differences are not
great. While AFLP patterns shown in the
UPGMA tree indicate the distinct genetic
clustering of many Chiloglottis species, the
lack of extensive intraspecific sampling
restricts the conclusions we can draw about
the establishment of reproductive barriers
among taxa. Where a higher number of
individuals has been sampled (Fig. 3a,b), our
results show evidence both for and against the
establishment of genetic barriers. The Tasma-
nian species, C. grammata and C. triceratops,
pollinated by an undescribed Eirone sp. and a
form of Neozeleboria monticola respectively
(Bower unpublished, Mant unpublished), sep-
arate strongly along species lines. The molec-
ular pattern clearly supports the origin of
reproductive barriers in these two co-flowering
and sympatrically distributed species, despite
the relatively low number of individuals that
have been sampled. However, two geograph-
ically overlapping species from mainland Aus-
tralia, C. reflexa and C. trilabra, pollinated by
the closely related N. sp. 30 and N. proxima
respectively, are indistinguishable by AFLP
data. Certain key taxa such as the C. reflexa-
C. trilabra and C. pluricallata species com-
plexes could be further investigated using more
intensive population sampling to examine
evidence for hybridisation, cross-attraction of
pollinators and floral odour variation among
taxa.

Although this AFLP evidence suggests
Chiloglottis species attracting different pollin-
ators have established reproductive barriers,
the overall pattern of molecular variation
across Chiloglottis makes it difficult to reject
the possibility of interspecific gene flow over
longer evolutionary timescales. In the case of
Chiloglottis, both DNA sequences and AF-

LPs reveal a disparity in genetic variation
among versus within its three major clades.
AMOVA analyses of each of the major
clades (Table 3) show that much of the
AFLP wvariation is shared among closely
related species. A similar pattern is found in
Ophrys with low sequence differentiation
among species (Soliva et al. 2001), a lack of
any deep branching pattern leading to out-
group genera (Bateman et al. 2003), and a
sharing of microsatellite variation among
species (Soliva and Widmer 2003). Indeed,
genetic patterns in Ophrys indicate interspe-
cific gene flow is prevalent even among
sympatric taxa that attract distinct pollina-
tors and are strongly differentiated in floral
odour (Mant et al. in press).

For Chiloglottis, two scenarios could
account for a phylogenetic structure that
lacks deep branching pattern while species at
the tips of the trees share considerable
variation. Firstly, a burst of species diver-
gence occurred recently within each of the
three clades leaving no trace of older lin-
eages, which either did not exist or were lost
to extinction. In this case, the sharing of
molecular variation among species could be
attributed to the retention of ancestral poly-
morphism rather than to interspecific gene
flow (Avise 1994, Hilton and Hey 1997).
While this scenario is possible, it seems
unlikely that the process occurred repeatedly
in three independent Chiloglottis lineages
with divergent ecological and geographical
distributions and different flowering phenol-
ogies. Under the second scenario, each of the
three clades represents a single interbreeding
evolutionary unit or ‘syngameon’ undergoing
merge-and-diverge oscillations (Grant et al.
2004). Pollinator mediated selection may be
strong enough to lead to divergence in
certain traits, such as floral odour, that are
important for pollinator attraction (Mant et
al. 2002) and even to the disruption in gene
flow among taxa following pollinator shifts
(Fig. 3a). However, over the long term, any
accumulated genetic differences are lost fol-
lowing the re-establishment of gene flow
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across the group as a whole. The observed
sharing of AFLP variation may thus be due
to a long history of past introgression. The
lack of deep branching pattern in the phy-
logeny of each Chiloglottis lineage may also
reflect past introgression rather than a his-
tory of evolutionary stasis or extinction,
although we are not able to arbitrate
between these scenarios with current data.
A similar evolutionary history could be
envisaged for the sexually deceptive Ophrys
and Caladenia.

Species divergence and cocladogenesis. The
comparison of orchid and pollinator phyloge-
netic trees reveals a degree of matching
topological pattern that suggests cospeciation
should be considered as an explanation for the
historical association. In particular, orchid
species from the autumn-flowering Reflexa
group show the same historical pattern as that
of their pollinators from the autumn-emerging
group of pollinators related to N. proxima.
However, the occurrence of clear switches
(non-matching pattern) between major clades,
such as that seen in the distantly related Eirone
(pollinator of C. grammata) and the pollina-
tion of C. formicifera and C. aff. formicifera-
Tenterfield by N. sp. 41 and N. sp. 45, indicate
that such switching events are common in the
history of the interaction. Further, our tests of
the overall cladistic congruence between orchid
and wasp data favour a rejection of coclado-
genesis, in accordance with the conclusions
drawn in the DNA sequence study of Mant
et al. (2002).

Unfortunately, topological comparison
alone may not be able to arbitrate between
these competing hypotheses (Sorenson, et al.
2004). It is noted that the tests employed
examine congruence across the entire dataset
while local patterns consistent with cospecia-
tion may be overlooked. However, additional
observations lead us to favour the hypothesis
that orchid and wasp divergences have
occurred independently even in cases of match-
ing pattern as found in the Reflexa-Proxima
association. Gas chromatography  with
electroantennographic detection studies from

orchids and their pollinators demonstrate
shared active floral scent components across
thynnine-pollinated orchid taxa (Mant et al.
2002, Schiestl et al. 2003). This indicates that
the tendency of related orchids to use related
wasps as pollinators may reflect phylogenetic
patterns in the sex pheromones of the wasps
themselves. Secondly, a lack of temporal
congruence in divergence times is suggestive
of speciation occurring independently in both
groups (Mant et al. 2002). Finally, the presence
of non-pollinating Neozeleboria species that
are close relatives of known pollinators sug-
gests that if cospeciation was occurring, the
association between plant and pollinator must
have been repeatedly lost (Mant et al. unpubl.
data). This argument also holds for the
autumn-emerging Proxima group, which com-
prises both pollinators and non-pollinators
(Mant et al. unpubl. data).

Bioassays have confirmed the chemical
simplicity of the thynnine sex pheromone
system and its mimicry by orchids. A single
compound, chiloglottone, was shown to be
solely responsible for pollinator attraction in
C. trapeziformis (Schiestl et al. 2003), whereas
two to three related compounds of minor
structural variation to chiloglottone are active
in other Chiloglottis species (Mant et al. 2002,
Mant and Schiestl, unpublished). A single
compound is also responsible for pollinator
attraction in the ichneumonid wasp pollinated
Cryptostylis (Schiestl, et al. 2004). To learn
more about how chemical changes in the floral
odour are associated with species divergence in
Chiloglottis, future research should focus on
identifying the active compounds of more
orchid species and populations. Targeting
sister-species identified from the phylogenetic
reconstructions in this study provides a means
of investigating adaptive shifts associated with
fragrance divergence in this group.
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