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Abstract: In this paper we begin the study of the relationship between the local
Gromov–Witten theory of Calabi–Yau rank two bundles over the projective line and
the theory of integrable hierarchies. We first of all construct explicitly, in a large num-
ber of cases, the Hamiltonian dispersionless hierarchies that govern the full-descendent
genus zero theory. Our main tool is the application of Dubrovin’s formalism, based
on associativity equations, to the known results on the genus zero theory from local
mirror symmetry and localization. The hierarchies we find are apparently new, with the
exception of the resolved conifold OP1(−1)⊕OP1(−1) in the equivariantly Calabi–Yau
case. For this example the relevant dispersionless system turns out to be related to the
long-wave limit of the Ablowitz–Ladik lattice. This identification provides us with a
complete procedure to reconstruct the dispersive hierarchy which should conjecturally
be related to the higher genus theory of the resolved conifold. We give a complete proof
of this conjecture for genus g ≤ 1; our methods are based on establishing, analogously
to the case of KdV, a “quasi-triviality” property for the Ablowitz–Ladik hierarchy at the
leading order of the dispersive expansion. We furthermore provide compelling evidence
in favour of the resolved conifold/Ablowitz–Ladik correspondence at higher genus by
testing it successfully in the primary sector for g = 2.
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1. Introduction

1.1. Gromov–Witten invariants and integrable hierarchies. Gromov–Witten theory
deals with the study and the computation of intersection numbers on moduli spaces
of holomorphic maps from a source Riemann surface to a compact Kähler manifold X .
Denote by Mg,n(X, β) the Kontsevich compactification of the moduli space of degree
β ∈ H2(X,Z) stable maps from n-pointed genus g curves to X . The Gromov–Witten
invariants of X are defined as

〈
τp1(φα1) . . . τpn (φαn )

〉X
g,n,β :=

∫

[Mg,n(X,β)]vir

n∏

i=1

ev∗
i (φαi )ψ

pi
i , (1)

where [Mg,n(X, β)]vir is the virtual fundamental class of Mg,n(X, β), φαi ∈ H•(X,C)
are arbitrary co-homology classes of X, evi : Mg,n(X, β) → X is the evaluation map
at the i th marked point, and ψi = c1(Li ) are the first Chern classes of the universal
cotangent line bundles Li on Mg,n(X, β). When pi = 0 for all i , these invariants have
an interpretation as a “count” (in a suitable sense) of holomorphic curves of genus g and
degree β inside X , subject to the constraint of intersecting n generic cycles given by the
Poincaré duals of the classes φαi .

We know from examples [38,50,55], and have limited general evidence both in the
Fano and the Calabi–Yau case [6,21,31,51], that Gromov–Witten invariants of a target
space X could be subject to a mysterious web of constraints relating them to one another,
and a long-standing problem in the subject has been to lift at least part of the mystery.
An influential conjecture stemming from Witten’s influential work on two-dimensional
topological gravity [55] asserts that a full explanation should be provided by the theory
of integrable hierarchies of non-linear PDEs. More precisely, introduce formal sym-
bols ε and tα,p, where α ∈ {1, . . . , h X }, h X := dimC H•(X,C) and p ∈ N; the set
{tα,p}α∈{1,...,h X }

p∈N

will be shorthandedly written as t. Moreover let φ1 correspond to the

unity of H•(X) and denote the formal variable t1,0 with x . We define the all-genus,
full-descendent Gromov–Witten potential of X as the formal power series

F X (ε, t) =
∑

g≥0

ε2g−2
∑

β∈H2(X,Z)

∑

n≥0

∑

α1,...,αn
p1,...,pn

∏n
i=1 tαi ,pi

n!
〈
τp1(φα1) . . . τpn (φαn )

〉X
g,n,β .

(2)

The Gromov–Witten/Integrable Systems correspondence can then be stated as follows:
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Conjecture 1.1. Let F X (ε, t) denote the all-genus full descendent Gromov–Witten
potential of X. Then there exists a Hamiltonian integrable hierarchy of PDEs such
that F X (ε, t) is the logarithm of a τ–function associated to one of its solutions. The
variables tα,p are identified with times of the hierarchy, and the genus counting variable
ε with a perturbative parameter in a small dispersion expansion of the equations.

By “small dispersion expansion” we mean that, in terms of the basic fields uα(t),

uα(t) := ε2 ∂
2F X (ε, t)
∂x∂tα,0

, (3)

the equations of the hierarchy should take the form of a formal gradient expansion

∂uα
∂tb,p

=
∑

g=0

ε2g
h X∑

β=1

A[g](u,ux ,uxx , . . . ,u(2g+1)). (4)

In (4) A[g] are degree 2g + 1 homogeneous polynomials in u(n), where we have defined

deg
∂nuα
∂xn

= n ∀α. (5)

While the existence of some tau-symmetric integrable system associated to the
Gromov–Witten theory of a given target space X follows basically1 from the 3g − 2
theorem [22,30], a constructive proof of this conjecture - i.e., an explicit characterization
of the hierarchy - would be a far-reaching result, both in principle and computationally.
However, to find out whether such an integrable structure can be found and effectively
described is in general a tough task, and the catalogue of rigorous and complete answers
to this question is restricted to a discouragingly low number of examples:

(1) X = pt, that is, intersection theory on the Deligne–Mumford compactification of
the moduli space of curves. The Witten–Kontsevich theorem states [38,55] that the
KdV hierarchy is the relevant integrable system in this case;

(2) X = P
1, in which case the associated system is the extended Toda hierarchy

[20,23,46,47,50];
(3) X = (P1)�T 	C

∗
, where T is the canonical torus action on P

1. The relevant hier-
archy is a reduction of 2D-Toda [29,48,50].

For each of the three cases above, a few proposals have been made to extend the cor-
respondence to orbifolds of the form [X/G], where G is a finite group [34,35,49,53];
the corresponding candidate hierarchies should be reductions of KP (resp. 2D-Toda)
for X = pt (resp. X = P

1). Unfortunately, apart from this very limited bestiary, the
goal to have a general constructive proof of Conjecture 1.1 appears to be out of reach
at the moment. In fact, even adding new examples to the above list seems to be a very
challenging problem: the next-to-simplest case of the complex projective plane P

2 is
already hard to tackle, and it is as of today unsolved.

On the other hand, recent developments [3,4] strongly indicate a natural new arena to
push forward the study of the Gromov–Witten/Integrable Systems correspondence: the
local theory of toric Calabi–Yau threefolds. In this context, physics-inspired dualities
have provided an impressive quantity of new insights, including conjectural propos-
als for the solutions of the non-equivariant theory [4,7] and remarkable connections to

1 Except for the subtle issue of polynomiality of the flows; see [10] for recent progress in this direction.
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other areas of Mathematics: examples include other moduli space problems in Algebraic
Geometry [44,45] and quite different subjects like quantum topology [33,42,52] and
modular forms [2]. On one hand, it is natural to speculate that the high degree of solv-
ability of the theory could be explained by underlying integrable structures; on the other,
such a rich web of mathematical interconnections renders the possibility to elucidate the
role of integrability in this context an even more appealing goal.

1.2. Main results. In this paper we begin to address this problem by studying the integra-
ble structures that govern the equivariant Gromov–Witten theory of Calabi–Yau rank two
bundles over the complex projective line - that is, differential neighbourhoods of a (not
necessarily isolated) rational curve inside a Calabi–Yau threefold. By Grothendieck’s
theorem, such bundles split into a sum of line bundles: OP1(n1) ⊕ OP1(n2), ni ∈ Z;
by the Calabi–Yau condition, we must have that k := −n1 = n2 + 2. We will denote
by Xk the total spaces of these bundles. Moreover, we will consider their equivariant
Gromov–Witten theory with respect to a T 	 C

∗ torus action, which covers the trivial
action on the base P

1 and rotates the fibers:

Xk := OP1(−k)⊕ OP1(k − 2)�T , k ∈ Z. (6)

In many cases, we will take T to act with identical (resp. opposite) characters on the two
fibers; we will refer to these choices as the diagonal (resp. anti-diagonal) case.

In spirit, our study will be very close to the perturbative philosophy of Dubrovin–
Zhang [19] for the non-equivariant Gromov–Witten theory of Fano manifolds with (p, p)
co-homology.2

Let us briefly recall the main lines of their strategy. In their case, the whole hierarchy
is constructed according to the following two-step process:

(1) find a closed form description of its genus zero approximation (the Principal Hier-
archy);

(2) find a reconstruction procedure to incorporate the higher genus corrections.

Step (1) is based on the datum of a Frobenius manifold, that is, a solution of the
Witten–Dijkgraaf–Verlinde–Verlinde equations possessing a distinguished dependence
on one of its variables (the unity direction) and obeying a quasi-homogeneity condition
(existence of the Euler field). Out of these data, it was shown in [15] how to associate
a quasi-linear, non-dispersive Hamiltonian hierarchy and a τ -function coinciding with
the genus zero Gromov–Witten partition function. Step (2) is much more involved, and
strongly relies on the existence of a local bi-Hamiltonian structure, as well as on the
assumption of semi-simplicity of the quantum product and of Virasoro constraints on
the dispersionful τ -function [18,19].

We will try to transfer some of the guiding principles of [19] to the case at hand. A
major obstacle is the fact that equivariant quantum co-homology rings do not satisfy all
axioms of a Frobenius manifold, and in particular the quasi-conformality of the prepo-
tential. Still, the arguments of [15] show that Step (1) above is almost independent of
the presence of an Euler vector field, the only requirement being that the prepotential
be known in closed form. In other words, bi-Hamiltonianity is not required to recon-
struct the Principal Hierarchy; the existence of a grading operator is only needed to fix
completely a canonical basis of flows.

2 This represents the prototypical family of target spaces whose big quantum co-homologies satisfy the
technical assumptions necessary for Dubrovin and Zhang’s machinery to work, like commutativity and semi-
simplicity of the quantum product and a well-defined grading.
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For the case of the local theory of P
1 in the diagonal and anti-diagonal case, and

for the resolved conifold with a generic (C∗)2-fiberwise action, we have complete con-
trol on the prepotential both from the A-model [9] and the B-model side [12]. This
will be sufficient for us to construct in a completely explicit way the relevant tree-level
hierarchies.

From a geometer’s point of view, however, the real utility of a clear link with integra-
ble hierarchies resides in the possibility to effectively perform Step (2), namely, to give
a complete recipe to solve the all-genus, full-descendent theory in terms of a dispersive
deformation of the Principal Hierarchy. This would be particularly valuable for the case
at hand, where little is known about possible higher genus relations between descendent
invariants. For this second step, however, it looks hopeless to generalize the methods of
Dubrovin–Zhang for the construction of the dispersive tail, as the validity of some of
their key assumptions, like existence of Virasoro symmetries annihilating the τ -function,
is unclear, if not in jeopardy in our case.

Still, in one example we can find a way out. It turns out that for the resolved coni-
fold OP1(−1) ⊕ OP1(−1) with anti-diagonal action the Principal Hierarchy coincides
with the long-wave limit of the so-called Ablowitz–Ladik lattice [1]. The latter can be
regarded as a complexified version of the discretized non-linear Schrödinger hierarchy,
and appears as a particular reduction of the 2D-Toda hierarchy. Explicit knowledge of
a candidate dispersive integrable model allows us to give a full reconstruction of the
dispersive flows. It is tempting to speculate that this particular deformation could be the
one that verifies Conjecture 1.1 in this case.

Conjecture 1.2. The all-genus, full descendent Gromov–Witten potential of the resolved
conifold X1 in the equivariantly Calabi–Yau case is the logarithm of a τ -function of the
Ablowitz–Ladik hierarchy.

If proven, this statement would add a fourth item to the list we presented in Sect. 1.1.
We have various reasons to believe that this conjecture is true. First of all, it was shown
in [17] that, for 2-component integrable systems like the ones we consider in this paper,
integrability very often breaks down when we turn on dispersive perturbations. This is
for example the case of the generalized Fermi–Pasta–Ulam systems, for which the pro-
cedure of discretizing space derivatives never preserves involutivity of the flows except
for exponential non-linearities (i.e. for the Toda lattice). Having one dispersive inte-
grable candidate is an already fortunate circumstance and, if we trust the statement of
Conjecture 1.1, it should be taken very seriously.

The second, and much more cogent piece of evidence that we provide is given by the
following

Theorem 1.3. Conjecture 1.2 is true for g ≤ 1.

The key idea in our proof will be to establish a so-called “quasi-triviality” property for
the Ablowitz–Ladik hierarchy at the leading order of the dispersive expansion. Although
differing in the way we obtained it, due to the apparent absence of a second compatible
local Poisson bracket for the Ablowitz–Ladik system, our final result comes very close
to analogous statements in the bi-Hamiltonian case [18,19].

Finally, we will exploit the possibility to reconstruct the dispersive flows, order by
order in the parameter ε, to give higher genus tests of our proposal. In particular we
verify the following non-trivial implication of Conjecture 1.2:

Theorem 1.4. Under Assumption 3.1 (see Sect. 3.4), let F(ε, t) be the Ablowitz–Ladik
τ -function which reduces for ε → 0 to the topological τ -function of the Principal Hier-
archy of X1 with anti-diagonal action. Then its reduction to small phase space at O(ε4)
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coincides with the genus 2 primary Gromov–Witten potential of the resolved conifold in
the equivariantly Calabi–Yau case, possibly up to the degree zero term.

For the reasons that we have outlined at the end of Sect. 1.1, we believe that this new
example of the Gromov–Witten/Integrable Systems correspondence could be a good
starting point for new insights in toric Gromov–Witten theory. A partial list of the ques-
tions to be answered include the relationship of our hierarchies with the physicists’ open
invariants of toric Calabi–Yau threefolds and the Eynard–Orantin recursion [7,24], a
local mirror symmetry description of the hierarchies in the framework of spectral curves
and the universal Whitham hierarchy [3,40], the study of the fate of the Virasoro con-
jecture [21] in the equivariant case, multi-parameter generalizations (e.g. the “closed
topological vertex”), a Kontsevich-like description via random matrix ensembles, and
physical applications for the geometric engineering of extended N = 2U (1) gauge
theories [43] in five dimensions. We plan to return on some of these points in the near
future.

2. The Genus Zero Theory of Local P
1 and Integrable Hierarchies

2.1. Hamiltonian integrable hierarchies from associativity equations. In this section
we sketchily review the general construction of dispersionless Hamiltonian hierarchies
from associativity equations. The details can be found in the original literature on the
subject [15,16]; see also [54] for a recent and very readable account of this material.

Let V be a n-dimensional vector space over a field K. We will denote by N :=
L(S1,V) = {u : S1 → V} the formal loop space of V; the components of the formal
maps u ∈ N will often be written as uα(x), where x ∈ S1 and α = 1, . . . , n. N carries
naturally the structure of a linear space over K; a distinguished subspace of its dual N ∗
is given by the so called local functionals

F[u] :=
∫

S1
f (x,u,ux ,uxx , . . . ,u(k), . . .)dx, (7)

where u(k) denotes the kth x-derivative of u. The adjective “local” refers to the fact that
we require the density f to be a differential polynomial, i.e., to depend polynomially3

on u(k) for k > 0. The set of local functionals on N will be called L F(N ). We want
to define a Hamiltonian infinite dimensional dynamical system on N via the following
data:

• a local Poisson bracket

{
uα(x), uβ(y)

} =
m∑

j=0

aαβj (u,ux ,uxx , . . . ,u(n), . . .)δ( j)(x − y), (8)

for some integer m ∈ N and differential polynomials aαβj ; we have denoted by

δ( j)(x − y) the j th distributional derivative of Dirac’s δ-function. By bilinearity and
the functional Leibnitz rule, the Poisson bracket of elements F,G ∈ N is

{F,G} =
∫

S1×S1

δF

δuα(x)

δG

δuβ(y)

{
uα(x), uβ(y)

}
dxdy. (9)

3 In this formal setting and in the absence possibly of a well defined analytic theory of functions when
K 
= C or R, a non-polynomial functional dependence should be thought of as a non-truncating formal power
series expansion in uα(x).
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The Poisson structure on N is said to be of hydrodynamic type if aαβj = δ j1η
αβ for

a constant, symmetric, non-degenerate matrix ηαβ ;
• Hamiltonian flows on N generated by Hamiltonians H [u] ∈ L F(N ) via

ut = {u, H [u]}. (10)

Definition 2.1. Let
{
uα(x), uβ(y)

}
be a hydrodynamic Poisson bracket on N and

Hα,p[u] ∈ L F(N ), α = 1, . . . , n, p ∈ N, be a countably infinite sequence of inde-
pendent local functionals

Hα,p[u] =
∫

S1
hα,p(u(x),ux (x), . . . , x)dx . (11)

Then:

(1) the equations

∂u
∂tα,p

= {u, Hα,p[u]} (12)

are said to make up a Hamiltonian integrable hierarchy of PDEs if they satisfy the
involutivity condition

{Hα,p[u], Hβ,q [u]} = 0 ∀α, β, p, q; (13)

(2) the hierarchy is said to possess a τ -structure if there exists a potential ∂x ln τ for
the integrability condition

∂tb,q hα,p−1 = ∂tα,p hβ,q−1 = ∂x∂tα,p∂tb,q ln τ. (14)

τ(u,ux ,uxx , . . . ,u(n), . . .) is called a τ -function of the hierarchy;
(3) the hierarchy is said to be dispersionless if the system (12) is quasi-linear, i.e., if

the densities hα,p do not depend on derivatives u(k) of the fields for k ≥ 1.

It was suggested by Witten [55] that Conjecture 1.1 should have a description in
this framework, with the Hamiltonian densities hα,p being related to 2-point “big phase
space” correlators in a topological field theory coupled to gravity. For the genus zero
theory this was formalized in fairly large generality, and in a completely explicit way, in
the work of Dubrovin [15,16]. We will now review it in the case we will be interested
in of the T 	 (C∗)k-equivariant Gromov–Witten theory of a Kähler target manifold X .
We will assume that T acts with compact fixed loci F .

Take VX := Q H•
T (X) to be the big equivariant quantum co-homology ring of X ;

in this case K = C(λ1, . . . , λk) is the field of fractions of H•
T (pt). Suppose moreover

that Vodd
X = 0, and pick a basis φα, α = 1, . . . , h X of VX , where h X = dimK VX

and φ1 = 1VX ; a generic element of VX will be written u = ∑
α uαφα with uα ∈ K.

The genus zero primary Gromov–Witten potential of X is a formal analytic function
F0 : VX → K,

F0(u) =
∞∑

j,d=0

1

j !
〈 j times
︷ ︸︸ ︷
u, . . . ,u

〉X

0, j,d
=

∞∑

j=0

∑

α1...αn

fα1...α j u
α1 . . . uα j , (15)
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satisfying:

(1) ηαβ := ∂1∂
2
αβF0(u) is a nondegenerate, constant symmetric matrix;

(2) F0 obeys the following set of third order, non-linear PDEs,

cαβγ η
γ δcδεζ = cαεγ η

γ δcδβζ , (16)

where the three-point function cαβγ is defined as cαβγ := ∂3
αβγ F0. It is intended that

indices are raised with the non-degenerate contravariant 2-tensor ηαβ = (η−1)αβ ,
and we use Einstein’s convention to sum over repeated indices.

Remark 2.1. It should be stressed at this point that, as opposed to the usual definition
of a Frobenius manifold [16], we do not have a quasi-homogeneity condition obeyed
by F0. This is due to the fact that the ground field K has a non-trivial grading in this
case, and therefore the natural Euler operator, keeping track of the equivariant de Rham
degree, is not K-linear.

Equation (16) implies the following fact. Define the 1-parameter family of connections
on T ∗VX

Dz := d + �, (17)

where the Christoffel symbol �α in components reads (�α)
γ
β := zcγαβ and z ∈ K. Notice

that because of integrability of cαβγ and (16) we have

D2
z = 0 ∀z, (18)

that is, the connection is flat. Its horizontal sections ω(β)α duα = dh(β), where (β) =
1, . . . , h X labels a fundamental set of solutions of (18), should come from a basis
f (β) ∈ Fun(VX ) of solutions of the holonomic system of PDEs,

∂2
αβh(δ) = zcγαβ∂γ h(δ), δ = 1, . . . , h X . (19)

We will call the solutions of (19) the flat functions of VX . Their duals hα(u, z) :=
ηαβhβ(u, z) can always be normalized such that

hα(u, 0) = wα = ηαβuβ, (20)

∂γ hα(u, z)ηγ δ∂δhβ(u,−z) = ηαβ, (21)

∂1hα(u, z) = zhα(u, z) + η1α. (22)

Remark 2.2. Equations (20)–(22) do not fix completely the ambiguity in the choices of
the z-dependent constants of integration of (19). In the ordinary Frobenius manifold
case such ambiguity could be dealt with by imposing additional conditions coming from
the existence of the Euler vector field. In the cases we are interested in such a procedure
will have to be performed otherwise (see Sect. 2.2).

Solutions of WDVV relate to the theory of Hamiltonian dispersionless systems in
the following way. Endow the loop space NX := L(S1,VX ) with the hydrodynamic
Poisson bracket

{
uα(x), uβ(y)

} = ηαβδ′(x − y). (23)



Local Gromov–Witten Theory of CP
1 and Integrable Hierarchies 579

Then the Taylor coefficients of the z-expansion of hα(τ ; z) with respect to z,

hα(u, z) =:
∞∑

z=0

hα,p−1(u)z p, (24)

define dispersionless Hamiltonian densities on NX . The system of 1st order quasi-linear
PDEs

∂u
∂tα,p

=
{

u,
∫

S1
hα,p(u(x))

}
dx (25)

will be called the Principal Hierarchy of X . We have the following

Theorem 2.3 (Dubrovin). The set of Hamiltonians Hα,p = ∫
S1 hα,pdx mutually

Poisson–commute with respect to the Poisson bracket (23). Let uα(t) solve the system
(25) with boundary condition

uα(t)

∣∣∣∣ ta,p=0
for p>0

= ∂2
1,αF0(t

1,0 + x, t2,0, t3,0, . . . , tn,0) (26)

and define for all times

〈〈
τp(φα)τq(φβ)

〉〉
0 := 1

2π i

∮ ∮
dzdw

z p+1wq+1

∂γ hα(u(t), z)ηγ δ∂δhβ(u(t), w)− ηαβ

z + w
,

(27)

F0(x + t1,0, t2,0, . . . ) := 1

2

∑〈〈
τp(φα)τq(φβ)

〉〉
0 (t)t

α,ptβ,q

+
∑〈〈

τp(φα)τ1(φ1)
〉〉

0 (t)t
α,p +

1

2
〈〈τ1(φ1)τ1(φ1)〉〉0 (t),

(28)

〈〈φα,pφβ,q . . . 〉〉0 := ∂tα,p∂tβ,q . . . ∂...F0(t). (29)

Then F0 is the logarithm of a τ function for the hierarchy (25). It moreover satisfies

F0|tα,p=0 for p>0 = F0(t
α,0) (reduction to primaries),

∂xF0 =
∑

tα,p∂tα,p−1F0 +
1

2
ηαβ tα,0tβ,0 (string equation), (30)

〈〈φα,pφβ,qφγ,r 〉〉0 = 〈〈φα,p−1φδ,0〉〉0η
δε〈〈φε,0φβ,qφγ,r 〉〉0 (genus zero TRRs).

For the purpose of the Gromov–Witten/Integrable Systems correspondence this con-
struction has a number of very attractive features, together with a few weak points. The
main virtue of this construction is that it does not depend on the details of X , apart
from the requirement that Vodd

X = 0; moreover, it provides an explicit construction of
the integrable hierarchy starting from primary data, thus yielding a constructive proof
of Conjecture 1.1 at the leading order in ε (i.e. in the genus zero subsector). However,
to make it work we need to have control on F0 in closed form - no implicit, recursive
or up-to-inversion-of-the-mirror-map form will do the job. Any polynomial truncation
of (15) affects dramatically the form of the three-point couplings cαβγ and therefore
the flat functions. In other words, we must know explicitly all the coefficients fα1...α j

in (15). This limitation turns out to be very constraining in the context of ordinary



580 A. Brini

Gromov–Witten theory, where it basically reduces the list of viable examples to the
cases of X = pt and X = P

1 we mentioned in Sect. 1.1. However, since the construction
does not depend on the existence of an Euler vector field, we might expect to find new
examples in the context of equivariant Gromov–Witten theory. Indeed, as we are going
to argue, the local theory of rational curves inside Calabi–Yau threefolds evades this
limitation in a large number of cases.

2.2. The resolved conifold. Let us then consider the target spaces Xk of (6). We begin
with the rigid case k = 1, and consider its equivariant theory with respect to a T 	 (C∗)2
fiberwise action rescaling the fibers. Let H(X1) := H•

T (X1) 	 H•(F1) ⊗ C(λ1, λ2)

denote the localized T -equivariant cohomology of X1 and F1 	 P
1 be the fixed locus

of the T -action, that is, the null section of X1 → P
1. Let moreover (1, p) denote the

canonical basis of H(X1) (regarded as a free C(λ1, λ2)-module), where 1 and p denote
respectively the lifts to T -equivariant co-homology of the identity and the Kähler class
of the base P

1, and write u =: v + wp, i.e. v := u1, w := u2 with v,w ∈ C(λ1, λ2).
We separate the degree zero (“classical”) and positive degree (“quantum”) parts of the
genus zero Gromov–Witten potential of X1 as

F X1
0 (u) = F X1

0,cl(u) + F X1
0,qu(u), (31)

where

F X1
0,cl(u) = 1

3!
∫

[P1]
u ∪ u ∪ u
e(NX1/F1)

,

F X1
0,qu(u) =

∑

d>0

edwN (1)
0,d , (32)

N (1)
g,d =

∫

[(X1)g,0,d ]vir
1.

A special feature of the (C∗)2-equivariant theory of the resolved conifold is that the
invariants N (1)

0,d have a closed expression for all d [12] given by the Aspinwall-Morrison
multi-covering formula [5]

N (1)
0,d = 1

d3 . (33)

X1 then belongs to the list of fortunate cases where a closed form expression for the
genus zero Gromov–Witten invariants of all degrees, and therefore for the prepotential,
is known in terms of special functions. Explicitly we have

F X1
0,cl(v,w) = 1

3!
∫

[P1]
(v + wp)3

(λ1 − p)(λ2 − p)

= 1

3!λ1λ2

∫

[P1]
(v + wp)3

(
1 +

(
1

λ1
+

1

λ2

)
p

)
, (34)

and hence

F X1
0 = v3

3!
λ1 + λ2

λ2
1λ

2
2

+
1

2λ1λ2
v2w + Li3(e

w), (35)
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where we have introduced the polylogarithm function

Li j (x) =
∞∑

n=1

xn

n j
. (36)

All this is necessary to apply the machinery of Sect. 2.1. For future use, we state the
following

Lemma 2.4. Consider the following solution of WDVV

F0 = Pv3

3! +
Qv2w

2
+ Li3(e

w). (37)

Then the general integral of the flatness conditions (19) reads

f (v,w, z, P, Q) = A(w, z, P, Q)
evz

z
+ B(z), (38)

where

A(w, z, P, Q) = c1(z) 2 F1
(−�+,−�−; 1; ew

)

+c2(z) 2 F1

(
1 +�−, 1 +�+; z P

Q2 + 2; 1 − ew
) (

1 − ew
) z P

Q2 +1
, (39)

�± =
z
(

P ±√
P2 − 4Q3

)

2Q2 .

Proof. The form (38) follows from (19) with α = v. Putting α = β = w in (19) yields
a Fuchsian ODE for A as a function of w,

∂2
wwA = ew

1 − ew

(
z2 A(w)

Q
− Pz∂wA(w)

Q2

)
, (40)

whose general integral has the form (39). ��
For the prepotential (35) we have

�+ = zλ1, �− = zλ2,
P

Q2 = λ1 + λ2. (41)

Let us fix a normalization of the corresponding flat functions hα(v,w; z),

hα(v,w; z) = Aα(w, z, λ1, λ2)
evz

z
+ Bα(z), (42)

in order for the flows to satisfy the string axiom and the genus zero TRRs. Equation (22)
fixes Bα(z) to be

Bα(z) = −δ
v,α

z
. (43)
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To fix completely Aα(w, z, α, β, λ) we use the fact that it is related [13] to the funda-
mental solution Sαβ of the Gauss-Manin system as

Aα = ∂vhα
∣∣∣
v=0

, (44)

∂vhα =: Sα0 =: Jα, (45)

that is to say, it corresponds to the α-component of the J -function at v = 0. The Coates–
Givental theorem [12] prescribes it to take the form

J (v = 0, w, z, λ1, λ2)

= ezp log q(w)
∑

d≥0

∏0
m=−d+1 (−p + m/z + λ1) (−p + m/z + λ2)

∏d
m=1 (p + m/z)2

q(w)d , (46)

where q(w) is the inverse mirror map. We have the following

Proposition 2.5. For the normalized flat functions (42) we have

Aα(w, z, λ1, λ2) = cα1 (z, λ1, λ2) 2 F1
(−zλ1,−zλ2; 1; ew

)

+cα2 (z, λ1, λ2) 2 F1
(
zλ1 + 1, zλ2 + 1; z(λ1 + λ2) + 2; 1 − ew

)

×(1 − ew
)z(λ1+λ2)+1

, (47)

where:

cv1(z, λ1, λ2) = 1, (48)

cv2(z, λ1, λ2) = 0, (49)

cw1 (z, λ1, λ2) = −z
[
ψ(0)(zλ1 + 1) + ψ(0)(zλ2 + 1) + 2γ

]
, (50)

cw2 (z, λ1, λ2) = − z�(zλ1 + 1)�(zλ2 + 1)

�(z(λ1 + λ2) + 2)
. (51)

In (50), γ is the Euler-Mascheroni constant, while ψ(0)(x) is the polygamma function

ψ(0)(z) = d log�(z)

dz
. (52)

Proof. The O(z) term of the expansion of the J -function (46) is the statement that the
mirror map is trivial in this case

log q = w (mod 2π i). (53)

Let us examine the summand in (46) above more closely, starting from the numerator.
The finite product gives, remembering that p2 = 0,

0∏

m=−d+1

(−p + m/z + λ1) (−p + m/z + λ2)

=
d−1∏

m=0

[

p

(
2m

z
− λ1 − λ2

)
+

m2 − zλ1m − zλ2m + z2λ1λ2

z2

]

=
(

1
z2

)d
�(d − zλ1)�(d − zλ2)

�(−zλ1)�(−zλ2)

−
⎡

⎢
⎣

(
1
z2

)d
z�(d−zλ1)�(d − zλ2)

(
ψ(0)(−zλ1)−ψ(0)(d−zλ1)+ψ(0)(−zλ2)−ψ(0)(d − zλ2)

)

�(−zλ1)�(−zλ2)

⎤

⎥
⎦p,

(54)
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while for the inverse of the denominator we obtain simply

1
∏d

m=1 (p + m/z)2
=

(
z2
)d

�(d + 1)2
− 2z

(
z2
)d

Hd

�(d + 1)2
p, (55)

where Hd is the d th harmonic number. For the v-component, this means that we should
have

Av(w, z, λ1, λ2) =
∑

d≥0

ewd�(d − zλ1)�(d − zλ2)

�(d + 1)2�(−zλ1)�(−zλ2)
. (56)

Comparison with (47) sets

cv1 = 1, cv2 = 0. (57)

On the other hand, the component Jw of the J -function in the direction of the volume
form is a series that looks as follows

Jw(0, w, z, λ1, λ2) = zwAv(w, z, λ1, λ2) +
∑

d≥0

[
ewd z�(d − zλ1)�(d − zλ2)

�(d + 1)2�(−zλ1)�(−zλ2)

×
⎛

⎝−2Hd +
∑

i=1,2

(
ψ(0)(d − zλi )− ψ(0)(−zλi )

)
⎞

⎠
]
. (58)

The term proportional to the zw term comes from the ezp log q prefactor of the I function.
Let us then fix the coefficients cwi (z) by Taylor-expanding (47) at q = expw = 0. We
get an expansion of the form a log q + b + o(1)

Aw(w, z, λ1, λ2) = −cw2 (z, λ1, λ2)�(z(λ1 + λ2) + 2)

�(zλ1 + 1)�(zλ2 + 1)
log(q)− cw1 (z, λ1, λ2)

−cw2 (z, λ1, λ2)�(2 + zλ1+zλ2)(ψ
(0)(zλ1 + 1)+ψ(0)(zλ2+1)+2γ )

�(zλ1 + 1)�(zλ2 + 1)
+O(q), (59)

while from the explicit form of the J -function we get

Aw(w, z, λ1, λ2) = z log q + O(q). (60)

Matching the logarithmic coefficient gives (51), while the O(1) term yields (50). This
completely fixes the form of the deformed flat coordinates; it is straightforward to check
that the normalization conditions (20)–(22) are satisfied. ��

Theorem 2.3 and Proposition 52 together complete the construction of the disper-
sionless hierarchy that governs the genus zero Gromov–Witten theory of the resolved
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conifold. To see what its first flows look like, take the z-expansion of the densities (see
(167)–(168))

hv(v,w, z, λ1, λ2) = wλ1λ2 + v(λ1+λ2)

λ2
1λ

2
2

+
1

λ2
1λ

2
2

[
1

2
(λ1+λ2)

(
v2 + 2λ1λ2Li2

(
ew
))

−1

6
λ1λ2

(
−6vw−6(λ1+λ2)

(
Li2

(
1−ew

)
+w Li1(w) +

π2

6

))]
z

+O
(

z2
)
, (61)

hw(v,w, z, λ1, λ2) = v

λ1λ2
+

(
v2

2λ1λ2
+ Li2

(
ew
))

z + O
(

z2
)
. (62)

The first two flows are then
∂v

∂t1,0
= vx , (63)

∂w

∂t1,0
= wx , (64)

∂v

∂t2,0
= λ1λ2

ew

1 − ew
wx , (65)

∂w

∂t2,0
= vx − (λ1 + λ2)

ew

1 − ew
wx . (66)

Eliminating v and putting t := t2,0 we obtain the non-linear wave equation

wt t = λ1λ2

(
ew

1 − ew
wx

)

x
− (λ1 + λ2)

(
ew

1 − ew
wx

)

t
. (67)

In Sect. 3.2 we will see how this relates, in one notable case, to known examples in the
theory of integrable hierarchies.

2.3. The diagonal action. Let us move on to the general case (6) of Xk . In the first place
we restrict T to be isomorphic to a one dimensional torus acting diagonally on the two
fibers. We adapt, with obvious meaning of symbols, the conventions of Sect. 2.2 for the
potentials, the genus zero invariants, and the equivariant co-homology classes of Xk ,
appending an index k and a superscript di (for “diagonal”) whenever necessary.

The choice of a diagonal action is special for two reasons. First, this is the case that
corresponds to the invariants defined by Bryan and Pandharipande in [9]. Secondarily,
it surprisingly turns out to be a subcase of the (C∗)2-equivariant theory of the resolved
conifold we treated in the previous section. The quantum tail of the prepotential indeed
[12,27] has for all k the Aspinwall-Morrison like form

N (k,di)
0,d = 1

d3 . (68)

On the other hand, the classical piece is given by

F Xk ,di
0,cl (v,w) = 1

3!
∫

[P1]
(v + wp)3

(λ− kp)(λ + kp − 2p)

= 1

3!λ2

∫

[P1]
(v + wp)3

(
1 +

2p

λ

)
, (69)
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and hence

F Xk ,di
0 = 1

3

(v
λ

)3
+

1

2λ2 v
2w + Li3(e

w) ∀k ∈ Z. (70)

Therefore, our results in the previous section apply, a fortiori, to the theory with generic
k and λ1 = λ2.

2.4. The anti-diagonal action. Another case of special interest is given by the reduction
to the case of a T 	 C

∗ fiberwise action with opposite characters on the two fibers. In
this case, the equivariant Euler class of Xk is trivial

eT (Xk) = 0, (71)

that is, Xk is equivariantly Calabi–Yau. The notation will follow the same conventions as
in the previous two sections, with a superscript ad for “anti-diagonal” added whenever
needed.

It was conjectured in general for toric Calabi–Yau threefolds, and verified explicitly
for the case at hand [9], that the invariants in the equivariantly Calabi–Yau case are the
ones that most closely make contact with the physics prediction based on topological
open/closed duality. In particular the authors of [9] could prove the following formula,
which could be regarded as a specialization to Xk of the topological vertex formalism
of [4]:

Theorem 2.6 (Bryan-Pandharipande). The fixed-degree d > 0, all-genus Gromov -
Witten potentials of X ad

k are given by the following sum over partitions

∑

g≥0

ε2g−2 N (k),ad
g,d = (−1)d(k−1)

∑

ρ

(
dimQρ

d!
)2

Qcρ(1−k). (72)

In (72), ρ is a Young diagram (a partition of length l(ρ)), cρ is its total content, Q :=
eiε, h(�) is the hooklength of a box in ρ and

dimQρ

d! =
∏

�∈ρ

(
2 sin

h(�)ε
2

)−1

. (73)

As we stressed in Sects. 1.2 and 2.1, a key point in our analysis is the construction
of the hierarchy governing the genus zero theory starting from a closed-form solution of
WDVV. To see this, we should be able to obtain a closed expression for the all-degree,
genus zero invariants starting from (72). This is the content of the next

Proposition 2.7 ([11]). The quantum part F Xk ,ad
0,qu (w) of the A-model prepotential of Xk

with anti-diagonal action is

F X1,ad
0,qu (w) = Li3(e

w), (74)

F X2,ad
0,qu (w) = − Li3(e

w), (75)

F Xk ,ad
0,qu (w) = (−)k−1e−w

nk +3 Fnk +2

[
1, 1, 1, 1,

1

nk
,

2

nk
, . . . , 1 − 1

nk
; 2, 2, 2, 2,

1

nk − 1
,

. . . , 1 − 1

nk − 1
; (−1)k

(
nk

nk − 1

)nk−1

n exp(w)

]
(k > 2), (76)

where nk = (k − 1)2.
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Equation (74) is a corollary of (33); the other two expressions were obtained in [11] by
an asymptotic analysis in ε of the sum over partitions [9] based on matrix model inspired
saddle-point techniques applied to the topological vertex formulae for Xk [4]. A mirror
symmetry confirmation, based on Birkhoff factorization applied to the Coates–Givental
twisted I -function, was given in [26].

To complete the computation of the prepotential we just have to add the degree zero
contribution. We get

F Xk ,ad
0 (v,w) = 2 − 2k

3!
(v
λ

)3 − 1

2
w
(v
λ

)2
+ F Xk ,ad

0,qu (w). (77)

The case k = 1 is obviously a reduction of the case of Sect. 2.2 for λ1 = −λ2 = λ;
inspection shows moreover that the case k = 2 coincides with the one of Sect. 2.3 upon
sending F0 → −F0.

The situation for the k > 1 case is instead radically different. A closed form solution
for the flat functions seems too hard to obtain; still the Hamiltonian densities hα,p can
be computed and normalized, as we have done before, order by order in p. The kind
of equations that we find seem totally new: defining the “Yukawa coupling” Yk(w) :=
∂3
wwwF Xk ,ad

0 (w) we have

Yk(w)= 1

nk
− 1

nk
nk−1 Fnk−2

[
1

nk
, . . . ,

nk − 1

nk
; 1

nk − 1
, . . . ,

nk − 2

nk − 1
; (−1)knnk

k e−w

(nk − 1)nk−1

]
,

(78)

and we find for instance for the t := t2,0-flow,

∂tv(x, t) = {
v(x, t), Hw,0

} = Yk(w)wx , (79)

∂tw(x, t) = {
w(x, t), Hw,0

} = (v)x + (2k − 2)Yk(w)wx , (80)

which reduces to a wave equation with hypergeometric4 non-linearity

(w)t t = (Yk(w)wx )x + (2k − 2) (Yk(w)wx )t . (81)

3. The Resolved Conifold at Higher Genus and the Ablowitz–Ladik Hierarchy

In this section we address the problem of deforming the hierarchies we constructed in
Sect. 2 in order to incorporate higher genus corrections, and we will succesfully find a
way to do it in the case k = 1 with anti-diagonal action. After reviewing in Sect. 3.1 the
general problem of constructing Hamiltonian integrable perturbations of dispersionless
systems, we will exploit the connection of the Principal Hierarchy of X ad

1 with a known
integrable lattice to construct a candidate dispersive deformation whose τ -function cor-
responds to higher genus Gromov–Witten potentials. A quasi-triviality property at O(ε2)

will be established in Sect. 3.3, and a τ -structure will be defined at this order and used
to prove Theorem 1.3. Finally in Sect. 3.4 we point out the difficulties and subtleties of
the higher genus case, and provide a non-trivial g = 2 test of Conjecture 1.2.

4 In fact it was shown in [8] how to give for k = 3 a purely algebraic expression for the Yukawa (78); the
final result though sheds little more light on the nature of Eq. (81).
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3.1. Dispersive perturbations of Hamiltonian systems. In the terminology of Sect. 1.2,
we have performed Step (1) of the construction of the hierarchies relevant to establish
Conjecture 1.1 for the local theory of P

1, at least for the case k = 1 and for the diagonal
and anti-diagonal action. A full answer needs a prescription to perform Step (2), that is
to say, to find a way to unambiguously determine the coefficients A[g]

α,p in (4), or within
the framework of Hamiltonian hierarchies, the dispersive corrections H [g] of the g = 0
Hamiltonians

Hdisp
α,p [u, ε] = H [0]

α,p[u] + εH [1]
α,p[u] + ε2 H [2]

α,p[u] + · · · , (82)

for local functionals H [n]
α,p[u]

H [ j]
α,p[u] =

∫

S1
h[ j]
α,p(u,ux ,uxx , . . . ,u( j))dx, (83)

where h[ j]
α,p is a differential polynomial, homogeneous of degree j with respect to the

grading (5), and we have appended a superscript [0] to the dispersionless Hamiltonians
of the Principal Hierarchy (25). The statement of integrability is then that

{
Hdisp
α,p [u, ε], Hdisp

β,q [u, ε]
}

= 0 (84)

as a formal power series in ε.
As we emphasized in Sect. 1.2, in the context of the equivariant Gromov–Witten

theory there are no general methods available to date to determine recursively H [n]
α,p[u]

starting from the Hamiltonians of the Principal Hierarchy. However, suppose that a
dispersive completion

Hdisp
α,p [u, ε] =

∞∑

k=0

εk H [k]
α,p[u] (85)

of one Hamiltonian α = α, p = p be known. We have the following

Theorem 3.1 ([17]). Let H [0]
α,p[u], α = 1, . . . , n, p ∈ N be Hamiltonian local function-

als of a hydrodynamic dispersionless hierarchy of integrable PDEs,

{H [0]
α,p[u], H [0]

β,q [u]} = 0, (86)

and let Hdisp
α,p [u, ε] be a dispersive deformation (85) of the Hamiltonian flow α = α, p =

p for one pair (a, p) and given local functionals H [k]
α,p[u]. Then if a dispersive completion

of Hdisp
α,p [u, ε] preserving involutivity of the flows ∀ε exists

{Hdisp
α,p [u, ε], Hdisp

β,q [u, ε]} = 0 ∀α, β, p, q, (87)

it is unique. In such a case, there exists a formal sum of linear differential operators

D =
∞∑

k=0

εn D[k],

D[0] = id, D[k] =
∑

b[k]
i1,...,in

(u1, . . . , u(k)1 , . . . , un, . . . , u(k)n )
∂
∑

j i j

∂ui1
1 . . . ∂uin

n

,

(88)
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such that
∫

S1
D[k]h[0]

α,p(u)dx =
∫

S1
h[k]
α,p(u,ux ,uxx , . . . ,u(k))dx = H [k]

α,p[u] (89)

satisfies the involutivity condition (84). In (88), the coefficients b[k]
i1,...,in

are differential

polynomials and
∑n

j=1 i j ≤ [ 3k
2

]
.

The theorem implies in our case that if a perturbation (85) of one Hamiltonian of
the Principal Hierarchy is integrable, then the involutivity condition (84) singles out an
operator (88), which order by order in ε reconstructs the dispersive tail of all flows. This
operator is uniquely defined, modulo total derivatives and the relations (19) defining the
dispersionless Hamiltonian densities.

3.2. The resolved conifold and the Ablowitz–Ladik hierarchy. Consider now the Prin-
cipal Hierarchy for the resolved conifold in the equivariantly Calabi–Yau case λ1 =
−λ2 = λ. In this case the prepotential is

F X1,ad
0 = − 1

2λ2 v
2w + Li3(e

w) (90)

and, from the fact that ηvv = 0, the non-linear wave equation (67) has a vanishing
rectangular term

wt t = −λ2
(

ew

1 − ew
wx

)

x
. (91)

This equation was recognized in [17] to be related to the dispersionless limit of the
Ablowitz–Ladik lattice [1]. We will here review, almost verbatim, the arguments of [17]
relating the solution of WDVV (90) to such an integrable lattice. The basic flow of the
system is

i ȧn = −1

2
(1 − anbn)(an−1 + an+1) + an,

i ḃn = 1

2
(1 − anbn)(bn−1 + bn+1)− bn,

(92)

where {an, bn : Z → C}. Introducing new variables

un = − log(1 − anbn),

yn = 1

2i

(
log

an

an−1
− log

bn

bn−1

)
,

(93)

the evolution (92) can be written as a Hamiltonian flow generated by

HAL =
∑

n

√(
1 − e−un

) (
1 − e−un−1

)
cos yn (94)

with the Poisson bracket

{un, ym} = δn,m−1 − δn,m, {un, um} = {yn, ym} = 0. (95)
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By taking the long-wave expansion we continuously interpolate the discrete dependent
variables un, tn through functions u(X, t), y(X, t),

un = u(εn, εt), yn = y(εn, εt). (96)

This leads, at the leading order in ε, to the dispersionless system

ut = ∂X
[(

eu − 1
)

sin y
]
,

yt = ∂X
[
e−u cos y

]
.

(97)

In order to make contact with the Principal Hierarchy of the resolved conifold, we will
follow the argument of [17] replacing v(X), y(X) by

x := iλX, (98)

v(x) := iy(x)λ, (99)

w(x) := iελ∂x

eiελ∂x − 1
u(x). (100)

In this way, the Poisson brackets of w and v take the standard form (23), and the
Hamiltonian (94) becomes upon interpolation

HAL =
∫

hAL dx

=
∫ √(

1 − exp

{
1 − eiελ∂x

iελ∂x
w

})(
1 − exp

{
eiελ∂x − 1

iελ∂x
w

})
cosh

(v
λ

)
dx,

(101)

hAL = (−1 + ew
)

cosh
(v
λ

)

−
(
ewλ2 cosh

(
v
λ

) (
4 (−1 + ew)wxx − 3(wxx )

2
))
ε2

24 (−1 + ew)
+ O

(
ε4
)
. (102)

It turns out that the Ablowitz–Ladik lattice admits an infinite set of conserved currents
[1]; as opposed to the Toda case, these currents do not come straightforwardly from a
bi-Hamiltonian recursion associated to a local Poisson pencil, due to the non-existence
of an Euler vector field for the prepotential (90). It is easy to show that at the O(ε0) an
infinite number of them5 coincide with the densities of the Principal Hierarchy associ-
ated to the prepotential (90): the condition for a dispersionless density f (v(x), w(x)) to
be in involution with the dispersionless Ablowitz–Ladik hamiltonian gives

{
H [0]

AL,

∫

S1

f

}
= 0 ⇔ ∂2

ww f +

(
λ2ew

1 − ew

)
∂2
vv f = 0, (103)

which is implied by (19) for α = β.
This connection provides us with a viable candidate hierarchy to relate to the

Gromov–Witten theory of X1 with eT (X1) = 0, and led us to our Conjecture 1.2
connecting the dispersionful Ablowitz–Ladik system with the all-genus theory of X1.
To this aim, and as a first step towards the reconstruction of the dispersionful hierarchy,
let us remark here that by Theorem 3.1, Eq. (101) offers us a way to effectively construct
the dispersive flows:

5 In fact all of them, with the sole exception [17] of the one generating phase shifts of an , bn .
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Proposition 3.2. The D-operator for the Ablowitz–Ladik hierarchy reads at O(ε2),

DAL f = f + ε2
[

ew(x)
(−1 + 2ew(x)

)
w′(x)2 fvvλ4

24
(−1 + ew(x)

)2 +
ew(x)w′(x)2 fvvwλ4

12
(−1 + ew(x)

)

+
ew(x)w′(x)v′(x) fvvvλ4

6
(−1 + ew(x)

) +
v′(x)2 fvvλ2

−12 + 12e−w(x) +
1

12
v′(x)2 fvvwλ

2
]

+ O(ε4).

(104)

Equation (104) was obtained, with minor discrepancies due to a different choice of vari-
ables, in [17]. A sketch of the proof can be found in Appendix 3.5. Applying (104) to
the densities hα,p of the Principal Hierarchy we find

h[2]
v (v,w, vx , wx )

= 1

24
(−1 + ew(x)

)2

[
ew(x)λ2

(
−w(x) + 2ew(x)(w(x) + 1)− 2

)
w′(x)2

−2
(
−1 + ew(x)

) (
ew(x)(w(x)− 1) + 1

)
v′(x)2

]
z2 + O

(
z3
)
, (105)

h[2]
w (v,w, vx , wx ) = ew(x)

((−1 + 2ew(x)
)
λ2w′(x)2 − 2

(−1 + ew(x)
)
v′(x)2

)
z

24
(−1 + ew(x)

)2

+
ew(x)

24
(−1 + ew(x)

)2

[
4
(
−1 + ew(x)

)
w′(x)v′(x)λ2

+v(x)
((

−1 + 2ew(x)
)
λ2w′(x)2 − 2

(
−1 + ew(x)

)
v′(x)2

) ]

×z2 + O
(

z3
)
. (106)

As an example, the leading order correction to (67) reads

wt t =
(−λ2ew

1 − ew
wx

)

x
− ew(x)

24
(−1 + ew(x)

)4

[ (
1 + 4ew(x) + e2w(x)

)
λ2w′(x)3

+
(
−2 + 2e2w(x)

) (
v′(x)2 − 2λ2w′′(x)

)
w′(x)− 2

(
−1 + ew(x)

)2

×
(

2v′(x)v′′(x)− λ2w(3)(x)
) ]

x

ε2 + O(ε4). (107)

3.3. Quasi-triviality and genus one Gromov–Witten invariants. A key ingredient in the
Dubrovin–Zhang analysis of bi-Hamiltonian evolutionary hierarchies, which proved
instrumental in their proof [20] of the P

1/Toda correspondence, is the fact the hierarchy
verifying Conjecture 1.1 satisfies a quasi-triviality property:

Definition 3.2. A transformation of the form

uα → zα = uα +
∞∑

k=1

ε2k Fαk (u,ux , . . . ,u(m(k))), (108)
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with m(k) a monotonically increasing, positive integer-valued sequence and Fαk a degree
k rational function of u( j) for j > 0, will be called a quasi-Miura transformation. The
hierarchy (4) is called quasi-trivial if there exists a quasi-Miura transformation reducing
it, in the new variables, to its dispersionless ε = 0 truncation.

The quasi-Miura transformation (108) is said to be τ -symmetric if there exists a
formal power series

F(ε,u,ux , . . . ) =
∞∑

k=0

ε2kFk(u,ux , . . . ,u(m(k)−2)), (109)

where again Fk(u,ux , . . . ,u(m(k)−2)) is a degree k rational function of u( j) for j > 0,
such that

Fαk (u,ux , . . . ,u(m(k))) = ∂2Fk

∂x∂tα,0
(u,ux , . . . ,u(m(k)−2)). (110)

Comparing (110) with (3) identifies Fk as the O(εk) dispersive correction to the loga-
rithm of the dispersionless τ function, i.e., in the case of the Principal Hierarchy (25),
of the genus zero topological τ -function of Theorem 2.3. Conjecture 1.1 then states that
precisely one such object should correspond to the full descendent, all-genus Gromov–
Witten potential.

Remark 3.3. It should be stressed that the fact that the Miura-type transformation (108)
is quasi-Miura – namely, that Fαk (u,ux , . . . ,u(m(k))) is a rational function of the jet
variables – is something not completely expected within the realm of non-conformal
Frobenius structures: in ordinary Gromov–Witten theory the existence of an Euler vector
field heavily enters the proof of rationality of the Miura-type transformation [19], and we
have no analogue for the Euler vector field here. For elliptic Gromov–Witten invariants,
however, the fact that the transformation is rational in the jet variables goes through to
the equivariant setting as well, as it is a consequence of the genus one topological recur-
sion relations; the only part where the homogeneity condition intervenes is in fixing a
one-parameter ambiguity in the G-function. Our study of the local CP

1/Ablowitz–Ladik
correspondence suggests that this fact should perhaps extend to more general examples
also in higher genus, perhaps encompassing all toric target spaces with equivariantly
semi-simple quantum co-homology.

The rest of this section is devoted to the use of a quasi-triviality transformation to
give a proof of Conjecture 1.2 at O(ε2), that is, for g = 1 Gromov–Witten invariants.
Our proof consists of the following three steps:

(a) proving that the Ablowitz–Ladik hierarchy is quasi-trivial at O(ε2);
(b) fixing a suitable choice of dependent variables leading to a τ -symmetric transfor-

mation (110) at O(ε2);
(c) proving that the logarithm of the τ -function thus obtained coincides with the genus

one, full descendent potential of X1 with anti-diagonal action.

In the context of the usual theory of (conformal) semi-simple Frobenius structures, step
(a) is a consequence of the theory of (0, n) Poisson pencils on the loop space, while step
(b) and (c) follow from the axiom of linearization of Virasoro constraints. In the absence
of bi-Hamiltonianity and possibly Virasoro-type constraints, we will need to perform
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steps (a)-(c) “by hand”, guided to some extent by the analogy with the Extended Toda
hierarchy.

Let us start from step (a):

Theorem 3.4. There exists an infinitesimal time-ε canonical quasi-Miura transforma-
tion

uα → zα = uα + ε
{
uα, K

}
+ O(ε2), (111)

where

K = − ε

24

∫

S1

[
F+(x) log F+(x) + F−(x) log F−(x)− 2 log

(
−1 + ew(x)

)
v′(x)

]
dx

(112)

and

F±(x) := v′(x)±
√

ew(x)

−1 + ew(x)
λw′(x), (113)

which sends solutions of the Principal Hierarchy to those of its O(ε2) correction (106).

To prove it we will make use of the following technical lemma from [17]:

Lemma 3.5. A density h(u,ux , . . .), depending at most rationally on the jet variables
u(n) for n > 1 is a total derivative ∂x g(u,ux , . . .) if and only if

δ

δu(y)

∫

S1
h(u(x),ux (x), . . .)dx = 0. (114)

Proof of Theorem 3.4. The proof follows from a very lengthy, but straightforward appli-
cation of Lemma 114. The Hamiltonian densities hqt

α,p(z, zx , zxx ) obtained by composi-
tion of the dispersionless densities hα,p(u) with the O(ε2) quasi-Miura transformation
(111) are given by

hqt
α,p(ε, z, zx , zxx , . . . ) := hα,p(u(ε, z, zx , . . . )) = hα,p(z) + ε

{
hα,p, K

}
+ o(ε2),

(115)

since the trasformation generated by K is canonical. In particular the O(ε2) correction is

h[2],qt
α,p (z, zx , zxx ) = ε

{
hα,p, K

}
. (116)

We claim that this reproduces the leading dispersive correction (106) of the dispersion-
less Ablowitz–Ladik flows. In the following we denote by hDop

α,p the densities (106) we
got by acting with the D-operator (104), to distinguish them from the ones obtained via
(111); accordingly, the corresponding generating functions will be written hDop

α (z) and
hqt
α (z). Define

rα(z) := hqt
α (z)− hDop

α (z). (117)
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We refrain here from reproducing the exact form of rα(z), which would occupy alone a
few pages6. A direct computation using (104) and (112) shows that

δ

δu(x)

∫

S1
r [2]
α (z)(u,uy,uyy)dy = 0. (118)

Therefore we conclude that

Hqt,[2]
α,p = HDop,[2]

α,p . (119)

��
Remark 3.6. Even though the Hamiltonian flows they generate are equal by (119), the
Hamiltonian densities hqt

α,p and hDop
α,p differ greatly in form; in particular the quasi-Miura

transformation (111) introduces a rational, rather than polynomial, dependence of hqt
α,p

on the jet variables u(n) for n ≥ 1, which should disappear only at the level of the flows
by (119). For the basic dispersionless Hamiltonian of the Ablowitz–Ladik lattice we
have for example

{
(1 − ew) cosh

(v
λ

)
, K

}

= − P(u,ux ,uxx ,u(3))

48
(−1 + ew(x)

)2 (
ew(x)λ2w′(x)2 − (−1 + ew(x)

)
v′(x)2

)2 , (120)

where P(u,ux ,uxx ,u(3)) looks like

P = ew(x)−
v(x)
λ λ2

[ (
1 + e

2v(x)
λ

) (
− 3e3w(x)λ4w′(x)6 + ew(x)

(
−1 + ew(x)

)
λ2

×
(

ew(x)
(

1 + 2ew(x)
)
w′′(x)λ2 +

(
1 + 5ew(x)

)
v′(x)2

)
w′(x)4

)

−2ew(x)
(
−1 + ew(x)

)2
λ2
(

ew(x)λ2w(3)(x)− 2v′(x)v′′(x)
)
w′(x)3

−2ew(x)
(
−1 + ew(x)

)2
v′(x)4 + · · ·

]
. (121)

It is particularly instructive to consider the result of the quasi-Miura transformation
on the variable w. We find

ε {w, K } = −λ2ε2 ∂
2F̃1(w, vx , wx )

∂x2 , (122)

where

F̃1(w, vx , wx ) := 1

24
log

(

v′(x)2 +
λ2ew(x)

1 − ew(x)
w′(x)2

)

+
1

12
Li1(e

w(x)). (123)

On the other hand, for the v variable we find

ε {v, K } = −λ2ε2

(
∂2F̃1(w, vx , wx )

∂x∂t2,0 +
1

6

∂2 Li1(ew)

∂x∂t2,0

)


= −λ2ε2 ∂
2F̃1(w, vx , wx )

∂x∂t2,0 ,

(124)

6 We will be happy to provide the interested reader with the details of this calculation.
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that is, the quasi-triviality transformation (111) is not τ -symmetric. Indeed, except for
the KdV case, the incompatibility between canonicity and τ -symmetry of the quasi-
Miura transformation seems to be a fairly generic fact,7 also for bi-Hamiltonian systems
like the Extended Toda hierarchy. Quite interestingly, the similiarity with the case of the
Gromov–Witten theory of P

1 and the Extended Toda hierarchy is even more striking, as
the discrepancy between the transformation generated by K and the one via the loga-
rithm of a dispersive τ -function is present in only half of the change of variables, and it
is equal to twice the term independent of space derivatives (in the language of [18], the
G-function) inside F̃1.

It should be emphasized that the form of the G-function in the Toda case relies on
the existence of a grading condition for the Frobenius manifold associated to Q H•(P1),
which in particular allows to fix the degree zero terms at g = 1 [18]. As we will see, in
our case this is achieved by shifting the form of the g = 1 full-descendent free energy
by the constant map term

〈τ0(1)〉X
1,1,0 = −

∫

M1,1

λ1 = − 1

24
, (125)

where λ1 = c1(E) is the Chern class of the Hodge line bundle on M1,1, through

F̃1 → F1 := F̃1 − w(x)

24
. (126)

Inspired by the analogy with the P
1/Toda case, we are then led to consider the following

τ -symmetric ansatz for the choice of dependent variables at O(ε2):

uα → uα + ε2 ∂
2F1(w, vx , wx )

∂x∂tα,0
+ O(ε4), (127)

where

F1 = 1

24
log

(

v′(x)2 +
λ2ew(x)

1 − ew(x)
w′(x)2

)

+
1

12
Li1(e

w(x))− w(x)

24
. (128)

We are now in position to prove Theorem 1.3: by the definition of quasi-triviality,
the O(ε2) correction to the logarithm of the τ -function F0 in (29) should be obtained
by plugging into (128) the solution of the Principal Hierarchy with initial data (26); the
result of the composition will be again denoted by the same symbol F1(t). Accordingly,
we introduce genus 1 “big correlators”

〈〈
τp1(φα1), . . . , τpk (φαk )

〉〉
1 := ∂kF1(t)

∂tα1,p1 . . . ∂tαk ,pk
. (129)

Proof of Theorem 1.3. The statement for g = 0 was proven in Sect. 2.2 (Theorem 2.3
and Proposition 2.5). For g = 1, notice that the descendent Gromov–Witten invariants

7 This point was strongly emphasized to us in an enlightening discussion with B. Dubrovin.
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of X1 are completely determined in a recursive fashion by the following two formu-
las: the first is the g = 1 case of the higher genus multi-covering formula found in
[9,25,32,37,41] that yields the primary potential of X1 as

F X1
1 (t2,0) = − t2,0

24
+

∞∑

d=1

N (1)
1,dedt2,0 = − t2,0

24
+

1

12
Li1(e

t2,0). (130)

The second is the set of g = 1 topological recursion relations [14,28,39]

〈
τp(φα)

〉X1
1,1,d =

∑

d1+d2=d

〈
τp−1(φα)τ0(φν)

〉X1
0,2,d1

ημν
〈
τ0(φμ)

〉X1
1,1,d2

+
1

24
ημν

〈
τp−1(φα)τ0(φν)τ0(φμ)

〉X1
0,3,d , (131)

that fully determine genus one descendent invariants in terms of the genus one primaries
and genus zero descendents. We will prove here that the Ablowitz–Ladik τ -function
(128) implies both (130) and (131).

Consider first the small phase reduction of F(t), i.e.

uα(t)

∣∣∣∣ tα,p=0
for p>0

= tα,0 + δα,0x . (132)

Replacing into (128) we find

F1(t)

∣∣∣∣ tα,p=0
for p>0

= − t2,0

24
+

1

12
Li1(e

t2,0
), (133)

which proves (130).
To see that F1(t) correctly embeds the full-descendent information too, we follow

[18] and compute

Cα,p := ∂F1

∂tα,p
− ∂2F0

∂tα,p−1∂tν,0
ημν

∂F1

∂tμ,0
=

∑

γ=1,2

[
∂F1

∂uγ
∂uγ

∂tα,p
+
∂F1

∂uγx
∂x

(
∂uγ

∂tα,p

)

−∂νh[0]
α,p−1η

μν

(
∂F1

∂uγ
∂uγ

∂tμ,0
+
∂F1

∂uγx
∂x
∂uγ

∂tμ,0

)]

=
∑

γ=1,2

[
∂F1

∂uγ
∂νh[0]

α,p−1
∂uγ

∂tμ,0
ημν +

∂F1

∂uγx
∂x

(
∂νh[0]

α,p−1
∂uγ

∂tμ,0
ημν

)

−∂νh[0]
α,p−1η

μν

(
∂F1

∂uγ
∂uγ

∂tμ,0
+
∂F1

∂uγx
∂x
∂uγ

∂tμ,0

)]

=
∑

γ=1,2

∂F1

∂uγx
∂x∂νh[0]

α,p−1
∂uγ

∂tμ,0
ημν, (134)

where in the second line we used the chain rule and the fact that

∂νh[0]
α,p−1 = 〈〈

τp−1(φα)τ0(φν)
〉〉

0 = ∂2F0

∂tα,p−1∂tν,0
, (135)



596 A. Brini

while in the third line we used the genus zero topological recursion relations (31)

∂uα

∂tβ,q
= ηαγ

∂3F0

∂tγ,0∂t1,0∂tβ,q
= ηαγ

∂2F0

∂tδ,0∂tβ,q−1 η
δε ∂3F0

∂tγ,0∂t1,0∂tδ,0

= ∂uα

∂tδ,0
ηδε∂εh

[0]
α,p−1. (136)

Moreover Eq. (66) with λ1 = −λ2 = λ and the explicit form (128) yield

∑

γ=1,2

∂F1

∂uγx

∂uγ

∂tμ,0
ημν = ∂F1

∂vx

∂v

∂tν,0
+
∂F1

∂wx

∂w

∂tν,0

= ημν

24

2v′(x)∂tμ,0v + 2 λ
2ew(x)

1−ew(x)
w′(x)∂tμ,0w

v′(x)2 + λ2ew(x)

1−ew(x)
w′(x)2

= −λ
2

12
δν,0. (137)

This implies

Cα,p = −λ
2

12
∂x∂wh[0]

α,p = −λ
2

12

∂3F0

∂t1,0∂t2,0∂tα,p−1 = 1

24
ημν

∂3F0

∂tα,p−1∂tν,0∂tμ,0
.

(138)

Combining the last equality with the definition of Cα,p in the first line of (134) we obtain

〈〈
τp(φα)

〉〉
1 = 〈〈

τp−1(φα)τ0(φν)
〉〉

0 η
μν
〈〈
τ0(φμ)

〉〉
1+

1

24
ημν

〈〈
τp−1(φα)τ0(φν)τ0(φμ)

〉〉
0 ,

(139)

which, setting tα,p = 0 for p > 0 in (129) and expanding in et2,0 , implies (131). ��

3.4. A look at the higher genus theory. A natural further step would be to generalize
the results of the previous section to higher genus Gromov–Witten invariants. As usual,
however, the degree of difficulty undergoes a phase transition as soon as g > 1, and the
search of straightforward generalizations of the methods we used becomes unwieldy.
In particular, the construction of the quasi-triviality transformation appears to be very
hard, let alone finding a suitable τ -symmetric form to compare with the higher genus
Gromov–Witten potentials.

However, there is still room for a number of non-trivial tests of Conjecture 1.2. To
see this, recall that in the previous section we found three ways to construct the O(ε2)

dispersive tail of the Ablowitz–Ladik hierarchy:

(i) via the D-operator (104);
(ii) via the canonical quasi-Miura transformation (111);

(iii) via the τ -symmetric quasi-Miura transformation (127).

(i) and (ii) are equivalent by Theorem 3.4, and (ii) and (iii) because rational Miura
transformations form a group. At the level of the flows the statement of Theorem 3.4 is
stronger than that, meaning that this equivalence is realized as an equality of the form of
the equations of the hierarchy (119). By (122) and (124) this is not the case for (ii) and
(iii), where τ -symmetry is broken in the canonical setup; moreover, the canonical free
energy F̃ such that w[d−op](t) = ∂2

x F̃(t) coincides with the topological free energy F
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Table 1. Relations between solutions of the dispersionful Ablowitz–Ladik hierarchy at O(ε2). The equality
between the second and the third column holds up to a Miura transformation whose restriction to the small
phase space involves only degree zero terms

D-operator Canonical q.t. τ -symmetric q.t.

w[d−op](t, ε) = w[c.q.t.](t, ε) = w[τ−s.q.t.](t, ε)|d>0
v[d−op](t, ε) = v[c.q.t.](t, ε) 
= v[τ−s.q.t.](t, ε)d>0

up to a Miura transformation, consisting in a shift by terms whose restriction to primary
invariants involves only degree zero terms. The situation is schematized in Table 1.

The objects to construct for the purpose of computing higher genus Gromov–
Witten invariants are v[τ−s.q.t.](t, ε) and w[τ−s.q.t.](t, ε) at higher order in O(ε); as
we emphasized, the relevant τ -symmetric quasi-Miura transformation seems however
very difficult to obtain. On the other hand, focusing on the first line we see that at the
leading order in the perturbative expansion in ε we have

w[d−op](t, ε) = w[τ−s.q.t.](t, ε) = ∂2F
∂x2 (t) + O(ε4), (140)

up to terms related to constant maps contribution upon restriction to primary fields, as
in (126). In the following we will make the following important

Assumption 3.1. The equality (140) holds true at genus O(ε4):

w[d−op](t, ε) = w[τ−s.q.t.](t, ε) = ∂2F
∂x2 (t) + O(ε6), (141)

up to a quasi-Miura transformation whose restriction to primaries is determined by
degree zero Gromov–Witten invariants.

That is, even if we do not know the form ofw[d−op](t, ε) as a rational function in the
derivatives of the fields beyond O(ε2), we assume that it is a double derivative of some
(rational) local functional F . In our situation, we have little guidance for the construction
of the right quasi-Miura transformation which determines the form of F at higher genus,
but on the other hand computing higher order corrections to the D-operator (104), and
therefore to w[d−op](t), is just a matter of computational time and stamina. Indeed the
involutivity condition (84) gives a self-contained way to find w[d−op](t, ε) at any order
in ε, thus allowing a complete recursive reconstruction of the ε expansion of the flows.
As for the genus one case, we might be missing a possible contribution from constant
maps here; the computation below will indeed be insensitive to degree zero invariants.

Proof of Theorem 1.4. We will work out the consequences of Theorem 3.1 at O(ε4)

by putting Hα,p = HAL, where the O(ε4) expansion of HAL was given in (102). This
determines the two-loops D-operator of the Ablowitz–Ladik lattice; for future use we
give here the expression of the coefficients b[4]

vv and b[4]
vvv ,

D[4] f = b[4]
vv fvv + b[4]

vvv fvvv + · · · , (142)
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where, up to a total derivative, we have

b[4]
vv = λ2

5760
(−1 + ew(x)

)4

[
− 8ew(x)

(
−1 + e2w(x)

)
v′(x)4 + 4

(
−1 + ew(x)

)

×
(

ew(x)
(

11 + 7ew(x)
)

− 2
)
λ2w′′(x)v′(x)2 − 8

(
−1 + ew(x)

)

×
(

ew(x)
(
−1 + 19ew(x)

)
+ 2

)
λ2w′(x)v′′(x)v′(x) + λ2

×
( (

4 − ew(x)
(

15ew(x)
(
−4 + ew(x)

)
+ 19

))
λ2w′′(x)w′(x)2

+8ew(x)
(
−1 + ew(x)

) ( (
ew(x)

(
−7 + 3ew(x)

)
+ 1

)
λ2w′′(x)2 +

(
−1 + ew(x)

)

×
(

5 + 7ew(x)
)
v′′(x)2

))]
, (143)

b[4]
vvv = 1

17280

[
λ4

(
1 − ew(x)

)3

(
2
(

4w(x)
(
−1 + ew(x)

)3
+ 3

(
4 log

(
−1 + ew(x)

)

×
(
−1 + ew(x)

)3
+ ew(x)

(
ew(x)

(
−107 + 32ew(x)

)
+ 131

)
− 46

))

×w′(x)v′(x)w′′(x)λ2
)

+

(
3
(
ew(x)

(−119 + 183ew(x)
)

+ 46
)

(−1 + ew(x)
)3 − 12 log

(
−1 + ew(x)

)
− 4w(x)

)

×w′(x)2v′′(x)λ2 − 144ew(x)
(
1 + ew(x)

)
w′′(x)v′′(x)λ2

(−1 + ew(x)
)2

−12

(
− 3

(−5 + 9ew(x)
)

(−1 + ew(x)
)2 − 2 log

(
−1 + ew(x)

)
+ 6w(x)

)
v′(x)2v′′(x)

]
.

(144)

As an application of (104) and (144), consider the t2,1 flow generated by H2,1.
For reasons that will be clear in a moment, we would like to compute the solutions
v[d−op](t1,0, t2,0, t2,1, ε) and w[d−op](t1,0, t2,0, t2,1, ε), with all other times set to zero,
of the t2,1 flow. This will lead us to a proof of Theorem 1.4.

From (39), (42) and (48)-(51) we have that

h[0]
2,1(v,w) = − v3

6λ2 + v Li2(e
w), (145)

and therefore

hd−op
2,1 := DAL h[0]

2,1 = h[0]
2,1 + ε2h[2]

2,1 + ε4h[4]
2,1 + O(ε6), (146)
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where

h[2]
2,1 = ew(x)

24
(−1 + ew(x)

)2

[
4
(
−1 + ew(x)

)
w′(x)v′(x)λ2 + v(x)

×
( (

−1 + 2ew(x)
)
λ2w′(x)2 − 2

(
−1 + ew(x)

)
v′(x)2

) ]
, (147)

h[4]
2,1 = − 1

λ2

(
vb[4]
vv + b[4]

vvv

)
, (148)

while on the other hand

hd−op
1,0 = h[0]

1,0 = −vw
λ2 . (149)

Let us solve the dispersive equations

∂uα

∂t2,1 =
{

uα,
∫

S1
hd−op

2,1 (v,w)

}
(150)

perturbatively in t2,1 with the topological Cauchy datum (132). We find

w[d−op](x, t2,0, t2,1) = t2,0 + t2,1x + (t2,1)2λ2 log
(

1 − et2,0
)

+
et2,0

(t2,1)3xλ2

−1 + et2,0 + · · ·

+

⎛

⎝− et2,0
(t2,1)2λ2

12
(−1 + et2,0)2 +

et2,0
(

1 + et2,0
)
(t2,1)3xλ2

12
(−1 + et2,0)3 + · · ·

⎞

⎠ ε2

+

⎛

⎝−
et2,0

(
1 + 4et2,0

+ e2t2,0
)
(t2,1)2λ2

240
(−1 + et2,0)4 + · · ·

⎞

⎠ ε4 + O(ε6).

(151)

From now on we put t2,0 =: t . The last line of (151) and the assumption (141) combined
together lead to

∂4F2

∂x2∂(t2,1)2

∣∣∣∣ tα,p=0
for p>0

= et
(
1 + 4et + e2t

)

120 (−1 + et )4
= 1

120
Li−3

(
et) . (152)

In Gromov–Witten theory the left hand side would represent the small phase correlator
〈〈φ1, φ1, τ1(φ2), τ1(φ2)〉〉X1

2,sps, where we define

〈〈
τp1(φα1) . . . τpk (φαk )

〉〉X1
g,sps (x, t)

:=
∑

d,n≥0

1

n!

〈

τp1(φα1), . . . τpk (φαk ),

n times
︷ ︸︸ ︷
xφ1 + tφ2 . . . xφ1 + tφ2

〉X1

g,n+k,d

. (153)
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Applying twice the puncture equation to 〈〈φ1, φ1, τ1(φ2), τ1(φ2)〉〉X1
2,sps, we can kill the

two descendent insertions and reduce to the double derivative of the primary potential

2
∑

d≥0

∞∑

n=0

(t)n

n!

〈

φ2, φ2,

n times
︷ ︸︸ ︷
φ2, . . . , φ2

〉

2,n+2,d

= 2
∂2 F2(t)

∂t2 , (154)

that is

∂2 F2(t)

∂t2 = 1

240
Li−3

(
et) . (155)

This reproduces exactly the higher genus formula for primary Gromov–Witten invariants
of X1 [9,25,32,37,41]

F X1
g (t) =

∞∑

d=0

N (1)
g,dedt =

∣∣B2g
∣∣

2g(2g − 2)! Li3−2g(e
t ) +

∣∣B2g B2g−2
∣∣

2g(2g − 2)(2g − 2)! (156)

at genus 2, up to the constant map contribution, and proves Theorem 1.4. ��

3.5. Higher descendent flows and the Ablowitz–Ladik equations. By the same token, the
complete solutionw(t) = ∂2

x F̃(t) of all flows should contain information on descendent
invariants; however, the discrepancy between F̃(t) and F(t), which amounts to constant
map terms when restricted to primaries, might also affect positive degree invariants when
it comes to computing descendents. In particular the terms of O(t2,1)n+2 of (151) com-
pute the right genus 2 Gromov–Witten invariants with single descendent insertions at n
points only if n ≤ 2. As for the genus one case, the precise choice of dependent variables
for the Ablowitz–Ladik equations is then crucial for the computation of Gromov–Witten
invariants, and in particular it should correct the hydrodynamic Poisson structure (23),
which is left invariant by construction in the D-operator formalism, by higher order
terms in ε.

It is nonetheless remarkable that the dispersive Ablowitz–Ladik flows in the D-oper-
ator form satisfy a number of constraints induced from the topology of moduli spaces
of stable maps.

As an example, a little experimentation at the next few orders in t2,1 shows that

1

n!
∂w[d−op](x, t2,0, t2,1)

∂(t2,1)n

∣∣∣∣
t2,1=0

=
n∑

k=0

a′′
k,n(t)x

k (157)

with

ak,n(t) =
(

n
k

)
∂ka0,n−k(t)

∂tk
. (158)

It is noteworthy that the relation (158), which in Gromov–Witten theory would be a
consequence of the string axiom, is realized by the dispersive Ablowitz–Ladik flows;
we checked this up to O((t2,1)7) (i.e. n ≤ 5). Along the same lines, it is straightforward
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to switch on the t1,1-flow of the Ablowitz–Ladik hierarchy and see that the dilaton con-
straint is satisfied too. As an example, for the O((t2,1)2),O(ε2g) coefficient w̃(2)g (t1,1, t)
of w(x, t, t1,1, t2,1) we can give a closed expression for its t1,1 dependence

w̃(2)g :=
∑

n≥0

(t1,1)n

n!

〈〈

φ1, φ1, τ1φ2, τ1φ2,

n times
︷ ︸︸ ︷
τ1φ1, . . . , τ1φ1

〉〉X1

g,sps

=
(

1

1 − t1,1

)2g+2
∂2

∂y2 Fg(y)

∣∣∣∣
y=

(
t

1−t1,1

), g = 0, 1, 2 (159)

and it is immediate to see that the small-phase space dilaton equation holds
[
(1 − t1,1)

∂

∂t1,1 − t
∂

∂t
− 2 − 2g

]
w̃(2)g = 0. (160)
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Appendix A. Dispersive Expansion of the Ablowitz–Ladik Hierarchy

We collect here the details of the reconstruction of the dispersive tail of the dispersionless
Ablowitz–Ladik hierarchy.

A.1 Normal form for the D-operator. Since the D-operator (88) maps densities to den-
sities, the Hamiltonian flows it induces would be unmodified by the addition of a total
derivative

D f → D̃ f = D f + g′. (161)

Moreover, since such densities are supposed to integrate to Hamiltonians of a disper-
sionless hierarchy, they will be bound to satisfy a linear wave equation of the form
(103).
Let us then give a normal form for the D-operator which solves this constraints. First of
all, it was shown in [17] that for systems of the type (103), the coefficients b[k]

l,m in (88)
can be taken to be independent of v,

b[k]
l,m(vx , . . . , v

(k), w . . . , w(k)) (162)

up to a total derivative. Let I ∈ N
2k be such that

2k∑

j=1

[
j + 1

2

]
I j = k. (163)
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The differential polynomial b[k]
l,m explicitly reads

b[k]
l,m =

∑

I

dI,l,m(w)

k∏

j=1

(v( j)(x))I2 j−1(w( j)(x))I2 j . (164)

It is easy to realize that terms with I j = 0 for j > [(k + 1)/2] can be set to zero upon
adding a suitable total derivative. The same is true for all remaining terms with I j = 1
and I j−2 = (k −[( j +1)/2])/[( j −1)/2] for 2 < j ≤ [(k +1)/2]. This fixes entirely the
ambiguity (161). Furthermore, we can take into account (103) by constraining m ≥ 1;
moreover, ε-exactness of the Hamiltonian H1,0 generating the space translations sets
n > 1. We will take this as our normal form for the D-operator. The number of inde-
pendent coefficients Nk thus obtained at fixed l and m, for the first few values of k, is
N2 = 3, N3 = 6, N4 = 10.

A.2 Computing the D-operator. Let us then give an example of how to compute the
D-operator by outlining the computation of the 1-loop case for the Ablowitz–Ladik
hierarchy. Let f be an arbitrary dispersionless Hamiltonian density (103). Then the D[2]
correction to the D-operator should come from the O(ε2) involutivity condition

{
H [0]

AL + ε2 H [2]
AL ,

∫

S1
( f + ε2 D[2] f )dx

}
= o(ε2)

i.e., at the level of the densities and using Lemma 114,

δ

δv(x)

{
h[0]

AL + ε2h[2]
AL , f + ε2 D[2] f

}
= o(ε2), (165)

δ

δw(x)

{
h[0]

AL + ε2h[2]
AL , f + ε2 D[2] f

}
= o(ε2). (166)

These two variational equations give rise to an overdetermined linear system of coupled
O DEs for the nine dI,l,m(w). Notice that the left hand side is a differential polynomial
which is linear in ∂n

v ∂
m
w f . After enforcing (103), since f has to be otherwise arbitrary,

we can solve the system by imposing vanishing of the coefficient of each monomial
(∂n
v ∂

m
w f )

∏k
j=1(v

( j)(x))I2 j−1(w( j)(x))I2 j for every n,m, I . It turns out that the first var-
iational condition (165) is sufficient to solve for all coefficients. The strategy is to solve
the equations starting from the highest non-vanishing value of n (equal to 4 in this case),
where the equations are linear algebraic in the coefficients d, and then express for lower
n all non-differentiated unknowns in terms of the others. With this criterion, the system
(165) boils down to a second order O DE for a single dn,m,I , which following this path
of solution turns out to be d2,0,(0,2)(w), plus extra conditions which fully constrain the
two constants of integration. The final answer is the one reported in (104). The same
method generalizes straightforwardly, albeit resulting considerably heavier from a com-
putational point of view, to the higher orders in ε: at O(ε4) this method provides the
expressions for b[4]

vv and b[4]
vvv we reported in (143)–(144).
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Appendix B. Expansion Formulae for Hypergeometric Functions

We give here some useful expansion formulae [36] for the expansion of Gauss’ hyergeo-
metric function 2 F1(a, b, c; x) around integer values of a, b, and c. By hypergeometric
recursions, this can be reduced to the following cases:

2 F1

(
1 + a1ε, 1 + a2ε

2 + cε

∣∣∣∣ z

)
= 1 + cε

z

(
− ln(1 − z)− ε

{
c − a1 − a2

2
ln2(1 − z)

+c Li2(z)

}
+ ε2

{[
(a1 + a2)c − c2 − 2a1a2

]
S1,2(z) +

[
(a1 + a2)c − c2 − a1a2

]

ln(1 − z)Li2(z) + c2 Li3(z)− 1

6
(c − a1 − a2)

2 ln3(1 − z)

}

−ε3
{

c
[
(a1 + a2)c − c2 − 2a1a2

]
S2,2(z) + c

[
(a1 + a2)c − c2 − a1a2

]

ln(1 − z)Li3(z) + (c − a1)(c − a2)(c − a1 − a2)

[
ln(1 − z)S1,2(z)

+
1

2
ln2(1 − z)Li2(z)

]
+

1

24
(c − a1 − a2)

3 ln4(1 − z)

+c(c − a1 − a2)
2 S1,3(z) + c3 Li4(z)

}
+ O(ε4)

)
, (167)

2 F1

(
a1ε, a2ε

1 + cε

∣∣∣∣ z

)
= 1 + a1a2ε

2
{

Li2(z)− ε

[
(c − a1 − a2)S1,2(z) + c Li3(z)

]

+ε2
[

c2 Li4(z) + (c − a1 − a2)
2 S1,3(z) +

1

2
(c(c − a1 − a2) + a1a2)Li2(z)

2

− (c(c − a1 − a2) + 2a1a2) S2,2(z)

]
+ O(ε3)

}
. (168)

In (167) and (168), Sn,p(z) is the Nielsen generalized polylogarithm

Sn,p(z) := (−1)n+p−1

(n − 1)!p!
∫ 1

0

logn−1(t) logp(1 − t z)

t
dt. (169)
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