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Abstract In a recent paper of Weidman and Sprague (Acta Mech., 2011), the unsteady flows generated by
an impermeable infinite flat plate advancing with constant velocity V toward, or receding from an orthogonal
(plane or axisymmetric) stagnation-point flow, have been investigated by an exact similarity reduction of the
Navier–Stokes equations. It has been shown that in the co-moving reference frame of the plate, the induced
flow appears as a steady flow, with an additional term R f ′′ in the governing equation of the similar stream
function f (η). The Reynolds number R involved in this additional term is proportional to the plate velocity V .
The present paper shows, however, that with the aid of a simple transformation, the additional term R f ′′ can
be removed from the governing equation, its effect being transferred in the boundary condition for f (η). As
a consequence, the unsteady flow problems of Weidman and Sprague reduce to the classical steady stagna-
tion-point flow problems for permeable surfaces with a uniform lateral suction or injection of the fluid, so
that the transpiration parameter f (0) coincides with R for the plane and with R/2 for the axisymmetric flow,
respectively. The main benefit of this approach is that all the results of the latter well-investigated problems
can simply be transcribed for the problems formulated by Weidman and Sprague (Acta Mech, 2011).

1 Introduction and basic equations

In a recent paper of Weidman and Sprague [1], a comprehensive analytical and numerical study of the title
problem has been reported. It has been shown that by the similarity transformation of the stream function

ψ (x, z) = √
aνx f (η) , η =

√
a

ν
(z − V t) , (1)

the Navier–Stokes equations of the plane stagnation-point flow (Hiemenz flow),

ψt z + ψzψxz − ψxψzz = − 1

ρ
px + ν (ψxxz + ψzzz) ,

ψt x + ψzψxx − ψxψxz = 1

ρ
px + ν (ψxxx + ψxzz) , (2)

reduce for the similar stream function f to the ordinary differential equation

f ′′′ + f f ′′ − f ′2 + 1 + R f ′′ = 0. (3)
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In the above equations, the stream function ψ has been defined in terms of the x and z components u and w
of the plane velocity field in the usual way, u = ψz, w = −ψx and the subscripts denote partial differentia-
tions with respect to the indicated variables. In Eq. (3), the primes denote differentiations with respect to η,
R = V l/ν is the Reynolds number based on the plate velocity V and on the reference length l = √

ν/a, where
a is the strain rate of the flow. For R > 0, the plate moves into the stagnation flow, and when R < 0 the plate
recedes from it. The pertinent boundary conditions are [1]

f (0) = 0, f ′ (0) = 0, f ′ (∞) = 1. (4)

Owing to the choice (1) of the similarity independent variable η, the induced flow appears in the co-moving
Galilean reference frame of the plate as a steady flow.

In the case of a plate moving with constant velocity V normal to the axisymmetric stagnation-point flow
(Homann flow), similar results have been reported [1], so that the governing differential equations of both
stagnation-point problems can be encompassed in the same form

f ′′′ + m f f ′′ − f ′2 + 1 + R f ′′ = 0, (5)

with m = 1 and m = 2 for the Hiemenz and Homann flows, respectively. The boundary conditions are given
in both cases by Eq. (4).

2 Transformation

At first glance, there seems that due to the presence of the additional term R f ′′, the boundary value problems
specified by Eqs. (5) and (4) differ substantially from their classical (properly steady) counterparts correspond-
ing to R = 0. This, however, is not so. Indeed, substituting in Eq. (5)

f (η) = F (η)− R

m
, (6)

one immediately arrives at the equations

F ′′′ + m F F ′′ − F ′2 + 1 = 0, F (0) = R/m, F ′ (0) = 0, F ′ (∞) = 1, (7)

which describe the classical Hiemenz and Homman stagnation-point flows toward permeable surfaces when
a uniform suction/injection of the fluid with transpiration parameter R/m is applied. It is worth mentioning
here that the reduction to the boundary value problem (7) could have been obtained also directly, by replacing
the stream function (1) posited in [1] from the very beginning by

ψ (x, z) = √
aνx

[
F (η)− R

m

]
, η =

√
a

ν
(z − V t) . (8)

Therefore, the solution f (η) of the unsteady flow problem of Weidman and Sprague [1] can be obtained
from the solution F (η) of the classical steady flow problem (7) by simply subtracting from the latter one the
constant R/m. Accordingly, all the derivatives of f (η) and F (η) with respect to η are equal and thus the
components (u, w) of the velocity field as well as the dimensionless shear stress f ′′ (η) (in particular the skin
friction f ′′ (0)) are obtained from the solution F (η) of problem (7) as

u (x, z) = ax F ′ (η) , w (x, z) = −√
aν [F (η)− R] , f ′′ (η) = F ′′ (η) , (9)

for the Hiemenz flow and

u (r, z) = ar F ′ (η) , w (r, z) = −2
√

aν

[
F (η)− R

2

]
, f ′′ (η) = F ′′ (η) , (10)

for the Homann flow.
The physical meaning of the above results is that (in the co-moving reference frame) the unsteady flow

induced by the impermeable plate moving into the stagnation flow (R > 0) is equivalent to the steady stag-
nation flow occurring over a fixed permeable plate when a uniform suction of the fluid with (dimensionless)
transversal velocity R/m > 0 is applied. Similarly, the unsteady case of the uniformly receding (R < 0)
impermeable plate is equivalent to the case of a fixed permeable plate in the presence of a uniform injection
of the fluid with transversal velocity R/m < 0. Bearing in mind that (7) is a well-studied (steady) boundary
value problem, all the known result can simply be transcribed to the present unsteady case of [1] with the aid
of Eqs. (6), (9), and (10). This circumstance will be illustrated in the sequel by a few examples. For the sake
of brevity, only the case of plane flow (m = 1) will be considered.
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3 Examples

An outstanding feature of the stagnation-point flow problems is that in all these cases Prandtl’s boundary layer
approximation becomes exact. The reason is that those terms of the Navier–Stokes equation which usually are
omitted in boundary layer theory, vanish identically due to the assumptions about the velocity components of
stagnation-point flows. Owing to this fact, the stagnation-point flows have attracted very much attention during
the long history of the boundary layer theory. Concerning the boundary value problem (7) with nonvanishing
mass transfer, F (0) �= 0, the first representative investigation has been published nearly seventy years ago by
Schlichting and Bussmann [2]. In the meantime, the problem (7) has become a textbook issue (see e.g. [3,4]).
In this sense, the results of [1] for the large Reynolds number asymptotics, which in the present approach cor-
respond to the massive suction (R � 1) and massive injection (R < 0, |R| � 1) of the fluid, can immediately
be recovered from the respective equations of Section VI.32 of [4]. Thus, in case of massive suction, Eq. (270)
of Section VI.32 of [4] yields

F ′′ (0) = f ′′ (0) = R + 2

R
− 13

2R3 + · · · (R � 1), (11)

which coincides to O (1/R) with Eq. (4.11) of [1]. In the case of massive injection, Eq. (5.55) of [3] gives
F ′ (η) = f ′ (η) = sin (η/ |R|)which in turn yields F ′′ (0) = f ′′ (0) = 1/ |R| in full agreement with Eq. (4.23)
of [1]. Moreover, as is well known (see e.g. [3,4]) in the case of massive suction, the boundary layer equations
admit a universal solution, the asymptotic suction profile (see e.g. Eqs. (5.51) and (5.52) of [3]) which in the
present case is

f ′ (η) = F ′ (η) = 1 − e−Rη (R � 1). (12)

This equation can also easily be recovered from Eqs. (4.4) and (4.6) of [1].
In spite of the long history of the problem (7), recently in this respect, several new and exciting results

have been reported by King and Cox [5]. Concerning the structure of the solution space, King and Cox [5]
have pointed out that in addition to the solution branch with positive skin friction, F ′′ (0) > 0, which extends
over the whole range −∞ < R < ∞ of the transpiration parameter and which has already been found by
Schlichting and Bussmann [2], further two solution branches exist. These new solution branches correspond
to negative values of the skin friction, F ′′ (0) < 0, and do exist only above of a critical value Rc = 2.0512 of
the suction parameter R (the Reynolds number of [1]). The three solution branches described by King and Cox
[5] and illustrated (for different scalings of the involved variables) in their Figs. 1 and 2 have been re-plotted
in our Fig. 1, as being recalculated numerically by the present author. Owing to the translation invariance of
the boundary layer equations (discussed recently in some detail in [6]), the method of “false origin” worked
out initially by Bussmann (and applied in [2] for F ′′ (0) > 0) could be adapted to the numerical integration
also in the cases F ′′ (0) < 0. The two new solution branches p and q discovered by King and Cox [5] match
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Fig. 1 Structure of the solution space of the boundary value problem (7) according to King and Cox [5]. The branch s − r that
includes the Hiemenz solution at R = 0 has already been reported by Schlichting and Bussmann [2]. This solution branch is also
shown in Fig. 1 of Weidman and Sprague [1]. The new branches p and q discovered by King and Cox [5] match each other at
the critical value Rc = 2.0512 of the transpiration parameter which represents the lower bound of their domain of existence. The
bisectors ±R are the asymptotes of F ′′ (0) for R → ∞ (massive suction)
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Fig. 2 Three dimensionless velocity profiles F ′ (η) corresponding to the same value R = 2.5 of the transpiration parameter R.
The corresponding values of the skin friction are F ′′ (0) = 3.09113 (r-branch solution), F ′′ (0) = −4.44823 (p-branch solution),
and F ′′ (0) = −1.40228 (q-branch solution). In the latter two cases, backflow domains occur

each other at the critical value Rc = 2.0512 of the transpiration parameter which is a saddle-node bifurcation
point and represents the lower bound of the existence domain of the corresponding solutions. In this way,
in the parameter range R > Rc, the boundary value problem (7) admits triple solutions. While the similar
downstream velocity f ′ (η) = F ′ (η) is everywhere positive for the Hiemenz-branch s − r (which has also
been found and plotted in Fig. 1 of [1]), in the case of the new solution branches p and q , it always includes also
backflow domains, where F ′ (η) < 0 holds. This feature is illustrated in our Fig. 2 where the dimensionless
velocity profiles f ′ (η) = F ′ (η) of the triple solutions corresponding to R = 2.5 have been plotted.

Owing to the relationship (6), also several other results of King and Cox [5] can easily be transcribed for
the unsteady problem examined by Weidman and Sprague [1]. In this sense, Eq. (14) of [5] for the skin friction
of the solution branch r in the massive suction case (in our notation) becomes

F ′′ (0) = f ′′ (0) = R
N∑

n=0

αn

R2n
(R � 1, branch r), (13)

where the coefficients αn, n = 0, 1, 2, . . . , 11 are given in Table 1 of [5]. Thus, bearing in mind that
α0 = 1, α1 = 2, α2 = −13/2, from Eq. (13) one recovers to O

(
1/R2

)
the above relationship (11). In case of

the solution branch q , the same quantity is given by Eq. (47) of [5] which (in our notation) reads

F ′′ (0) = f ′′ (0) = R
N∑

n=0

(−1)n+1 αn

R2n
= −R + 2

R
+ 13

2R2 − · · · (R � 1, branch q). (14)

This relationship shows clearly that the bisector F ′′ (0) = −R is actually the asymptote of the solution
branch q , in agreement with Fig. 1.

The linear stability analysis of King and Cox [5] shows that as expected, all the solutions with negative
skin friction associated with the branches p and q are unstable, while the solutions with positive skin friction
corresponding to the Hiemenz-branch s − p are linearly stable, in full agreement with the findings of Weidman
and Sprague [1] (although in the case of strong injection, i.e. for large negative values of R, the calculation of
the eigenvalues becomes increasingly difficult).

4 Conclusions

The unsteady flows generated by an impermeable infinite flat plate advancing with constant velocity V toward,
or receding from an orthogonal (plane or axisymmetric) stagnation-point flow, are undistinguishable (in the
co-moving Galilean reference frame of the plate) from their well-known steady counterparts over fixed surfaces
when these are permeable and a uniform lateral suction or injection of the fluid proportional to V is applied.
Owing to this equivalence, all the results of the latter well-investigated problems can simply be transcribed for
the unsteady case of the moving impermeable plate.
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