
ORIGINAL ARTICLE
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Abstract The most efficient pedaling rate (lowest oxygen
consumption) at a workload of 50–300 W has been re-
ported to be in the range of 42–60 rpm. By contrast,
most competitive cyclists prefer a pedaling rate of more
than 90 rpm. The reason for this difference is still un-
known. We assume that the high pedaling rate preferred
by cyclists can be explained by the inherent properties of
muscle fibers. To obtain statements which do not depend
on muscle’s cross-section and length, we generalized
Hill’s characteristic equations where muscle force and
heat liberation are related to shortening velocity. A
pedaling rate of fgmax yields to maximal efficiency,
whereas the higher pedaling rate fPmax leads to maximal
power. The ratio fPmax/fgmax between these two pedaling
rates ranges from 1.7 to 2.4, and it depends on the
muscle’s fiber-type composition. In sprints and compe-
titions of very short duration, fPmax is more advanta-
geous because energy supply is not the predominant
limiting factor. The price to be paid for the most pow-
erful pedaling rate is lower efficiency and higher energy
cost. In longer exercises, economy is more important
and the optimal pedaling rate shifts toward fgmax. We
conclude that the optimal pedaling rate, representing the
fastest race performance, is not fixed but depends on
race duration; it ranges between fgmax and fPmax. Our
results are not only of interest for competitive cyclists
but also for investigations using cycle ergometers:

maximum power might not be reached by using a
pedaling rate near the most efficient one.

Keywords Force Æ Power Æ Efficiency Æ Optimal
pedaling rate Æ Cadence

Introduction

The most efficient pedaling rate (lowest oxygen con-
sumption) at a workload of 50–300 W is in the range of
42–60 rpm (di Prampero 2000). By contrast, field ob-
servations indicate that most competitive cyclists prefer
pedaling rates above 90 rpm. In short track races, ped-
aling rates may even exceed 120 rpm. How can this
contradiction between field and laboratory observations
be explained? Hemodynamics may affect the preferred
pedaling rate, because a high pedaling rate can result in
a more effective action of the skeletal-muscle pump
(Gotshall et al. 1996). Another suggestion is that the
internal work-rate component (needed for moving
the limbs) is proportionally smaller at pedaling rates
between 82 and 101 rpm, resulting in greater mechanical
efficiency (Widrick et al. 1992). In our opinion, no
convincing suggestion has yet been advanced that could
explain this ‘‘cadence paradox’’.

The actual goal of a competitive cyclist is to win a
race, and winning depends on achieving the greatest
power output over a given distance (less frequently
over a given time period). The greatest power output is
produced at pedaling rates between 80 and 120 rpm
(Baron 2001; Sargeant et al. 1981). We avoid the term
‘‘optimal pedaling rate’’ because it has been used with
different meanings: di Prampero (2000) identifies it with
the most efficient pedaling rate, whereas other authors
use the term for the pedaling rate producing the
greatest power (Baron 2001; Dorel et al. 2003; Martin
and Spirduso 2001) or the cadence producing the
lowest EMG amplitude for a given power (Macintosh
et al. 2000).

This revised version was published online in March 2005 with
corrections to the equations.
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We propose that the preferred pedaling rate of
competitive cyclists can be explained by the inherent
properties of muscle fibers that are described by Hill
(1938, 1964) as functions relating muscle force and heat
liberation to shortening velocity (hereafter, we will
name these functions force–velocity relationship and
heat liberation; formulas are given in Calculations).
These functions contain constants that depend on
muscle size and fiber type. Thus, each muscle has its
own force–velocity relationship and its own heat lib-
eration. Therefore, statements based on these relation-
ships are valid only for a given muscle. In the
following, we shall transform the force–velocity re-
lationship and the heat liberation into general terms
where constants depending on muscle size are elimi-
nated. Statements based on these new general equa-
tions apply to any muscle independent of its size. These
theoretical considerations add a new dimension to the
question why the preferred pedaling rate of cyclists
exceeds the most efficient one.

Calculations

The general force–velocity relationship

Hill (1938) found the following force–velocity relation-
ship for concentric contractions:

F ¼ b F0 þ að Þ= vþ bð Þ � a ð1Þ

where F is the force, F0 is the maximal isometric force,
v is the velocity of fiber shortening, a is a constant de-
pending the cross-sectional area of the muscle, and b is a
constant depending on the length of the muscle.

The force–velocity relationship was found in vitro in
isolated muscle preparations of a single fiber-type.
Human skeletal muscles, however, are composed of two
main types of muscle fibers. As the two main fiber types
have different contractile properties, the constants a and
b depend on the fiber type. Thus, Eq. 1 is not valid
for mixed muscles composed of both fiber types. The F
developed by a given mixed muscle, at a given v, is the
sum of the F values developed by both groups of fibers:

F ¼ FI þ FII

F ¼ bI F0;I þ aI
� �

= vþ bIð Þ � aI
þbII F0;II þ aII

� �
= vþ bIIð Þ � aII

ð2Þ

The subscripts I and II are used to indicate that each
fiber type is characterized by its own specific constants a,
b, and F0. All these specific constants must be eliminated
in order to obtain a force–velocity relationship that does
not depend on the size of the muscle. We will first set out
to eliminate the two constants aI and aII. The ratio
a0=a/F0 is similar for any muscle of a single fiber-type
(Hill 1938). Therefore, aI and aII can be replaced by:

aI ¼ a0;IF0;I ð3aÞ

aII ¼ a0;IIF0;II ð3bÞ

Faulkner et al. (1986) determined that a0,I=aI/F0,I=
0.15 for type I fibers of human muscle, and that
a0,II=aII/F0,II=0.25 for type II fibers.

Inserting Eq. 3a and 3b in Eq. 2, and dividing by the
isometric force F0=F0,I+F0,II of a mixed muscle, yields
the F related to the isometric force.

F =F0 ¼ F0;I bI 1þ a0;I
� �

= vþ bIð Þ � a0;I

� �
=F0

þ F0;II bII 1þ a0;II

� �
= vþ bIIð Þ � a0;II

� �
=F0 ð4aÞ

Subsequently F0,I and F0,II are removed. As both fiber
types have similar capacities for generating isometric
force (Faulkner et al. 1986), the ratio F0,I/F0 is equal to
the ratio between the cross-sectional area of fiber type I
and the cross-sectional area of the whole muscle. The
same applies to fiber type II. Defining the fiber-type
composition factor x=(cross-sectional area of type II
fibers/cross-sectional area of the whole muscle), Eq. 4a
can be written as:

F =F0 ¼ 1� xð Þ bI 1þ a0;I
� �

= vþ bIð Þ � a0;I

� �

þ x bII 1þ a0;II
� �

= vþ bIIð Þ � a0;II
� �

ð4bÞ

The constants bI and bII will now be eliminated as
follows. Figure 1 shows the force–velocity relationship
for type I (x=0) and type II (and x=1) fibers. By setting
the F to zero in Eq. 1, we obtain the maximum short-
ening velocities, vmax,I=bI/a0,I (for x=0), and vmax,II

=bII/a0,II (for x=1). This allows us to replace bI and bII
as follows:

bI ¼ a0;Ivmax;I ð5aÞ

bII ¼ a0;IIvmax;II ð5bÞ

Fig. 1 General force–velocity relationships, which apply to muscles
with any cross-sections and lengths. Dashed line (type I) A
hypothetical muscle composed exclusively of type I fibers; dotted
line (type II) a muscle composed exclusively of type II fibers.
Continuous line A muscle with equal cross-sectional area of both
fiber types (50% type I, 50% type II), so that in Eq. 2b, x=0.5.
Muscle shortening velocity is proportional to pedaling rate (see
text). Therefore in this diagram, as well as the subsequent ones,
when appropriate, shortening velocity can be replaced by pedaling
rate
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In human muscle, the maximum shortening velocity
of type II fibers is three times that of type I fibers
(Faulkner et al. 1986). To keep our equations as general
as possible, however, we define V=vmax,II/vmax,I, which
allows us to alter the ratio vmax,II/vmax,I in case new
evidence emerges. Now bI can also be replaced by:

bI ¼ a0;I vmax;II=V ð5c)

Defining the relative shortening velocity u=v/vmax,II

we obtain:

v ¼ uvmax;II ð6Þ

Inserting Eqs. 5b and 5c and 6 in Eq. 4b, we obtain
the general force–velocity relationship for mixed muscles
which does not contain any muscle-size-dependent
constants:

F =F0 ¼ k ¼ 1� xð Þ a0;I þ a20;I
� �

= uV þ a0;I
� �

� a0;I

h i

þ x a0;II þ a2
0;II

� �
= uþ a0;II
� �

� a0;II

h i
ð7Þ

where k (=F/F0) is the force relative to F0. Thus, from
Eq. 7, if F0 is known, the force–velocity relationship can
be obtained for any given muscle:

F ¼ F0k ð8Þ

It should be noted that Eq. 7 is valid only for
shortening velocities equal or below vmax,I=vmax,II/V. At
higher velocities, type I fibers do not produce any force
(see Fig. 1) and the general force–velocity relationship

for mixed muscles is: k = x a0;II + a2
0;II

� �
/ u + a0;II

� �h

�a0;II�

The general power–velocity relationship

Mechanical power is defined as:

P ¼ F ds=dt ¼ Fv ð9Þ

Inserting Eqs. 6, 8 and 9, we obtain the following
power–velocity relationship for a given muscle:

P ¼ F0kuvmax;II ð10Þ

Dividing Eq. 10 by F0 and vmax,II yields the general
power–velocity relationship p=P/(F0vmax,II), which does
not include any size- or fiber-type-dependent constants:

p ¼ ku ð11Þ

Figure 2 shows the general power–velocity relation-
ship for both fiber types. The velocity of shortening that
produces the greatest power can be found by setting the
derivative of Eq. 11 equal to zero. For pure fiber types,
the most powerful shortening velocities are given by the
equations:

uPmax,I = a0,I + a20,I
� �1=2

�a0,I

� �
/V and

uPmax,II = a0,II + a20,II
� �1=2

�a0,II

It is difficult to arrive at an analytical solution for this
maximum problem for mixed muscles (x „ 0,1). There-
fore, we used numerical calculus to obtain the most
powerful shortening velocity: Power was calculated for a
given fiber-type proportion while varying the shortening
velocities. We used a shortening velocity step width
of 0.1%. From Fig. 3, we can see that the most
powerful shortening velocity increases as the fiber
type II proportion increases.

The general efficiency–velocity relationship

Mechanical efficiency is defined as:

g ¼ P= P þ dQ=dtð Þ ð12Þ

where the second term of the denominator is the rate of
heat liberation from the muscle. This d Q/d t has

Fig. 2 General power velocity (or power–pedaling-rate) relation-
ship. For symbols and definitions see Fig. 1

Fig. 3 The most powerful (uPmax) and the most efficient (ugmax)
shortening velocity (or pedaling rate, fPmax and fgmax) as a function
of the relative cross-sectional area of type II fibers
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several components: the rate of maintenance heat
(0.987ab) and the rate of shortening heat [(0.16F
+0.18F0)v] (Hill 1964). The constants a and b are the
same as in the force–velocity relationship Eq. 1. How-
ever, the sum of maintenance heat and shortening heat
refers to the initial heat only. It represents the heat
released by the initial processes of muscle contraction,
ATP and phosphocreatine (PC) splitting. An additional
amount of heat (recovery heat) is produced by the re-
synthesis of ATP and PC. The recovery heat must be
proportional to the initial heat because the same
quantity of ATP and PC that was split has to be re-
synthesized. Therefore, the total heat liberation of a
muscle is:

dQ=dt ¼ z 0:987 abþ 0:16F þ 0:18F0ð Þv½ � ð13Þ

where z is not far from a value of 2 (Wendt and Gibbs
1979). The overall heat liberation of a mixed muscle is
the sum of the heat liberation of both fiber type frac-
tions:

dQ=dt¼
�
dQ=dt

�
I
þ
�
dQ=dt

�
II

dQ=dt¼ z
�
0:987aIbIþ

	
0:16

�
bI
�
F0;IþaI

�
=
�
vþbI

�
�aI

�

þ0:18F0;I



vþ0:987aIIbII

þ
	
0:16d

�
bII

�
F0;IIþaII

�
=
�
vþbII

�
�aII

�

þ0:18F0;II



m
�

ð14Þ

Inserting Eqs. 3a and 3b, and 5b and 5c, into Eq. 14,
dividing by z, F0, and vmax,II, and using the fiber-type
composition factor x yields the general heat liberation
h=dQ/dt/zF0vmax,II of a mixed muscle:

h ¼ dQ=dt=
�
zF0vmax;II

�
¼
�
1� x

��
0:987a2

I;0=V

þ
	
0:16

��
a0;I þ a2

0;I

�
=
�
uV þ a0;I

�
� a0;I

�
þ 0:18



uV
�

þ x
�
0:987a2

0;II þ
	
0:16

��
a0;II þ a2

0;II

�
=

�
uþ a0;II

�
� a0;II

�
þ 0:18



u
�

ð15Þ

With this notation, the overall rate of heat liberation
for a given muscle can be written as:

dQ=dt ¼ hzF0vmax;II ð16Þ

Inserting Eqs. 10 and 16 into Eq. 12, we obtain the
general efficiency–velocity relationship for mixed mus-
cles:

g ¼ pF0vmax;II= pF0vmax;II þ zhF0vmax;II

� �

¼ p= p þ zhð Þ ð17Þ

The graphs of the general efficiency–velocity re-
lationship for both fiber types are shown in Fig. 4
(z=2). To obtain the most efficient shortening velo-
city, the derivative dg/du must be set equal to zero:

0 ¼ dg=du

¼ dp=duð Þ= p þ zhð Þ � p dp=duþ zdh=duð Þ= p þ zhð Þ2

¼ dp=duð Þ p þ zhð Þ � p dp=duþ zdh=duð Þ
¼ pdp=duþ zh dp=duð Þ � pdp=du� zp dh=du

¼ zh dp=duð Þ � zp dh=du

¼ h dp=du� p dh=du ð18Þ

As Eq. 18 no longer contains the recovery heat z, it is
possible to calculate the most efficient shortening velo-
city even if the amount of recovery heat is not known. In
particular, Eq. 18 shows that every process which is
proportional to ATP and PC splitting, but which is not
included in mechanical power, does not affect the most
efficient shortening velocity. It is rather difficult to arrive
at an analytical solution of Eq. 18, even for a single
fiber-type (x=0 or x=1). To obtain the most efficient
shortening velocity, we used the same numerical calculus
that we used previously to determine the shortening
velocity that produces the greatest power: Efficiency
was calculated for a given fiber-type proportion while

Fig. 4 General efficiency–velocity (or efficiency–pedaling-rate)
relationship. For symbols see Fig. 1

Fig. 5 Maximum efficiency for varying relative fiber-type cross-
sectional areas
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varying the shortening velocities. We used a shortening
velocity step width of 0.1%. Figure 3 shows the most
efficient shortening velocity as a function of the muscle-
fiber-type composition. The greater the fiber-type-II
proportion, the higher is the most efficient shortening
velocity. Furthermore, we can see that the most efficient
shortening velocity is lower than the most powerful
one for any fiber type ratio. Figure 5 shows the peak
efficiency at varying fiber-type proportions.

The most powerful and the most efficient pedaling rate

The calculations performed so far apply to muscle
shortening velocities. We shall now attempt to connect
the muscle shortening velocities with pedaling rates. As
cycling is a movement involving several muscle groups
and joints, an exact biomechanical description is highly
complex. We assume that it is an adequate approxima-
tion to describe cycling as a one-muscle movement. If a
cyclist does not alter his position on the bicycle, the
velocity of muscle shortening must be proportional to
the pedaling rate. In this case, the force–velocity re-
lationship is equivalent to the torque–pedaling-rate re-
lationship, the power–velocity relationship is equivalent
to the power–pedaling-rate relationship, and the effi-
ciency–velocity relationship is equivalent to the effi-
ciency–pedaling-rate relationship. Therefore, the ratio
between the pedaling rate producing the greatest power
(fPmax) and the most efficient pedaling rate (fgmax) is
equal to the ratio between the most powerful velocity of
muscle shortening (uPmax) and the most efficient velocity
of muscle shortening (ugmax):

fPmax=fgmax ¼ uPmax=ugmax ð19Þ

Once the most efficient pedaling rate has been de-
termined in the laboratory, one obtains the most
powerful pedaling rate by rearranging Eq. 19:

fPmax ¼ fgmax uP max=ugmax ð20Þ

and therefore, one can obtain the ratio uPmax/ugmax as a
function of the fiber-type composition of the muscle; this
is shown in Fig. 6.

Discussion

We have shown that Hill’s characteristic force–velocity
and heat-release relationships can be transformed into
general equations that exclude any muscle-size and fiber-
type-dependent factors. Mathematical treatment of
these general relationships shows that one pedaling rate
yields the greatest efficiency, and another higher rate
yields the greatest power. The ratio between these two
pedaling rates ranges from 1.68 to 2.44 depending on the
fiber-type composition (Fig. 6). If the type I fibers and
the type II fibers are equal in cross-sectional area, the
most powerful pedaling rate is 1.91 times the most effi-
cient pedaling rate. The most efficient pedaling rate has
been determined in the laboratory to be 42–60 rpm in
the range of 50–300 W (di Prampero 2000). According
to our calculation, the most powerful pedaling rate in
this workload range is between 80 and 115 rpm if the
cross-sectional areas of both fiber types are equal. This
result agrees with laboratory observations where the
most powerful pedaling rate has been measured as 80–
120 rpm (Baron 2001; Sargeant et al. 1981).

It should be noted that using the most powerful
pedaling rate is not a synonym for maximal power
output. Using the most powerful cadence means that the
greatest power is produced for a given cross-sectional
area. In other words: using the most powerful pedaling
rate, a given power can be produced by activating the
least number of muscle fibers. The less muscle fibers are
used, the lower the resulting EMG activity. The lowest

Fig. 6 Relationship between uPmax and ugmax for varying relative
fiber-type cross-sectional areas. As the muscle shortening velocity is
proportional to the pedaling rate, the diagram is in principle also
valid for pedaling rates (ratio fPmax/fgmax)

Fig. 7 Efficiency and relative power (%Pmax) of mixed muscles
(cross-sectional area: 50% type I, 50% type II) for varying
shortening velocities (or pedaling rates), see also Figs. 2 and 4.
When the most efficient pedaling rate (fgmax) is 50 rpm, the most
powerful pedaling rate (fPmax) is 95 rpm. The most efficient
pedaling rate generates less power than the most powerful pedaling
rate at a given cross-sectional area. At the most powerful pedaling
rate, efficiency is lower than at the most efficient pedaling rate
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EMG activity for a workload of 400 W had been mea-
sured at a cadence of 100 rpm (Macintosh et al. 2000).

It now becomes evident why a cyclist cannot pro-
duce maximum power at the most efficient pedaling
rate: the most efficient pedaling rate yields less power
for a given cross-sectional area than the most powerful
pedaling rate (Fig. 7). Hence, a cyclist cannot produce
the greatest power by using the most efficient pedaling
rate.

It should be pointed out here that Eq. 12 is a correct
description of efficiency if, and only if, the energy source
for work performance is the enthalpy change of the
appropriate reactions (DH). In the case of biological
engines, such as the muscle, the source for work per-
formance is the free energy change, (DG=DH�TDS),
where T is the absolute temperature and DS is the en-
tropy change as the reagents are transformed into pro-
ducts. However, for oxidative processes, DH and DG are
approximately equal, so the efficiency, as obtained from
Eq. 12, is essentially equal to the ‘‘true’’ thermodynamic
efficiency of muscle contraction (Wilkie 1960).

In our consideration, the important point is the most
efficient shortening velocity rather than peak efficiency
and the progression of efficiency related to shortening
velocity. Eq. 18 shows that the most efficient shortening
velocity is not affected as long as the second term of the
denominator in Eq. 12 is proportional to the heat re-
leased (Eq. 13). Thus, our calculations result in a more
general meaning.

What is the most advantageous pedaling rate for
cyclists? Using the most powerful pedaling rate results
in a higher energy turnover at a given workload than
using the most efficient pedaling rate (Fig. 7). In
competitions of short duration, the energy aspect may
not be important. In a long-distance race, however,
the importance of energy supply increases: using the
most powerful pedaling rate may result in early ex-
haustion of the cyclist. In track cycling and sprints,
cadences of 120 rpm and more are observed because
the duration of the race is rather short, and the most
powerful pedaling rate is more advantageous. In very
long-distance races, low cadences between 50 and
60 rpm are preferred because energy uptake and
turnover rate is limited, and using the most efficient
pedaling rate is more advantageous than using the
most powerful one.

Energy can be supplied aerobically and/or anaero-
bically. Additionally, energy supply is not the only
parameter determining a cyclist’s performance. The fi-
ber-type proportion and muscle fatigue are also in-
volved. In mathematical terms, the most advantageous
pedaling rate is a function of many variables. Un-
fortunately, these variables are not independent: energy
supply and the used fiber-type proportion depend on
fatigue and workload, fatigue depends on workload
and duration etc. Therefore, it would be too simple to
state that the most advantageous cadence decreases
continuously in a linear manner from the most pow-
erful to the most efficient pedaling rate as the race

duration increases. As the most advantageous cadence
is a function of many variables, it is difficult to discuss
variations of all variables at once. It is much easier to
discuss the variation of one single variable, and keep
the others constant.

In sprints, energy can be supplied anaerobically re-
sulting in a high lactic acid production within the mus-
cle. During short race durations or in sprints at the end
of a competition, this accumulation might not be a
limiting factor. But, as the race duration increases, less
energy can be supplied anaerobically. If energy supply
must be aerobic to prevent lactic acid accumulation, and
if fatigue does not play any role, the most advantageous
pedaling rate is the most efficient one: most mechanical
power can be produced at a given energy turnover rate,
which is limited by the aerobic capacity. This condition
seems to be at a duration between 20 and 30 min.
Therefore, most test protocols for the determination of
the maximum lactate steady state use this time period
(Beneke 2003). Hallén (personal communications) has
recently observed that cyclists are fastest in a 30-min
time trial using a more efficient rather than a more
powerful pedaling rate.

The influence of fatigue on the pedaling rate is highly
complex. Fatigue has several aspects: it can be local or
central, and its mechanisms are still poorly understood.
If local muscular fatigue is the most important limiting
factor, a pedaling rate higher than the most efficient one
might be the most advantageous one: less muscle cross-
sectional area is needed for a given workload than using
the most efficient one. Thus, each muscle fiber is used for
a shorter time period, and has more time for recovery.
Therefore, using a pedaling rate higher than the most
efficient one could be a possibility for the cyclist to resist
muscular fatigue even if the total energy turnover is
higher due to a lower efficiency. This explains the ob-
servation that using the free-chosen pedaling rate gives
higher endurance performance in a 1-h time trial than
using a lower more efficient pedaling rate (Nielsen et al.
2004).

There is no doubt that the most advantageous
pedaling rate for a competitive cyclist is between the
most efficient and the most powerful cadence. The
various involved parameters complicate the choice of
the most advantageous pedaling rate. Metabolic en-
ergy supply, fatigue, and the proportion of activated
fiber types change dynamically during a race. Ad-
ditionally, the profile of a competition is not always
flat. In each race, the competitor needs to find the
most advantageous balance between efficiency, power,
and fatigue.

According to our calculations, the most powerful and
the most efficient pedaling rates depend on the propor-
tion of the activated cross-sectional areas of the two fi-
ber types. The greater the proportion of type II fibers,
the higher the pedaling rates for maximum power and
maximum efficiency (Fig. 3). We assume that higher
exercise power leads to the recruitment of a greater
proportion of activated type II fibers. Hence, the most
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efficient pedaling rate increases when power increases.
Laboratory observations confirm this assumption (di
Prampero 2000). Furthermore, the cadence that pro-
duces the lowest EMG activity at a given workload
should increase with the workload, as experimentally
observed by Macintosh et al. (2000).

Hill’s (1938) force–velocity relationship was found in
vitro in isolated muscle preparations. Cycling includes
large muscle groups and more than one joint. Therefore,
one might argue that Hill’s hyperbolic equation does not
apply to cycling. Moreover, a linear relationship was
found between torque and crank velocity during cycling
(McCartney et al. 1983; Sargeant et al. 1981; Vandewalle
et al. 1987). Figure 8 shows a detail of the force–velocity
relationship for mixed muscles from Fig. 1. In the range
between the most efficient and the most powerful
shortening velocity, the hyperbolic relationship is almost
linear. On the basis of our assumptions, this also holds
true for the torque–pedaling-rate relationship. The hy-
perbolic force–velocity relationship is based on the in-
herent muscle properties. Therefore, a hyperbolic
relationship seems to be a more plausible assumption
than a linear relationship. The torque–pedaling-rate re-
lationship in cycling has also been previously described
as a hyperbolic relationship (Sargeant 1994).

In physiological investigations, peak pedaling power
is often ascertained by an incremental step test on a
cycling ergometer at a given pedaling rate. Our results
show that peak cycling power is a function of the used
cadence. It is obvious that achieving maximum cycling
power demands a pedaling rate rather near the most
powerful one than near the most efficient one (as often
applied!). But using a pedaling rate near the most
powerful one results in an increased energy turnover
compared to using a lower cadence near the most effi-
cient one. This interaction between pedaling rate and
energy has to be taken into account in cycling experi-
ments. A higher energy turnover might result in a higher

lactate production. If the length or the increase of the
steps are not well chosen, the higher lactate production
of a pedaling rate near the most powerful one might
force the cyclist to an earlier termination of the test.

Based on our calculations and assumptions, the most
efficient pedaling rate is lowest if the cross-sectional
areas of both fiber types are similar (Fig. 5). However,
each individual has its own muscle fiber-type distribu-
tion, which can be influenced by training. Type I fibers
are less prone to fatigue than type II fibers, but as time
elapses, type I fibers will also be subject to fatigue. It
might be possible during a race to change the pedaling
rate, and thus the proportion of activated type I and
type II fibers. Thus, the choice of cadence might enable a
cyclist to lower the activity of the more fatigued fibers,
allowing them to temporarily recover.

So far, we have not calculated the maximal pedaling
rate on the basis of F=0 (Fig. 1). Assuming that the
most efficient pedaling rate is between 42 and 60 rpm, we
obtain a theoretical value for the maximal pedaling rate
of 372–531 rpm. Both the maximal muscle shortening
velocity and the maximal pedaling rate depend on the
geometry of the joints and the length of the muscles.
Muscle length is equivalent to the number of contractile
elements arranged in series. The number of contractile
elements in series can increase or decrease (Williams and
Goldspink 1978), as opposed to the given joint geometry
of adults. A special training including stretching, which
affects the number of contractile elements, might change
the most efficient and the most powerful pedaling rate.

Our results enable us to explain several observations
in the laboratory and in the field. Even if additional
physiological influences are assumed, the inherent
properties of muscles described by the force–velocity
relationship (Hill 1938) and the heat release (Hill 1964)
seem to be the most important factors affecting the
pedaling rate of competitive cyclists.

We have used the muscle-specific constants
a0,I=0.15, a0,II=0.25, and the ratio V=vmax,II/vmax,I=3,
but these constants may vary individually. Our equa-
tions are sufficiently flexible to accommodate individual
variations of these parameters. To facilitate calculations
with changed parameters, we have written a small
computer program available on request.

Conclusion

We conclude that the optimal pedaling rate, representing
the fastest race performance, is not fixed but depends on
race duration; it ranges between fgmax to fPmax. Our re-
sults are not only interesting for competitive cyclists, but
also for investigations using cycling ergometers: max-
imum power will not be reached by using a pedaling rate
near the most efficient one.
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Fig. 8 Detail from the hyperbolic force–velocity realtionship (see
Fig. 1) for mixed muscle with equal cross-sectional areas of both
fiber types. In the range between ugmax, fgmax and uPmax, fPmax, the
relationship is almost linear. When fgmax) is 50 rpm, fPmax) is
95 rpm
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