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Variable antiretroviral therapy (ART) drug response 
likely reflects the combined influence of environment, 
underlying disease, concurrent drugs, and genetics. 
Gender exerts modest or negligible effects on ART 
disposition, and it is expected to have limited clinical 
implication, although it should be accounted for in 
large population studies. Ethnic denominations have, 
with the notable exception of efavirenz, no clear influ-
ence on ART disposition. Exploration of genetic factors 
might offer a better comprehension to the largely 
unpredictable and unresolved variability in ART con-
centrations and related toxicity or treatment outcome. 
Despite the negative perception of genetic research 
among the general public, this type of investigation is 
now widely accepted by concerned parties: patients, 
relatives, and study volunteers.

Introduction
There is marked interindividual variation in plasma lev-
els, efficacy, and in susceptibility to adverse effects of 
antiretroviral therapy (ART). Variable drug response may 
reflect the combined influence of exogenous factors (envi-
ronment, underlying disease, concurrent drugs), as well 
as gender, ethnicity, and genetics. In this regard, varia-
tion in the genes that encode for proteins involved in the 
metabolism or disposition of ART is thought to represent 
a key determinant of their efficacy and toxicity. Genetic 
variation also underlies differences in treatment response 
that are ascribed to ethnicity. In this update, we describe 
advances in the understanding of pharmacogenetic factors 
relevant to ART, as well as gender and ethnic determi-

nants of response. Finally, we will comment on specific 
research initiatives aiming at bringing genetic prediction 
to clinical use.

Gender and Pharmacokinetics
Sex or other sex-specific factors can influence ART phar-
macokinetic profile, the incidence of adverse reactions, and 
treatment outcome [1••]. Differences in body weight, plasma 
volume, gastric emptying time, plasma protein levels, hepatic 
enzyme expression and activity, drug transporters function, 
excretion activity, or sex-specific conditions (pregnancy, hor-
monal therapy) may account for the gender variation in drug 
profiles [1••]. A few studies have explored, among other 
covariates, the influence of sex on the disposition parameters 
of ART in order to explain the large interpatient variabil-
ity in the kinetic profile of these agents. Investigations of a 
sex-based effect on the pharmacokinetics of antiretroviral 
agents have provided inconsistent results between studies 
and among certain agents. These results are summarized in 
Table 1. A significant sex-effect was reported for indinavir 
in three population studies, which reported a decrease in 
apparent clearance in female compared with male patients 
after adjustment for body weight [2,3], as well as an increase 
in indinavir bioavailability in women [4]. Other investiga-
tors observed roughly similar pharmacokinetic parameters 
in women than in men [5]. In studies on saquinavir alone 
and saquinavir boosted by ritonavir, female patients had 
higher exposure, maximal, and trough concentrations of 
saquinavir and ritonavir [6,7] as well as a 50% reduction of 
clearance compared with male patients, after adjustment for 
body weight [8]. In contrast, no sex-related differences were 
reported in lopinavir [6,9], nelfinavir [10], amprenavir [11], 
and atazanavir (unpublished data) pharmacokinetic profiles. 

Studies on the non-nucleoside reverse transcriptase 
inhibitors are not fully conclusive. Efavirenz was not 
shown to be influenced by sex in three studies [12,13•,14], 
whereas one investigation reported a small decrease in 
apparent clearance [15] and others reported a sustained 
increase in mean efavirenz concentrations in female com-
pared with male patients [16,17]. No sex-related difference 
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in nevirapine elimination was reported by some authors 
[18,19], whereas two studies revealed a decrease in nevi-
rapine clearance in females [14,20]. 

The nucleoside reverse transcriptase inhibitors didano-
sine, tenofovir, lamivudine, and zidovudine pharmacokinetic 
profiles were not found to be influenced by gender [18,20–
22]. Interestingly, median intracellular concentrations of 
zidovudine triphosphate and lamivudine triphosphate were 
markedly increased in women compared with men without 
any other biologic explanation [21]. Finally, in the HIV-1 
fusion inhibitor enfuvirtide, elimination was reported to be 
reduced in female compared with male patients [23]. 

Taken as a whole, these results suggest that, although 
of moderate clinical implication, the sex-based differences 
on the plasma and intracellular levels of antiretroviral 
agents should be accounted for in large population studies, 
in particular in the view of concomitant impacting factors 
such as other demographic covariates, comedications, or 
underlying diseases, ethnicity, and genetic differences. 
Additional data can be found in the registration files of 
the various drugs. 

Ethnicity-related Differences  
in Pharmacokinetics
Geographic patterns of genetic variation indicate that geo-
graphic structuring of interindividual variation in drug 
concentration and response may occur [24••]. This is the 
basis for investigating whether ethnic, racial, or ancestry 
factors influence ART. Unfortunately, most of the avail-
able studies rarely include more than 25% of non-whites 
in the analysis. A better representation of the various eth-
nic groups is clearly needed (Table 1). 

Several studies on efavirenz have revealed ethnic-related 
differences in the clearance or bioavailability and of the 
plasma concentrations of this drug. A population meta-
analysis of 16 phase I studies revealed a decrease in efavirenz 
apparent clearance in blacks and Asians compared with that 
of whites [15]. Two subsequent population analyses of efavi-
renz in a cohort of 235 [12] and 398 [13•] individuals with 
HIV infection showed a modest but significant increase in 
bioavailability and a decrease in apparent clearance in the 
black and Hispanic subpopulations versus whites. Similarly, 
a clear increase in bioavailability in Asians versus whites with 
no effect on clearance or volume of distribution was reported 
in a cohort of 178 patients [25]. Blacks and Hispanics were 
reported to present double maximal concentrations and drug 
exposure compared with whites in a cohort of 190 patients 
as well [26•] and similar increases in mean efavirenz plasma 
concentrations were observed in blacks and in Asians [16]. 
An important genetic component to these ethnic differences 
is discussed below. A few analyses of nevirapine kinetics did 
not report any ethnic differences in elimination [18,20]. 

Several population pharmacokinetic studies have 
investigated the influence of ethnicity to explain the large 
interindividual variability in the plasma levels of protease 

inhibitors. No ethnicity-based difference in the pharma-
cokinetic parameters of indinavir [3,4], nelfinavir [10], 
saquinavir [8], lopinavir [9], and atazanavir (unpublished 
data) are reported. A study on amprenavir did not report 
any influence of ethnicity on its elimination [11]. Another 
cross-study analysis of three single-dose studies in 83 HIV-
positive and -negative individuals explored the relationship 
between amprenavir, α1-glycoprotein (AAG) level in plasma 
and ethnicity [27]. The authors found that mean concentra-
tions of AAG were 17% lower in black individuals compared 
with whites and that a significant inverse linear relationship 
was found between AAG concentration and amprenavir 
apparent clearance. The observed differences in amprenavir 
elimination might partially reflect a contribution of ethnic-
ity-associated genotypic-differences in AAG concentrations 
[28,29]. The same relationship between ethnicity, AAG 
concentrations and clearance are also observed for indinavir 
and lopinavir (unpublished data). No differences in zidovu-
dine and lamivudine kinetics were observed between whites 
and other populations [21].

Thus, except for efavirenz, no clear influence of an eth-
nic component on ART disposition has been evidenced. It 
has been suggested that the commonly used ethnic labels 
might be insufficient and inaccurate representations of 
actual genetic clusters and that the drug-metabolizing 
profiles differ significantly among the different clusters 
[24••]. Exploration of genetic-related factors might offer 
a better comprehension to the largely unpredictable and 
unresolved variability in antiretroviral agents’ concentra-
tions and related toxicity or treatment outcome. However, 
Ioannidis et al. [30] emphasized that although allelic fre-
quency may vary across ethnic groups, the specific effect 
of a functional variant allele was conserved. 

Genetic Variation in Genes Involved in the 
Pharmacokinetics of Antiretroviral Agents
Genetic variation in drug-metabolizing enzymes
Drug metabolism can be divided in two phases: phase I, 
that may occur by oxidation, reduction or hydrolysis, and 
phase II, where drugs are conjugated with polar-endog-
enous compounds that will facilitate their elimination from 
the body. Cytochrome (CYP) P450 is a group of heme-
containing enzymes responsible for the majority of phase 
I metabolism. Five CYP enzymes (CYP3A4, CYP3A5, 
CYP2C19, CYP2D6, and CYP2B6) are involved in the 
metabolism of ART. Genetic polymorphism may result in 
poor metabolizer phenotype due to gene deletion, to muta-
tions creating an alternative splice site, or a premature stop 
codon that results in nonexpressed, nonfunctional trun-
cated proteins. At the other side of the spectrum, there are 
individuals presenting ultra-rapid metabolizer phenotypes 
due to a phenomenon of gene duplication. A significant 
number of nonsynonymous (amino acid-changing) vari-
ants alter enzyme function. The frequency of these genetics 
variants differs among ethnic groups [24••] (Table 2). 
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CYP3A4 and CYP3A5 are responsible for the metabo-
lism of 50% of therapeutic drugs. Both are polymorphic: 
20 different alleles are described for CYP3A4 and 11 for 
CYP3A5 (Table 2). Studies performed to evaluate the 
effect of CYP3A4*1B, CYP3A5*3, and CYP3A5*6 on 
the pharmacokinetics of nelfinavir [31••,32••], efavirenz 
[26•,31••,32••], and saquinavir [33,34] indicate no influ-
ence on nelfinavir and efavirenz pharmacokinetics. In 
contrast, CYP3A5*3 has been associated with the urinary 
metabolic ratio of saquinavir to its hydroxy metabolites 
in healthy individuals [33,34]. Differences in levels of 
CYP3A expression appear more relevant to ART metabo-
lism than specific genetic variants [35].

CYP2D6 is the most polymorphic of all CYP enzymes 
with 58 alleles described (Table 2). A study published 
by Fellay et al. [31••] analyzed the association between 
CYP2D6 genetic variations and plasma levels of nelfina-
vir and efavirenz in treatment-naïve individuals with 

HIV infection. Individuals homozygous or heterozygous 
for a loss-of-function CYP2D6 allele had higher median 
plasma concentrations of both drugs. However, CYP2D6 
is not thought to participate significantly to the metabo-
lism of these drugs, and the results await confirmation.

There are 21 different alleles described for CYP2C19. 
A recent study demonstrated that nelfinavir exposure was 
significantly higher in treatment-naïve individuals with 
GA or AA genotypes at position 681 in CYP2C19 (ie, 
CYP2C19*2) compared with the common allele. The same 
study showed a trend toward decreased virologic failure in 
individuals with the GA genotype. Genotypic differences 
are also observed among ethnic groups because 2% to 3% 
of whites and 4% of blacks have the poor metabolizer phe-
notype versus 10% to 25% of Asians [36].

CYP2B6 is also polymorphic (21 alleles described) 
particularly in blacks. Different studies have shown that 
516G>T single nucleotide polymorphism (SNP) in exon 

Table 1. Sex- and ethnicity-related differences in the pharmacokinetics of antiretroviral agents

Drug Gender (women vs men) Study Ethnicity (% of patients in each ethnic group) Study

PIs

Lopinavir No difference in CL, AUC,  
Cmax and Ctrough

[6,9] White (75)
Black (14)
Asian (9)

No difference in CL [9] 

White (90)
Black (6)
Asian (9)

Hispanic (8)

Lower mean AAG in black, Asian, 
and Hispanic. Inverse relationship 

between AAG and CL

UD

Indinavir Decrease in CL
Increase in F

[2–4] White (82–92)
Black (5–9)
Asian (1–5)

No difference in CL [3,4]

Lower Cmin White (90)
Black (6)
Asian (9)

Hispanic (8)

Lower mean AAG in black, Asian, 
and Hispanic. Inverse relationship 

between AAG and CL

UD

No difference in concentrations [5]

Nelfinavir No difference in CL [10] White (78)
Black (12)
Asian (2)

No difference in CL [10] 

Amprenavir No difference in CL,V [11] White (66)
Other (34)

No difference in CL,V [11]

White (59)
Black (40)

Lower mean AAG in black. Inverse  
relationship between AAG and CL

[27]

Saquinavir Decrease in CL, higher AUC,  
Cmax, and Ctrough

[6–8] White (52) 
Black (27)

Hispanic (17)
Asian (2)

No difference in CL [8]

Ritonavir Decrease in CL, higher AUC, 
Cmax, and Ctrough

[6,7]

Atazanavir No difference CL UD White (86)
African (9)
Asian (3)

No difference in CL UD 

AAG—α1-glycoprotein; AUC—area under the concentration-time curve; Cav—average concentration; CL—clearance; Cmax—maximal concentration;  
Cmin—minimal concentration; Css—concentration at steady-state; Ctrough—trough concentration; F—bioavailability; NNRTI—non-nucleoside reverse 
transcriptase inhibitor; NRTI—nucleoside transcriptase inhibitor; PI—protease inhibitor; UD—unpublished data; V—volume of distribution.
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4 (marker for CYP2B6*6 with a high allelic frequency 
in blacks) is significantly associated with high plasma 
levels of non-nucleoside reverse transcriptase inhibitors 
(efavirenz and nevirapine) [26,37,38•,39•]. In addition, 
the 983T>C SNP in exon 7 (marker for CYP2B6*16 and 
*18 [only found among blacks]) has also been associated 
with high efavirenz plasma levels [40••,41]. Efavirenz 
concentrations are more profoundly altered in individuals 
carrying two copies of loss-of-function alleles: generally 
one copy of CYP2B6*6 with a second copy including 
alleles *11 and *18 or new alleles, such as M198T and 
R378stop [42].

Genetic variation in drug transporters
Drug transporters play also an important role in the dis-
position of ART. There are two major types: uptake and 
efflux transporters. P-glycoprotein, the gene product of 
ABCB1/MDR1, an efflux transporter, has received the 
greatest attention in terms of identification of genetics vari-
ants. Protease inhibitors are substrates of this transporter. 

Screening of the entire ABCB1 coding region iden-
tified a synonymous SNP in exon 26 (ie, 3435C>T) 
possibly associated with altered protein expression and 
mRNA stability, although the particular SNP does not 
change the encoded amino acid (isoleucine) [43,44]. The 
allelic frequency of this SNP also differs among ethnic 
groups being more common in whites and Asians (~ 0.5) 
than in blacks (0.10) [45]. Different studies attempting to 
define associations between this SNP and other ABCB1 
variants, and the pharmacokinetics of several protease 
inhibitors and efavirenz have resulted in conflicting and 
controversial findings [31••,32••,46•].

The members of the multidrug resistance-associated 
(MRP) protein family are efflux transporters that have 
the potential to affect the disposition of ART. Colombo 
et al. [46•] evaluated the effect of different genetic 
variants in ABCC1 and ABCC2 (the genes coding for 
MRP1 and MRP2) on cellular levels of nelfinavir indi-
cating no influence of these variants. MRP4 and MRP5 
are involved in the transport of adefovir and different 

Table 1. Sex- and ethnicity-related differences in the pharmacokinetics of antiretroviral agents

Drug Gender (women vs men) Study Ethnicity (% of patients in each ethnic group) Study

NNRTI

Efavirenz No difference in CL, V, F [12,13•,14] White (57–82)
Black (16–32)
Hispanic (5–11) 
Asian (2)

AUC, Cmax and Cav greater in black,  
Hispanic, and Asian. Decrease in 
CL, F in black and Asian.

[12,13•,15, 
16,26•]

Decrease in CL, increase in Cav [15–17] White (75)
Black (15)
Asian (7)
Hispanic (4)

Increase in F in Asian.  
No difference in CL,V

[25]

 Nevirapine No difference in CL and V [18,19] White (82–89)
Black (6-19)
Hispanic (10)

No difference in CL, V [18,20]

Decrease in CL [14] Asian (2–3)

NRTI

Tenofovir No difference in CL [22]

Didanosine No difference in CL, V, F [20] White (81)
Black (9)
Hispanic (10)

No difference in CL, V, F [20,25]

Lamivudine No difference in CL, plasma Css [18,21] White (70)
Black (21)

No difference in CL [21]

Lamivudine  
triphosphate

Higher median intracellular 
concentration

[21]

Zidovudine No difference in CL, V, F, Css [21] White (70)
Black (21)

No difference in CL [21]

Zidovudine  
triphosphate

Higher median intracellular 
concentration

[21]

Fusion inhibitor

Enfuvirtide Decrease in CL [23]

AAG—α1-glycoprotein; AUC—area under the concentration-time curve; Cav—average concentration; CL—clearance; Cmax—maximal concentration;  
Cmin—minimal concentration; Css—concentration at steady-state; Ctrough—trough concentration; F—bioavailability; NNRTI—non-nucleoside reverse 
transcriptase inhibitor; NRTI—nucleoside transcriptase inhibitor; PI—protease inhibitor; UD—unpublished data; V—volume of distribution.
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nucleoside reverse transcriptase inhibitors, such as azi-
dothymidine, lamivudine, zalcitabine, and stavudine 
[47]. Numerous genetics variants have been identified 
for ABCC4 and ABCC5 (the genes coding for MRP4 
and MRP5, respectively) [48], although their effect on 
ART is yet to be evaluated. 

Regulation of drug-metabolizing enzymes  
and drug transporters 
CYP enzymes and drug transporters present wide inter-
individual variability in expression and function that 
cannot be completely explained by drug interactions 
and/or genetic variation, suggesting that transcriptional 
regulators may contribute to these differences. Pregnane 
X receptor (PXR) and constitutive androstane receptor 
(CAR) are members of the nuclear receptor superfam-

ily that, once activated by ligands, can regulate the 
transcription of different target genes [49]. Genetic 
polymorphisms have been described for PXR and CAR 
present at low allelic frequency (≤ 3%) in the general 
population except for P27S (79C>T) (PXR*2) that is 
highly frequent in blacks (0.22) [50,51]. Their effect on 
ART is yet to be evaluated.

Genetic variations in AAG 
AAG, also called orosomucoid (ORM), is a small 
acute-phase glycoprotein that extensively binds the 
protease inhibitors. Protein-binding may affect ART 
activity by decreasing the amount of free drug capable 
to exert an effect. Two proteins (ORM1 and ORM2) 
encoded by two functional genes (ORM1 and ORM2) 
exist. AAG concentration is higher in whites than in 

Table 2. Frequency of functionally relevant alleles and ethnic differences for selected metabolizing 
enzyme, transporter, and nuclear receptor alleles

Gene*

Alleles with altered  
function (total no.  
of known alleles)

Ethnicity differences 
in frequency of 

altered functional 
alleles (≥ 1.5-fold)

Altered function alleles 
only described in one 

ethnic group Effect on ART

CYP3A4 11 (20) *1B, *11 W: *2, *8, *12, *13, *17 Studied in EFV and NFV.  
Possible effect of *1B on  

EFV plasma AUC.
A: *4, *5, *6, *18

CYP3A5 6 (11) *3, *6 W: *10 Studied in EFV, NFV, and SQV. 
Possible effect of *3 on EFV 

plasma AUC. Relevance  
of *3 on SQV metabolism.

B: *7, *8

A: *9

CYP2D6 29 (58) *2xn, *3, *4, *6, *9, 
*10, *12, *17, *29, 

*35, *36

W: *7, *8, *11, *13, *15, 
*16, *19, *20, *31

Studied in EFV and NFV. 
Controversial relevance.

B: *40, *42

A: *14, *18, *21, *44

CYP2C19 11 (21) *2, *3, *4, *17 W: *6, *7,*8 Studied in EFV and NFV.  
Possible effect of *2 on  

NFV plasma AUC.
B: *9, *10, *12

A: *5

CYP2B6 14 (25) *5, *6, *7, *22 W: *8, *11, *12, *14, *15 Studied in NFV, EFV,  
and NVP. Influences EFV 

and NVP plasma and  
intracellular AUC.

B: *16, *18, *19, *20, *21

ABCB1† 3435C>T (in linkage  
disequilibrium with 1236C>T, 
2677G>T and IVS26+80T>C)

Allelic frequency of 
3435 T higher in 

whites and Asians 
than in blacks

— Studied in EFV, NFV, LPV, RTV, 
and IDV. Controversial effect

PXR 3 (8) *3 W: *4 None reported

B: *2

CAR Different single nucleotide poly-
morphisms described but no 
allele assignment (unknown 

impact on function)

— Only in Asians (unknown 
impact on function)

None reported

*For more detailed information: www.hiv-pharmacogenomics.org and http://www.imm.ki.se/cypalleles/.
†Limited information available on other transporters.
A—Asians; ART—antiretroviral therapy; B—blacks; EFV—efavirenz; IDV—indinavir; LPV—lopinavir; NFV—nelfinavir, NVP—nevirapine; 
RTV—ritonavir; SQV—saquinavir; W—whites. 
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blacks or Asians [28,29]. ORM2 is monomorphic in 
most populations whereas ORM1 is polymorphic with 
three alleles described: ORM1*F1, ORM1*F2, and 
ORM1*S. ORM1*F1 and *S are observed worldwide, 
whereas *F2 is rare. The influence of ORM concentra-
tions as well as genetic variants in the pharmacokinetics 
of ART has been recently evaluated by Colombo et al. 
[52]. ORM concentrations influenced indinavir appar-
ent clearance (CLapp) and to a less extent lopinavir 
CLapp. Indinavir CLapp was significantly higher in indi-
viduals *F1*F1 and *F1*S than *S*S. 

Conclusions
The number of genetic association studies is growing 
rapidly. A number of recommendations for optimal 
design of genetic association studies and for conducting 
of clinical trials and for cohort studies are presented 
elsewhere [53]. Evaluation and integration of genetic 
data for clinical use will be facilitated by initiatives 
such as the Adult AIDS Clinical Trials Group Protocol 
A5128 [54••], and the GENOMICS protocol (“Col-
lection and use of blood for genetic and other related 
analyses”) sponsored by the National Institutes for 
Allergy and Infectious Disease. Both protocols estab-
lish the conditions to storing DNA for studies that were 
not planned when informed consent was provided, and 
for future analyses. The GENOMICS protocol aims at 
providing genetic data to the Community Programs for 
Clinical Research on AIDS, with a particular interest 
in people of color, women, and injection drug users. 
Despite the negative perception of genetic research 
among the general public, recent studies indicate that 
this type of investigation is widely accepted by con-
cerned parties: patients, relatives, and healthy study 
volunteers [55••].
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