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Abstract. In this paper we propose a computationally efficient implementation of general one factor short rate
models with a trinomial tree. We improve the Hull–White’s procedure to calibrate the tree to bond prices by
circumventing the forward rate induction and numerical root search algorithms. Our calibration procedure is
based on forward measure changes and is as general as the Hull–White procedure, but it offers a more efficient
and flexible method of constructing a trinomial term structure model. It can be easily implemented and calibrated
to both prices and volatilities.
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In this paper, we elaborate on the implementation and calibration of one-factor short rate
models. Taking the Hull–White model as a starting point, we span trinomial trees for the
short rate using a set of general branching processes. Generalizing the branching processes
not only allows to avoid negative interest rates (see Hull and White (1994)), but also al-
lows to obtain a “slender” tree at the edges. This can substantially reduce the computational
time. Moreover, the additional flexibility in defining branching processes becomes impor-
tant when pricing certain types of exotic options. For example, for barrier options a finer
grid around the barrier helps to increase the convergence of the numerical tree method.
Recent contributions in this direction are, e.g., Tian (1999), Figlewski and Gao (1999),
and Baule and Wilkens (2004).

Our main contribution is a computational improvement of the procedure of Hull and
White (1994) to calibrate the tree to bond prices. In the Hull and White (1994) model, when
pricing an interest rate derivative, one has first to perform a forward induction to match the
tree, and secondly one has to do backward induction to price the instrument. The forward
induction can become computationally intensive. Furthermore, for non-Gaussian models,
forward induction has to be combined with numerical root search algorithms. Using the
approach presented in this paper, we are only left with backward induction. No forward
induction and no root-search algorithms are necessary.
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Our matching procedure is based on the representation of the short rate under the for-
ward measure. This allows us to substantially reduce the computational costs. Moreover,
our approach is not restricted to Gaussian interest rate models, but it is applicable to a wide
range of short rate models. It is most efficient for all models which allow a closed-form
expectation of the interest rate either under the risk-neutral or the forward measure. How-
ever, even if such a closed form model does not exist, our calibration is applicable and still
leads to efficiency gains. Therefore, we claim that our calibration procedure is as general
as the forward induction method used by Hull and White.

Finally, we show how the tree can be adjusted to the volatility structure in such a manner
that our approach to match the initial term structure is still applicable. This is done by
exploiting the flexibility embedded in the trinomial tree model.

Our paper is structured as follows. Section 1 presents the basic setup and introduces the
notation. Furthermore, this section gives a brief overview of term structure models, which
can be handled within our approach. Section 2 elaborates on the modelling of the state
variable process within a trinomial tree. Section 3 presents our calibration procedures.
Section 4 provides some explicit examples and comparisons with the Hull–White model.
Section 5 concludes.

1. Model Setup

We assume that the market is complete and arbitrage opportunities are absent. Then, there
exists a unique risk-neutral pricing measure P on (�,F) such that every claim discounted
by the money market account is a martingale under P. The state space is described by the
one-dimensional process Xt with X0 = x. We assume that Xt follows a time-homogeneous
Markov process. Interest rates and bond prices can be expressed as functions of Xt , i.e., we
assume P(Xt , t, T ) to be the time-t pricing functional for a zero bond in state Xt , which
pays $1 at the maturity date T . Then,

P(Xt , t, T ) = E

[
e− ∫ T

t rs ds
∣∣Ft

]
,

where rt is the short-term interest rate and E[·|Ft ] is the expectation operator un-
der P. We further require the zero bond to satisfy the conditions P(Xt , t, t) = 1 and
lim P(Xt , t, T ) = 0 as T → ∞ for all Xt and t . To abbreviate notation, bond prices ob-
served from the initial term structure, P(x, 0, T ), are denoted by P�(T ). Given the above
setting, specifying a short rate model can be done in two steps.

1. Defining a state variable process Xt . Here, we make the basic assumption that X follows
an Itô diffusion,

dXt = µX(Xt) dt + σX(Xt ) dWt, X0 = x, (1)

under the measure P.
2. Defining the functional form g(X, t) = rt , which translates the state variable to the

interest rate. Under the appropriate technical conditions, we can then write the general
dynamics for the short rate as
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drt = Lg(X, t) dt + ∂g(X, t)

∂X
σX(Xt) dWt ,

where L is the extended generator.1

Thus, depending on the choices µX, σX and g(X, t), we can construct a wide class of
short rate models. However, since the tree construction starts with spanning a trinomial tree
for Xt by matching its moments, a simple choice for the process Xt is appropriate. There-
fore, when calculating examples in Section 3, we will focus on a Gaussian specification
for Xt .

1.1. Affine Function g(X)

To illustrate the generality of the above short rate specification, we briefly discuss a few
possible models. We start with affine term structure models. These are obtained by setting
rt = a+bXt . If Xt follows a mean-reverting Ornstein–Uhlenbeck process with µX(Xt ) =
−κXt and σX(Xt ) = σ , then

drt = (aκ − κrt ) dt + bσ dWt , (2)

which corresponds to the short rate model of Vasicek (1977). With time-dependent para-
meters Equation (2) is often referred to as the extended Vasicek model of Hull and White
(1994). When µX(Xt) = θ − κXt and σX(Xt ) = σ

√
Xt , and b > 0, we get

drt = (
θ̄ − κrt

)
dt + σ

√
b(rt − a) dWt, (3)

with θ̄ = bθ + aκ . Setting a = 0 we obtain the classical Cox, Ingersoll, and Ross (1985)
term structure model. A lognormal model would be obtained by setting σX(Xt) = σXt .

1.2. Quadratic Function g(X)

Suppose now that we can represent the short rate as a quadratic function of the state vari-
able, i.e., we set

rt = a + bXt + cX2
t . (4)

Such a specification defines a short rate model which belongs to the class of quadratic
models.2 Recently, Filipović (2002) proves, under certain regularity conditions, that if one
represents the forward rate as a polynomial function of the diffusion state vector, then the
maximal order of the polynomial is two for the model to be consistent. Consistency in this
context, as discussed in Björk and Christensen (1999) and Filipović (1999), means that the
interest rate model will produce forward rate curves belonging to the parameterized family.
These findings stress the potentially important role played by quadratic models.

The functional specification in Equation (4) not only extends the affine class, but also
embeds some well-known nonlinear term structure models. To see this, we assume
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µX(X) = −κ , σX(X) = σ , and derive the interest rate dynamics implied by (4) in its
general form as

drt =
(

cσ 2 − κ

2c

(
b2 − 4ac + 4crt

) + σ
bκ

2c

√
b2 − 4ac + 4crt

)
dt

+ σ
√

b2 − 4ac + 4crt dWt .

By setting a = b = 0, i.e., rt = cX2
t , we obtain again a parameterized version of the Cox,

Ingersoll, and Ross (1985) model,

drt = (
cσ 2 − 2κcrt

)
dt + 2σ

√
crt dWt . (5)

Note the subtle difference between the specification in (3) (with a = 0) and (5). In the latter
parameterization, the interest rate can become zero. In (3), a suitable choice of parameters
prohibits the interest rate from attaining zero.

As another special case of the dynamics in (4), we obtain the double square-root interest
rate model of Longstaff (1989; 1992), and Beaglehole and Tenney (1992). These authors
investigate a one-factor model with the short rate process given as

drt = κ̂

(
σ̂ 2

4κ̂
− √

rt

)
dt + σ̂

√
rt dWt , (6)

for some parameters κ̂, σ̂ . The interest rate dynamics in (6) fits into our framework in (4)
by setting a = b = 0, µX(X) = − 1

2

√
c, σX(X) = σ = 1

2 σ̂ /
√

c, and c = κ̂.

1.3. Exponential Function g(X)

In lognormal term structure models, the short rate is of the form

rt = exp(a + bXt). (7)

A popular example is the Black and Karasinski (1991) model, which is a generalization of
the continuous-time formulation of the Black, Derman, and Toy (1990) model. The Black
and Karasinski (1991) model assumes the logarithm of the interest rate to evolve according
to

d ln rt = (θt − κt ln rt ) dt + σt dWt . (8)

To obtain the process in (8) we have to set rt = exp(at + btXt ) with Xt following a
normal distribution. As shown by Hogan and Weintraub (1993), such dynamics for the
short interest rate would lead to infinite prices for Eurodollar futures. Nevertheless, the
Black and Karasinski (1991) model is one of the most popular models used in practice.

Another possible specification within an exponential function g(X) would be to specify
the state variable X as a normal process and define the interest rate as an exponential
quadratic form of X, i.e.,

rt = exp
(
a + bXt + cX2

t

)
.
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Such a model specification is still tractable, since the expectation of rt is available in closed
form. However, the problem of infinite prices for Eurodollar futures remains.

1.4. Other Specifications

There are many possible specifications for defining the function g(X) as long as the func-
tion is reasonably well-behaving. The following two examples are taken from Rogers
(1996). The first one is a “rational-quadratic” model that specifies the short rate as

rt = a + bXt + cX2
t

α + βXt + γX2
t

, (9)

where X is normally distributed. The specification in (9) allows highly nonlinear dynamics
for the short rate. Zero bond prices are available in closed form (see Rogers (1996)).
Another model with closed-form bond prices is

rt = βγXt tanh(γXt + γ c) + α, (10)

with X normally distributed. The interest rate dynamics in (10) share the feature that when
interest rates are low they behave like in a quadratic Gaussian model, whereas for large
Xt the interest rate behaves like in an affine Gaussian model. This feature makes (10) an
attractive specification for the short rate from both a theoretical as well as from a practical
perspective.

However, care has to be taken, since not all specification of the functional form for g

result in arbitrage-free models. One possibility to check for admissability of a function
g(X) is to follow the approach of Rogers (1996). There, the existence of a pricing kernel
is linked to its representation as a potential. Nevertheless, the scope for generating interest
rate models is immense.

2. State Variable Tree

The standard procedure to construct a trinomial tree approximation for the short rate
process is to start spanning a tree for the state variable Xt on an equidistant tree. The
process Xt is assumed to follow a time-homogeneous stochastic differential equation.
Then, a tree representation can be constructed to provide a discrete-time and discrete-
space Markov approximation for Xt . Usually, a trinomial tree is preferred to a binomial
tree approximation, since the additional flexibility provided by the trinomial tree can be
used to match not only the first, but also the second moment of the process Xt .

We make the following notational conventions. The nodes of the trinomial tree are
denoted by (i, j), where i is the vertical placement (the space axis) and j is the horizontal
placement (the time axis). We define by π

k,h
i,j the probability by which the process moves

from node (i, j) to node (i + k, j + h) within time interval h. For the standard branching
process in the Hull and White (1994) model, it is assumed that (a) the time interval h is
constant for the whole tree, and (b) the jump k is either 1, 0, or −1. Hence, the transition
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Figure 1. Trinomial tree. The tree starts at note (0, 0). At each node there is a threesome {π−1,1
i,j , π

0,1
i,j , π

1,1
i,j }

evolving to the neighbor nodes (i − 1, j), (i, j), and (i + 1, j), respectively.

from a node (i, j) to nodes {(i − 1, j + 1), (i, j + 1), (i + 1, j + 1)} are equidistant both
on the time as well as on the space axis. Furthermore, it is assumed that the nodes (i, j)

and (i, j + 1) remain on the same vertical level. This branching process is illustrated in
Figure 2(A) and the resulting trinomial tree structure is illustrated in Figure 1.

Having fixed the tree geometry, we have to determine the tree probabilities in such a
way that the distributional properties of the state variable are mimicked at every node.
However, instead of matching the variance as in Hull and White (1994), we match the
second moment. This gives the same result, but simplifies the formulas somewhat. For the
branching process given Figure 2(A), the system of equations is given by

1 = π
−1,1
i,j + π

0,1
i,j + π

1,1
i,j ,

E(Xj+1|Xi,j ) ≡ M1 = δ
(
π

1,1
i,j − π

−1,1
i,j

) + Xi,j , (11)

E
(
X2

j+1|Xi,j

) ≡ M2 = π
−1,1
i,j (Xi,j − δ)2 + π

0,1
i,j X2

i,j + π
1,1
i,j (Xi,j + δ)2,

which is linear in the probabilities and hence straightforward to solve. In order to guarantee
that the threesome {π−1,1

i,j , π
0,1
i,j , π

1,1
i,j } can be interpreted as probabilities for all i’s, we

have to guarantee π
−1,1
i,j + π

0,1
i,j + π

1,1
i,j = 1 together with the three inequality constraints

{π−1,1
i,j � 0, π

0,1
i,j � 0, π

1,1
i,j � 0}. This can be done in several different ways. First,

we can build some constraints on the number of time steps we are considering. However
by doing so, we impose some severe restrictions on the depth of the tree. This method
would probably fail to value either derivatives with complex payoff structures or long term
instruments with intermediate payoffs, since such instruments require a reasonable depth
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Figure 2. Branching processes. In order to control the state spanned by the tree, the common branching
processes (A) is altered to either (B) for high interest rates, or (C) for low interest rates. With the latter branching
processes, negative interest rates within the tree can be avoided.

for the tree. A more serious problem, in particular for Gaussian interest rate models, is
the possibility of obtaining negative interest rates. As was done, e.g., in Hull and White
(1994), this can be avoided by altering the geometry of the tree. Of course, altering the
geometry is an arbitrary manipulation of the pricing problem and thus subject to some
criticism. Nevertheless, it is widely used in practice.

An obvious way to avoid negative interest rates is to use the branching process illustrated
in Figure 2(C). At the same time, the branching process in Figure 2(B) would avoid the
possibility that the trinomial tree spans interest rates, which are unreasonably high. De-
pending on the branching process used, the system of equations for the tree probabilities
in (11) has to be adjusted accordingly.

However, we do not necessarily have to rely on the assumption that the tree evolves to
the three neighboring states. We can be more general in two directions:

• The tree evolves from state (i, j) to the three states {(i + k1, j + 1), (i + k2, j + 1), (i +
k3, j + 1)}, requiring k1 �= k2 �= k3.

• The tree directly evolves from state (i, j) to a threesome of states at time j + h, h � 1.

With these two generalizations, the equations to match the first two moments are given by

Mh
1 = Xi,j + δ

(
π

k1,h
i,j k1 + π

k2,h
i,j k2 + π

k3,h
i,j k3

)
,

Mh
2 = π

k1,h
i,j (Xi,j + k1δ)

2 + π
k2,h
i,j (Xi,j + k2δ)

2 + π
k3,h
i,j (Xi,j + k3δ)

2.
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In this general setup, we then obtain

π
k1,h
i,j = Mh

2 − (2Xi,j + δ(k2 + k3))M
h
1 + (Xi,j + δk2)(Xi,j + δk3)

δ2(k1 − k2)(k1 − k3)
,

π
k2,h
i,j = Mh

2 − (2Xi,j + δ(k1 + k3))M
h
1 + (Xi,j + δk1)(Xi,j + δk3)

δ2(k2 − k1)(k2 − k3)
,

π
k3,h
i,j = Mh

2 − (2Xi,j + δ(k1 + k2))M
h
1 + (Xi,j + δk1)(Xi,j + δk2)

δ2(k3 − k1)(k3 − k2)
.

With these formulas for the probabilities at hand, we can construct a large structure of
possible tree geometries. Obviously, there are many degrees of freedom for building a
trinomial tree. In general however, the more degrees of freedom, the less stable will the
tree be when it comes to pricing derivatives. Therefore, one has to be careful, as in most
cases flexibility comes at the price of less stability. Also, the choice of the tree geometry
should depend on the properties of the instruments to be priced. For convergence purposes
and also to minimize possible biases, a finer grid should be used in those regions of the tree
where the value of the instrument is highly sensitive to changes in the interest rate (see,
e.g., Figlewski and Gao (1999)).

3. Calibrating the Tree

In practice, term structure models are implemented by calibrating them to prices and
volatilities of some subset of traded instruments. These instruments include, e.g., US
T-bonds, interest rate swaps, and interest rate options like caps and swaptions. Typically,
the drift of the short rate process is matched to the current term structure of bond prices. In
Section 3.1 we present a novel method to achieve this goal. In a second step, the volatility
function of the short rate may then be chosen to match the term structure of volatilities of
the yield curve, or the term structure of implied volatilities of at-the-money interest rate
options. The latter is of particular importance when it comes to pricing of exotic interest
rate options. We elaborate on this method in Section 3.2.

3.1. Matching Bond Prices Using Forward Measure

The common procedure for matching the tree to the term structure of bond prices is based
on forward induction as used by Hull and White (1994) and first proposed by Jamshidian
(1991). This procedure obviously becomes computationally demanding for more involved
functions g(X, t). For completeness, we review this method in the Appendix. In this
section, we use an approach that builds on the use of the forward measure. To this end, we
exploit two properties of the forward measure.

Property 1. Under the forward measure the forward rate is an unbiased estimator of the
future interest rate (see, e.g., Björk (1998, p. 288)).
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The first property allows us to match the tree in a straightforward manner and, moreover,
the level shift is given in closed-form for a wide range of term structure models. Thus,
compared to the analytical implementation of the Hull–White model recently proposed
by Grant and Vora (2001), our procedure is not restricted to the extended Vasicek model.
However, as we will see, even if there is no analytical expression available, we can easily
fit the tree to the initial term structure with only minor additional computational costs.
Neither forward induction nor any root search algorithm are required.

Property 2. In discrete time the one-period forward measure equals the risk-neutral mea-
sure (see, e.g., Pliska (1997, p. 222)).

From the second property it follows that the backward induction to determine derivative
prices remains the same as in the standard trinomial tree. Therefore, no further adjustments
have to be made and prices can be calculated the same way as with a tree spanned under
the risk-neutral measure.

Changing the probability measure to the forward measure is a common tool in pric-
ing derivative instruments and considerably facilitates the calculation of the corresponding
expectation.3 Suppose that

∫ T

0 g(X, s) ds < ∞. The T -forward measure P
T is defined by

dP
T

dP |FT

= exp(− ∫ T

0 g(X, s) ds)

E[exp(− ∫ T

0 g(X, s) ds)]
= P(t, T )−1 exp

(
−

∫ T

0
g(X, s) ds

)
.

Then, as stated in Property 1, we have

E
T (rT |Ft ) = f (t, T ),

where E
T is the expectation operator under the T -forward measure. Since it is more natural

to work with simple compounded interest rates (e.g., LIBOR rates), we denote by f �
�(T ) =

(P (T )/P (T + �) − 1) /� the annualized, discrete time forward rate prevailing at time
[T , T + �] as observed from the initial term structure. In order to match the initial term
structure, we have to insure that

E
T (rT |Ft ) = E

T
(
g(X, T )|Ft

) = f �
�(T ),

holds for each time step in the trinomial tree. How can this be achieved?
Up to now, we have constructed the tree for X, such that for every time step the con-

ditional expectation of �X is matched under the risk-neutral measure. Therefore, the
probabilities π

k,h
i,j are P-probabilities. Note that, in discrete time, the one-period forward

measure equals the risk-neutral measure (see Property 2). So far we did not yet have spec-
ified the measures of path probabilities for more than one period. This additional degree
of freedom will be used to efficiently match the tree to the initial term structure. How this
can be achieved will be discussed next.

Given the appropriate technical conditions, the extended generator of Xt under P
T fol-

lowing the SDE in (1) can be written as

LT g = Lg + 
(
log P(t, T ), g

)
,
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where  is the “carré du champ operator” corresponding to L (see Davis (1998)), defined
as

(f, g) = L(fg) − gLf − fLg, f, g ∈ D(L).

This means that in continuous time, the drift of the process dXt is changed from µ(Xt) to
µ(Xt) − σ(Xt)

∂
∂X

log P(t, T ) under the forward measure P
T :

dXt =
(

µ(Xt) − σ(Xt )
∂

∂X
log P(t, T )

)
dt + σX(Xt ) dWT

t

= (
µ(Xt) − v(X, t, T )

)
dt + σX(Xt ) dWT

t , (12)

where v(X, t, T ) is the instantaneous volatility of the bond price process dP(t, T )/P (t, T ),
and WT is the standard Brownian motion under the measure P

T .
Now, the level shift of the original tree can be determined as follows. Using continuous

time notation, we need to find a level shift such that the forward rate is an unbiased estimate
of the future interest rate, i.e.,

E
T
(
g(X, T )|Ft

) = f (t, T ),

where

dE
T [g(X, T )|Ft ]

dt
= E

T
[
LT g(X, T )|Ft

]
= E

[
Lg(X, T ) + 

(
log P(t, T ), g(X, T )

)|Ft

]
.

Thus,

f (t, T ) = f (t, t) +
∫ T

t

E
[
Lg(X, s) + 

(
log P(s, T ), g(X, s)

)|Ft

]
ds

= E
[
g(X, T )|Ft

] +
∫ T

t

E
[


(
log P(s, T ), g(X, s)

)|Ft

]
ds

= E
T [rT |Ft ], (13)

subject to g(X, t) = f (t, t) = rt . In order to match the tree, we alter the original tree for
the Markov process X in the following way.

• At each time slice, we change the level of the tree for g(X, t) by a function η(t, T ,X)

defined by

η(t, T ,X) =
∫ T

t

E
[


(
log P(s, T ), g(X, s)

)|Ft

]
ds. (14)

To perfectly match the tree to the initial term structure at time t , the shift at each time
slice j� is determined by

η(t, j�,X) = f �
�(j�) − E

[
g(xj�, j�)|Ft

]
. (15)
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• The tree for rt is now spanned under forward probability measures. At time step j , we
have E

j�[rj�|F0] = f (0, j�) under measure P
j�. The one period forward measure

equals the risk-neutral probability measure.

3.1.1. The Extended Vasicek Model To further clarify our point, we next discuss a few
examples of term structure models that can be handled analytically within our approach.
We start by discussing the extended Vasicek model. Assuming

dXt = −κXt dt + σ dWt, X0 = 0, (16)

we fix the initial date to 0. We define the function g(X, t) = g(Xt ) = Xt . Since in the
extended Vasicek model, the volatility of the bond price process is a function of time only,
we can write the forward rate in (13) as

f (t, T ) = E
[
g(XT )|Ft

] + η(t, T ).

Then, according to Equation (14), the level shift at time t = 0 becomes

η(0,�) = f �
�(�) − E(X�|F0) = f �

�(�).

For the next time-step, [�, 2�], we simply obtain

η(0, 2�) = f �
�(2�).

Obviously, we do not have to make any tedious calculations at all. The level shift at time
step (j − 1)� is simply given by

η(0, j�) = f �
�(j�). (17)

Finally, we can determine the measure change dP
T /dP as

dP
T

dP

∣∣∣∣
FT

= exp

(∫ T

0

∂η(u, T )

∂T
dWu − 1

2

∫ T

0

(
∂η(u, T )

∂T

)2

du

)
.

Since the derivation of the bond price is a straightforward task, the PT -dynamics of Xt in
Equation (12) are explicitly obtained as

dXt =
(

e−κ(T −t ) − 1

κ
σ 2 − κXt

)
dt + σ dWT

t , X0 = 0. (18)

Indeed, whenever we have an affine term structure model, where bond prices allow the
representation

P(t, T ) = exp
(
A(t, T ) + B(t, T )rt

)
,

the change of measure is

dP
T

dP

∣∣∣∣
FT

= exp

(∫ T

0
B(u, T )

∂g(X, u)

X
σ(X) dWu − 1

2

∫ T

0

(
B(u, T )

∂g(X, u)

X
σ(X)

)2

du

)
.
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As was already pointed out in Kijima and Nagayama (1994) and Pelsser (1994), the level
shift can be calculated analytically for the Vasicek model. They argue that the level shift
equals the expected value of the future interest rate. Thus, there is no forward induction
necessary. Hull and White (1996) object that this procedure does not provide an exact fit to
the initial term structure, because the tree is a discrete time representation of an underlying
continuous process. Hence, the tree is only fitted exactly using the forward induction
procedure, which would justify the additional computational costs. Here, however, we
calculate the expected value under the forward measure to determine the level shift for the
one-period forward rate, which equals the discretized short rate. Hence, the tree is matched
exactly to the initial term structure, while saving considerable amount of computation time.

3.1.2. Lognormal Models The extended Vasicek model has a significant drawback.
The interest rate can become negative. This property is rather unsatisfactory from both
a practical as well as a theoretical perspective. In lognormal models of the term structure
the interest rate remains positive. Indeed, practitioners base their market formulas of caps
and swaptions on the assumption of lognormal rates (Black (1976)).

We assume dXt as given in Equation (16), but now with rt = aeXt . The short rate
becomes lognormally distributed with expectation

E[rT |Ft ] = a exp
(
Xte

−κ(T −t )
) + a exp

(
σ 2

2κ

(
1 − e−2κ(T −t )

))
.

Therefore, for the tree centered at X0 = 0, and with fixed κ and σ , the relation

r0 = f �
�(�) = a + a exp

(
σ 2

2κ

(
1 − e−2κ�

))
determines the constant a. Then, to match the whole term structure, we can explicitly
derive the level shift in (13) as

η(0, j�) = f �
�(j�) − a − a exp

(
σ 2

2κ

(
1 − e−2κj�

))
to determine the level shift at the (j − 1)�th time step.

We recall that with the standard Hull and White (1994) procedure one would have to
perform a root search algorithm for each time step in order to determine the level shift
for matching the tree with lognormal interest rates. Using, e.g., the Newton–Raphson
procedure to find numerically the level shift may induce numerical instabilities, since such
a procedure is sensitive to the starting values.

3.1.3. General Quadratic Models With the parameters a, b, and c such that

rt = a + bXt + cX2
t � 0, (19)
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we can span an interest rate tree with strictly positive interest rates. For the strict inequal-
ity (19) to hold, we require

a >
b2

4c
.

Again, we define Xt as an Ornstein–Uhlenbeck process given in Equation (16). Then,

E[rT |Ft ] = a + cσ 2

2κ

(
1 − e−2κ(T −t )

) + Xte
−κ(T −t )

(
b + cXte

−κ(T −t )
)

and with X0 = 0, we obtain for the short rate at time r0

r0 = f �
�(�) = a + cσ 2

2κ

(
1 − e−2κ�

)
.

To match the entire initial term structure, the level shifts for j > 1 can readily be calculated
as

η(0, j�) = f ∗(j�) − a − cσ 2

2κ

(
1 − e−2κj�

)
. (20)

3.1.4. The Cox–Ingersoll–Ross (CIR) Model As noted in Section 1.2, depending on
the state variable process, the CIR model can be either fitted into the affine class of term
structure models or into the quadratic Gaussian class (see also Maghsoodi (1996)). As
noted by Jamshidian (1996), there are some theoretical problems involved, when we spec-
ify the interest rate as rt = X2

t . First of all, when we would set µX(X) = θ − κXt with
θ �= 0, the spot rate will not be a diffusion Markov process. But then, when we set rt = X2

t

with θ = 0, the interest rate, although never negative, can become zero.4

In practice, the CIR model is implemented by using some ad-hoc procedures. One
example can be found, e.g., in Brigo and Mercurio (2001). They set

dXt = κ(θ − Xt) dt + σ
√

Xt dWt (21)

and define the short rate as an affine function of the sate variable, namely

rt = Xt + ρt , (22)

where ρt is the level shift that matches the model to the initial term structure. For conver-
gence purposes, they span the tree for an auxiliary process Yt with a constant instantaneous
volatility, defined as

Yt = √
Xt . (23)

The tree for Y still has the problem that some nodes may become negative. To avoid
negative nodes, Brigo and Mercurio (2001) suggest to alter the tree geometry accordingly.
Setting again Xt = Y 2

t , the final step is to find the value of ρt such that the tree is matched
to the initial term structure.

We remark that our calibration procedure outlined in this section remains applicable.
Indeed, our calibration procedure is as general as the forward induction of Hull–White.
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If a closed-form expression for the correction term is not available, the calculation of this
correction term can be approximated using the path-probabilities in the tree. For T = j�,
we obtain

E
T
[
g(Xt )|Ft

] ≈
∑

i

�(i, j�)g(Xi,j ), (24)

where �(i, j�) denotes the sum of all path probabilities leading to state (i, j). Using (24),
the tree is also matched exactly to the initial term structure. Since the path probabilities
�(i, j�) have to be calculated only once, the additional computational costs of using
Equation (24) instead of an analytical formula are low. Our numerical experiments for
the Black–Karasinski model indicate that, compared to forward induction, the calculation
of a one-year European option using a tree with 200 time steps is about five times faster
when using our approach with (24). Using a tree with 3000 time steps, our method is still
four times faster. If we do not recalculate the probabilities (24), then the efficiency gain
is around a factor of 150 for a tree with 200 time steps and 140 for a tree with 3000 time
steps.5

3.2. Calibrating to the Term Structure of Volatilities

In this section, we show how the trinomial tree can be fitted in an efficient way to the
initial term structure of volatilities. Calibrating the volatility structure is often subject to
some criticism. Hull and White (1996) suggest that in a Markov model there should be only
one time-dependent parameter. Whenever the volatility is modeled as time-dependent, the
resulting non-stationarity in the volatility curve may have many unexpected effects. In par-
ticular, any instrument whose price depends on future volatilities is liable to be mispriced.

Before we start discussing, how the trinomial tree can be manipulated to match the
volatility structure, we explore the theoretical underpinning of calibrating the volatility.
First, note that in the previous section we introduced a measure change to determine the
level shift for the interest rate tree. An absolutely continuous change of measure only
affects the drift of the process, but the quadratic variation will not be affected. Hence, for
the tree construction, it is more appropriate to first match the volatility and then match the
forward rate curve.

To alter the diffusion coefficient, we have to introduce a time change.6 As we are only
considering a deterministic time change, we can use the following result.

Lemma 1. Consider the continuous time-dependent functions c(t) > 0 and τ (t) =∫ t

0 c(s)−1ds � 0. Define

W̃t =
∫ τ (t)

0

√
c(s) dWs.

Then W̃t is a Fτ (t)-Brownian motion. Further,∫ τ (t)

0
dWs =

∫ t

0

√
∂τ(s)

∂s
dW̃s . (25)
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From Equation (25), the time-changed Brownian motion alters the volatility of the origi-
nal Brownian motion. Hence, this technique offers a convenient tool to match the trinomial
tree to the term structure of volatilities.

In the previous section, where we matched the tree to the forward rate curve only, we
implicitly assumed τ (t) = t and hence, c(t) = 1. By introducing the time change, we now
construct a tree for the new process

dXt = µX(X) dt + σ̃X(X, t) dW̃t , (26)

where σ̃X(X, t) = σX(Xt )
√

∂tτ (t). Since we use now the process (26), care has to be
taken when matching to the initial forward rate curve. The results in the previous section
have to be adjusted accordingly. We will show below, how this can be achieved in an
efficient manner. The introduction of a deterministic clock for volatility matching was
already introduced in Schmidt (1997). Contrary to Schmidt (1997), we do not change the
length of the interval between subsequent time-steps to fit this concept into our trinomial
framework. Instead, we adjust the jump size in each time step in such a way that the tree
probabilities remain unchanged. Hence, the jump size δ is becoming a function of time
and we denote it as δj .

Assume now that we want to calibrate our interest rate tree to the term structure of
forward rate volatilities.7 We further assume that we are given a set of volatilities of one-
period forward rates, denoted by V �(j�). To construct a tree calibrated to the volatilities
V �(j�), we can follow a simple step-by-step procedure:

1. In the first step, we construct the tree as usual, i.e., we start with the process X and solve
the system of equations in (11) to obtain the tree probabilities.

2. Next, we need to find the value δj for each time step, such that the observed volatilities
are calibrated. We obtain the values δj by solving

V �(j�) =
∑

i

�(i, j�)g(Xi,j , δj )
2 −

(∑
i

�(i, j�)g(Xi,j , δj )

)2

(27)

for δj . Note that only g(Xi,j , δj ) depends on δj , but not the path probabilities �(i, j�).
Solving (27), we end up with a tree for the process g(Xi,j ) = g(Xi,j , δj ) that is cali-
brated to the observed volatilities.

3. Finally, we introduce the level shift as outlined in Section 3.1. Such a level shift does
not alter the calibrated tree volatilities.

3.3. Convergence

Before we turn to numerical examples, we briefly address convergence issues. We do
not provide theoretical results here. Instead, we refer to the work of Lesne, Prigent, and
Scaillet (2000) that is directly applicable in our context. Based on the limit theorems of
stochastic processes in Jacod and Shiryaev (1987), they extend results from Hubalek and
Schachermayer (1998) and establish the convergence of trinomial trees using results for
martingale difference arrays.
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From Proposition 1 of Lesne, Prigent, and Scaillet (2000) and the continuous mapping
theorem, the discretization of a continuous time financial market, including stocks and
bonds, converges to its continuous-time limit, and so do the option prices. A requirement
for the convergence are continuity and linear growth properties for the drift and diffusion
terms of the processes involved.

These requirements on the functional forms of the drift and the diffusion terms put, in
addition to the no-arbitrage condition, some restriction on the function g(X). However,
these requirements do not concern the way in which the trinomial tree is matched to the
term structure. Therefore, whenever a term structure model converges within a Hull–White
trinomial tree, it converges when using our calibration procedure. Since we can directly
rely on the result in Lesne, Prigent, and Scaillet (2000), we restrict the discussion of con-
vergence to a numerical exploration in Section 4.

Finally, we note that the prices obtained using the traditional forward induction and
the prices obtained via the forward measure approach converge in the trinomial tree when
� → 0. However, for a given �, the prices must not be identical as we will see, e.g., in
Figure 6. The reason for these difference lies in the use of different probability measures
and different level shifts. Only in the limit, as � → 0, the two matching methods converge.

4. Numerical Examples

4.1. Illustrative Example

The best way to convey the intuition behind our calibration procedure is through a simple
example. We start with an affine term structure model based on a Gaussian state vari-
able Xt . We assume that Xt follows the process

dXt = −κXt dt + σ dWt .

The state spacing of the tree is given by

δ = √
3σ

√
1 − e−2κ�

2κ
,

for numerical reasons (see Hull and White (1994)). Setting

g(X) = Xt,

we obtain a Gaussian interest rate model. The branching probabilities are calculated in the
same way as in the Hull–White trinomial tree. In the next step, instead of calculating the
state prices as in Hull and White (1994), we match the tree to the initial term structure by
using Equation (17), i.e., the interest rate r(i, j) at node (i, j) is simply given as

r(i, j) = xij + f �
�

(
(j + 1)�

)
,

where xij is value of the discretized version of the process Xt at node (i, j). Hence, for
each time slice, the tree is shifted upwards according to the prevailing forward rate. By
doing so, the tree is matched to the initial bond prices.
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Node (0,0) (1,1) (0,1) (−1,1) (2,2) (1,2) (0,2) (−1,2) (-2,2)

π
1,1
i,j

0.1667 0.1569 0.1667 0.1768 0.1476 0.1569 0.1667 0.1768 0.1873

π
0,1
i,j

0.6666 0.6663 0.6666 0.6663 0.6651 0.6663 0.6666 0.6663 0.6651

π
−1,1
i,j

0.1667 0.1768 0.1667 0.1569 0.1873 0.1768 0.1667 0.1569 0.1476

�i,j 1 0.1667 0.6666 0.1667 0.0261 0.2222 0.5034 0.2222 0.0261

rHW
i,j

4.9686 5.7381 4.9635 4.1889 6.6414 5.8668 5.0922 4.3176 3.5430

rLW
i,j 4.9934 5.7549 4.9881 4.2211 6.6515 5.8846 5.1177 4.3508 3.5838

Figure 3. Construction of the trinomial tree for the extended Vasicek model. We assume an Ornstein–Uhlenbeck
process for X with κ = 0.1, σ = 0.01, � = 0.2, and base our calculations on the term structure given in Table 1.
The interest rates rLW

i,j
are obtained by using our calibration approach, the interest rates rHW

i,j
are based on the

Hull–White procedure.

The construction of the trinomial tree for g(X) = Xt , κ = 0.1, σ = 0.01, � = 0.2
is illustrated in Figure 3. We base our calculations on the term structure given in Table 1
taken from Hull (2003, p. 560). The interest rates rLW

i,j are obtained by using our calibration

approach, the interest rates rHW
i,j are based on the Hull–White procedure.8 We observe that

in both cases the shifts of the trinomial tree is of a similar magnitude. As a consequence,
there will only be a small difference between the interest rates, and particularly so for short
time horizons.

The calculations of the tree probabilities for a single time step remain the same in both
calibration procedures. However, we have to recall that the tree spans under the forward
measure and not under the risk-neutral measure. This means that the path probabilities
�(i, j) in Figure 3 have to be interpreted as probabilities under the corresponding forward
measures, i.e., under the j�-forward measure. In the Hull and White model, these proba-
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bilities would simply be risk-neutral probabilities for all j ’s. These measure changes have
to be kept in mind when pricing derivatives on the tree (see Section 4.2.1).

If we would expand the tree to more time steps, we will observe that interest rates soon
turn negative in the extended Vasicek model (Figure 4(A)). A possibility to avoid negativity
of interest rates is to consider a quadratic term structure model instead. The level shift is
given by Equation (20). The upward shift by the forward rate has to be adjusted by a
correction term. This correction term is available in closed form (see Equation (20)). The
quadratic tree is plotted in Figure 4(B).

As another example, consider the CIR model in Equations (21)–(22). To construct the
tree, we follow the methodology of Brigo and Mercurio (2001). However, to match the
tree to the initial term structure, we do not apply a forward induction, but we use our
methodology based on the forward measure. To avoid negative interest rates, the tree
geometry has to be adjusted. Therefore, we introduce an alternative branching process
whenever the lower nodes would become negative. As we observe in Figure 5, such a
procedure kinks the lower boundary of the tree. In order to avoid too high interest rates,
we also kink the tree at the upper boundaries. Again, there are many different alternatives
to manipulate the tree’s geometry.

4.2. Comparison with the Hull–White Trinomial Tree

In this section, we compare the convergence of option prices and sensitivities using our cal-
ibration procedure based on the forward measure and the traditional Hull–White forward
induction.9

4.2.1. Option Prices Under the forward measure, the time-t price Vt of a European
claim with payoff VT at maturity T , we have

Vt = P�(T )ET [VT |Ft ].
Thus, when using the tree for valuation, we only need to discount the payoffs at T with the
appropriate discount factor, i.e., the appropriate (and observable) bond prices. The same
is true for all other path-independent options, which can be decomposed into a portfolio
of European options. Note that, since in the current discrete time setting, the one-period
forward measure equals the risk-neutral probability measure, we can determine American
option prices by recursively working through the tree.

For comparison, we only calculate European option prices and base the subsequent cal-
culations on the term structure given in Table 1. Based on this term structure, Hull (2003)
calculates the value of a put option on a 9 year zero bond with face value 100. The matu-
rity of the put option is 3 years and the strike price is set equal to 63. Furthermore, Hull
assumes the interest rate to follow a mean-reverting Ornstein–Uhlenbeck process with pa-
rameters κ = 0.1 and σ = 0.01. For a model with normally distributed interest rates no
root search is necessary. Furthermore, the value of the put can be derived analytically,
which makes this choice particularly suited to explore the convergence properties.
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(A)

(B)

Figure 4. Trinomial trees for an affine (A) and a quadratic (B) Gaussian term structure model. The affine model
leads to negative interest rates, when no alternative branching processes are introduced. The Gaussian model has
only positive interest rates. To avoid to high interest rates for this model, we introduced the alternative branching
process (B) from Figure 2.
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Figure 5. Trinomial tree for the CIR model. We match the CIR interest rate model to the initial term structure
using the forward measure approach. Whenever the interest rate would fall below zero, we introduce an alternative
branching process. The resulting tree stays positive, but has some kinks at its lower edge. Additionally, we
introduce kinks at the upper edge.

Table 1. Zero Curve with Continuously
Compounded Interest Rates

Maturity (Days) Rate (%)

3 5.01772
31 4.98284
62 4.97234
94 4.96157

185 4.99058
367 5.09389
731 5.79733

1096 6.30595
1461 6.73464
1826 6.94816
2194 7.08807
2558 7.27527
2922 7.30852
3287 7.39790
3653 7.49015

Using Hull’s (2003) example, we compare the two different calibration methods. To this
end, we calculate the put option value for different tree depths up to a depth of 750. The
results are plotted in Figure 6. Both methods converge to the true analytical value following
a similar convergence pattern. Therefore, we conclude that the convergence properties do
not favor one method over the other.
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Figure 6. Convergence of the trinomial trees. We compare option prices for the extended Vasicek model for the
calibration procedure based on the Hull–White forward induction and based on the forward measure approach.
The analytical option pricing formula serves as benchmark. We value a put option on a 9 year zero bond with
face value 100, maturity of 3 years, and a strike equal to 63. The interest rate follows a mean-reverting Orn-
stein–Uhlenbeck process with parameters κ = 0.1 and σ = 0.01. The tree is matched to the term structure given
in Table 1.

However, from a computational viewpoint there is, even for the simple extended Vasicek
model, a clear advantage from using our calibration method. Recall that the Hull–White
method is still based on forward induction. This forward induction has to be performed
every time when the tree has to be adjusted to the new term structure. Using our method,
the most costly part is the calculation of the path probabilities. However, these probabilities
do not depend on market values, and therefore only have to be calculated once. When the
term structure changes from one day to the next, the only thing to do is to shift the tree at
every time slice according to the new forward rates. In the extended Vasicek model, this
shift involves just a simple addition. No recalculation of probabilities is needed.

As another example, we calculate the prices of a one year interest rate call options for
the Black–Karasinski model. In Figure 7, we compare the option prices for different tree
depths. The option price calculated with tree depth of 1000 time steps serves as benchmark.
To calculate prices, we assume g(X) = eX, κ = 0.8, σ = 0.075, and the caprate is fixed
at 0.05.

In Figure 7, we observe that both calibration methods converge. For the calculated
example, we see that the method based on the forward measure does a better job. The
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Figure 7. Convergence of the trinomial trees. We calculate the price of a one-year interest rate call option for
the Black–Karasinski model for different tree depths. The calibration procedures are based on the Hull–White
forward induction and on the forward measure approach. The option price calculated with tree depth 1000 serves
as benchmark. To calculate prices, we assume g(X) = eX , κ = 0.8, σ = 0.075, and the caprate is fixed at 0.05.
The tree is matched to the term structure given in Table 1.

numerical values for small tree depths already start close to the benchmark value calculated
with a tree depth of 1000 steps. However, at this stage, we are not able to come up with a
theoretical justification of this point. We leave this issue open for future research.

4.2.2. Sensitivities For hedging and risk management purposes, sensitivities to changes
in different model inputs can be calculated in the same manner as with trinomial trees
calibrated by forward induction. As an example, we can calculate the sensitivity of a put
option on a bond with respect to a one basis point upward-shift of the term structure. We
assume an extended Vasicek model and consider a put option with maturity of one year on
a three year bond. The strike is fixed at 89%. The remaining parameters are set equal to
those we used in Figure 6.

From Figure 8, we see that both methods converge in a similar manner. This was to
be expected, since prices also converge similarly (see Figure 6). Note, however, that our
calibration procedure is again much more efficient. Since for the sensitivity analysis we do
not have to recalculate the path probabilities, we can shift the tree according to the shifted
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Figure 8. Convergence of the trinomial trees. We compare the sensitivity of a call option to an upward parallel
shift in the yield curve. We calculate price changes for the extended Vasicek model for the calibration procedure
based on the Hull–White forward induction and based on the forward measure approach. The analytical option
pricing formula serves as benchmark. The call option is on a three year zero bond and has maturity of one year.
The tree is matched to the term structure given in Table 1. The initial term structure is shifted by one basis point.

forward rate curve and use the same probabilities to calculate prices. In contrast, when
using forward induction, we would have to recalibrate the tree, and when no closed form
solution is available for the shift (such as, e.g., in the Black–Karasinski model), we have
to restart the entire numerical root search algorithm. This may become time-consuming.

5. Conclusion

In this paper, we elaborated on some extensions and generalizations of the traditional tri-
nomial tree models for interest rates. We furthermore showed how the tree matching pro-
cedure can be reformulated in a much more efficient way. Our approach is based on the
forward measure methodology. It is as generic as the Hull–White methodology based on
forward induction and also avoids numerical root-search algorithms necessary to deter-
mine the state prices in the Hull–White model, when the interest rate is no longer normally
distributed. Therefore, our approach can simplify and considerably improve current prac-
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tice. Furthermore, it is robust in the sense that it can still be applied when the tree is also
required to match the term structure of volatilities.
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Appendix. Matching by Forward Induction

Consider a trinomial tree with starting point (0, 0). All quantities are expressed as annu-
alized quantities. One year is partitioned into subperiods of length �. To simplify the
subsequent analysis, we will consider standard branching processes only and set h = 1
and k ∈ {−1, 0, 1}.

Today’s one-period bond price P�(�) is assumed to be known, i.e., extracted from the
market quotes by some estimation procedure. Then,

P�(�) = e−r0,0�,

with ri,j the annualized, continuously compounded short rate in state (i, j) prevailing over
the time period [j�, (j + 1)�]. Before considering the second time step, we introduce
the concept of a state-price. The state-price is denoted by Qi,j . In the following, the state-
price Qi,j can be thought of today’s price of a security that pays exactly $1 if state (i, j)

occurs, and $0 in every other state. Then, Q0,0 = 1 and in the standard trinomial tree we
have

P�(j�) =
j∑

i=−j

Qi,j . (A.1)

Now, moving from time � to 2�, we observe the following:10

P�(2�) = e−r0,0�
(
π1e

−r1,1� + π0e
−r0,1� + π−1e

−r−1,1�
)
.

For large j , it would be rather cumbersome to write this up. Using the state-price formula-
tion, we can considerably simplify the above procedure by writing the bond price as

P�(2�) =
2∑

i=−2

Qi,2 =
1∑

i=−1

Qi,1e
−ri,1�.
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The Qi,� have still to be determined. This is achieved by forward induction. We know
Q0,0 = 1 and r0,0. So, for the next time-step

Qi,1 = πie
−r0,0�.

Generalizing the above procedure, the bond price P�((j + 1)�) can be written as

P�
(
(j + 1)�

) =
j∑

i=−j

Qi,j e
−ri,j �.

This form is much more amenable for determining the level shift needed to match the term
structure. Once the interest rate at time-slice j is determined by matching the tree, the
state-prices for the subsequent time step can be calculated as

Qi,j+1 =
∑
m

Qm,jπme−rm,j ,

where m is determined by the paths leading to node (i, j +1). For now, we are still lacking
a piece. Recall rt = g(Xt , t) and consider now, e.g., the function rt = g(αt + Xt) with αt

a deterministic function of time. Then,

P�
(
(j + 1)�

) =
j∑

i=−j

Qi,j e
−g(αj+xi,j )�.

To determine the level shift αj , we have to invert the above relation. For illustration,
consider the affine function rt = αt + βXt . Hence, we obtain

αj = 1

�
log

(
j∑

i=−j

Qi,j e
−βxi,j �

)
− log P�((j + 1)�)

�
. (A.2)

Note, the above procedure implicitly assumes the π’s to be probabilities under the risk-
neutral measure. Therefore, when pricing claims using the matched tree, one should recall
that the tree is spanned under the risk-neutral measure.

Notes

1. The extended generator of the process X is defined as L = ∂
∂t

+ ∂
∂X

µX(X)+ 1
2

∂

∂X2 σ 2
X

(X), see, e.g., Arnold
(1974), p. 180.

2. General quadratic term structure models have been discussed by Ahn, Dittmar, and Gallant (2002), Leippold
and Wu (2002).

3. See, e.g., Jamshidian (1989), Geman, El Karoui, and Rochet (1995), Benninga, Björk, and Wiener (2002).
4. However, the parameters in the CIR square-root model can be chosen in such a way that the spot rate never

reaches zero. In particular, the condition for the parameters directly derives from the parameterized version
of the CIR model in Equation (5). If we consider the general CIR model with

drt = (θ − κrt ) dt + σ
√

rt dWt ,

the condition 2θ > σ 2 guarantees a positive interest rate that never reaches zero.
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5. These calculations have been done on a standard personal computer with a Matlab implementation of the two
methodologies.

6. See, e.g., Durrett (1996).
7. Typically, they are either estimated historically or determined by at-the-money interest rate derivatives such

as caps or swaptions.
8. Note that the difference in the interest rate in node (0, 0) arises due to the fact that we interpret the interest

rate as a simple rate, whereas Hull and White define this rate as a continuously compounded short rate.
9. The computations are based on a Mathematica implementation of the trinomial trees.

10. Since in this simple setup probabilities are not time dependent, we just simplify the notation to πi .
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