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Abstract
Many of the classical models representing the creep and rupture behaviour of metals were developed prior to and during the 1950s and 1960s.
Nevertheless their subsequent exploitation, in particular for the assessment of large creep property datasets, was initially limited by the
capability of the analytical tools available at the time.

Following an apparent decline in activity during the 1970s and 1980s, there has been a resurgence during the last two decades. Advances made
in the assessment of creep data during the past 100 years are reviewed and factors contributing to the developments achieved are examined.

1. Background and introduction

At elevated temperatures, metallic structures deform with
time under the influence of applied stress. Ultimately, the
accumulation of such deformation leads to fracture by a
creep rupture mechanism (Fig. 1a). The consideration of these
deformation and damage processes is a key part of the design
assessment of critical components for high temperature
applications, with the necessary engineering calculations
requiring a knowledge of the creep-rupture properties of the
material from which the structure is manufactured.

Creep-rupture properties are determined from the results
of a number of creep tests performed for a range of constant
temperature and constant stress (usually constant load, i.e.
constant σo) conditions, Fig. 2. In such tests, the creep strain
may be monitored (but not always) either continuously by
means of an extensometer attached to the gauge length of
the testpiece, or by an optical measurement during planned
test interruptions [1]. The data may have been determined
from a matrix of tu(T,σo) tests for which T and σo are
i) relatively homogeneously distributed for one or more casts,
or ii) inhomogeneously distributed for the majority of casts
of the alloy for which observations are available. Case i) is
the ideal situation and generally arises within R&D projects
or well co-ordinated data generation activities. Case ii) is
more typical of large multi-national datasets, comprising
information from many casts, gathered to produce alloy
representative creep strength values for standards [2]. A list
of symbols and terminology are given in the Nomenclature.

The rupture ductility (Au in Fig. 2) can vary with stress
(time) and temperature in a relatively complex way (e.g.
Fig. 3a). The various ductiliy regimes are associated with
distinct rupture mechanisms. For example, in ferritic steels,
Regime-I involves ductile rupture resulting from the formation
of voids typically as a consequence of particle/matrix
decohesion. Regime-II is a transition regime in which the
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Fig. 1 : Schematic representations of: (a) a creep-rupture curve
showing primary, P, secondary, S, and tertiary, T,
deformation regimes, and (b) strains generated during a
creep test
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ductility drops due to the increasing incidence of grain
boundary cavitation, but still accompanied by relatively high
levels of matrix deformation. In Regime-III, rupture is by the
nucleation and subsequent diffusive growth of grain
boundary cavities. In Regime-IV, over-ageing of the
microstructure lowers the rate of cavitation nucleation and/
or growth leading to a progressive recovery of ductility. The
mechanisms associated with the identified ductility regimes
can differ for different alloy systems.

Many of the classical models representing the creep and
rupture behaviour of metals were developed prior to and
during the1950s and 1960s. Nevertheless their subsequent
exploitation, in particular for the assessment of large creep
property datasets, was limited by the capability of the
analytical tools available at the time.

The following paper reviews advances made in the
assessment of creep data during the past 100 years and
examines factors contributing to the developments achieved.

2 European creep collaborative committee

In the early 1990s, the drive to greater integration in
Europe led to the specification of unified (rather than
independent National) Product and Design Standards. The
European Creep Collaborative Committee (ECCC) was
founded in 1992 to provide the means for European Industry
to have a greater influence over the creep strength values
incorporated into these Standards [3]. The original brief of
ECCC’s technical working group, WG1, was to devise
common rules for the material specialist WG3x working
groups to follow. The outcome was a series of ECCC
Recommendation Volumes covering common terminology and
guidance for the generation, collation and assessment of
creep data [4]. While the Recommendation Volumes were
originally produced for use by ECCC working groups, they
were made freely available in the public domain and are now
employed by a world wide user base.

Fig. 2 : Schematic representation of (a) the T,σo dependent variable conditions for 3 creep-rupture tests each at 3 temperatures, (b) the
corresponding ε(t) response variable test records at each temperature, and (c) the resulting tu(T,σo) data points

Fig. 3 : Rupture elongation profiles: (a) schematic representation,
and (b) minimum Au(T) profiles for metallurgical complex
steel
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In ideal circumstances, creep rupture strength values for
design purposes are determined from an assessment of the
results of sufficient tests on a variety of casts of the specified
material to ensure that its true property variance has been
fully characterised for an appropriate range of stresses and
temperatures (e.g. [2]). Such full-size datasets for traditional
materials may comprise up to ~1,000 observations for ~100
casts covering several temperatures with test durations up to
>100kh.

Originally, the focus for ECCC was on the assessment of
such full-size (Case ii) type) datasets. Initially, ready access
to low cost, powerful desktop computer processing was in
its infancy, and the reliable numerical model representation
of full-size datasets typically involved manually implemented
graphical procedures, either for the full analysis (e.g. [5]) or
at the very least in a pre-assessment (data reduction) phase
(e.g. [6]). Subjective interpretations were almost inevitable
with such manual intervention, and ECCC-WG1 devised the
post assessment tests (PATs) to independently check: a) the
physical realism, b) the within-data-range goodness-of-fit,
and c) the extrapolation repeatability/stability of a model
determined by any procedure [4e,7].

The original PATs were developed to independently check
the credibility of rupture strength predictions irrespective of
the applied assessment procedure [8]. Subsequently they
were adopted for checking the credibility of creep strength
and relaxed strength predictions [4e,9]. More recently, ECCC-
WG1 developed the concept of the Z parameter to provide
a measure of model fitting effectiveness to families of creep
strain curves in specific creep strain regimes for both Case
i) and Case ii) type datasets [10].

During the 1990s, many WG1 members were also involved
in National developments in creep rupture data assessment
procedures which were exploiting the growing availability of
low cost powerful desktop computing and user friendly
software platforms. The emergence of the PD6605 [11] and
DESA [12] creep rupture data assessment procedures
provided a significant step forward, which was ultimately
complemented by automation of the PATs [13].

The first ECCC assessment recommendations published
in 1996 undoubtedly provided a catalyst for others to exploit
the availability of low cost, powerful desktop computers to
develop rigorous methodologies for the physically realistic
analysis of uniaxial and multi-axial data for the reliable and
accurate characterisation of rupture strength and ductility,
and creep strain properties. These more recent advances in
creep data assessment methodologies are also acknowledged
in the following paper.

3 Creep strain model equations

3.1 Overview

Creep strain curves are determined from the results of
continuous-measurement or interrupted tests involving the
application of a constant load (or stress) to an axial testpiece
held at constant temperature (Fig. 1a). In continuous
measurement tests, the creep strain, εf, is monitored without
interruption by means of an extensometer attached to the
gauge length of the testpiece [1]. In interrupted tests, the
total plastic strain, εp, is determined from optical
measurements of εper at room temperature during planned
interruptions (where εper = εp – εk, i.e. εper = εi + εf – εk,
Fig. 1b, and εp = εper when εk ≈ 0). The creep curve data
collected in this way may then be modelled with a constitutive
equation.

There are a large number of constitutive equations which
can be used to represent the creep deformation characteristics
of a material ranging from simple phenomenological to
complex physically based (some of which are reviewed in
[14]). No single constitutive equation effectively represents
the creep deformation characteristics of all materials over
their entire temperature application range. The effectiveness
of a constitutive equation to model primary, secondary and/
or tertiary creep deformation for specific applications can
vary with material characteristics and source data distribution.
In particular, not all model equations and fitting procedures
are suitable for the prediction of alloy-mean long-time creep
strength behaviour. As a generality, specific model equations
are better suited to representing creep strain accumulation
characteristics for a given material in either the primary/
secondary or the secondary/tertiary regimes, although some
models can be suitable for both [14]. The Z parameter (referred
to in Sect.2) was developed to aid the selection of the most
appropriate constitutive equation for a given material and
deformation regime [14].

3.2 Classical representations

A wide range of creep model equations are in use today
to represent the high temperature time dependent
deformation behaviour of engineering materials, many of
which comprise components originating from a small number
of classical representations of primary, secondary and/or
tertiary creep deformation (e.g. [15-24]), i.e.

Primary Creep

Logarithmic [15]: εf = a.log(1+b.t) (1)

Power [16]: εf = a.tb (2)

Exponential [17]: εf = a.(1-exp(-b.t)) (3)

Sinh [18]: εf = a.sinh(b.tc) (4)

Secondary Creep

Power [19]: εf.min = d.σn (5)

Exponential: εf.min = d.exp(e.σ) (6)

Sinh [20]: εf.min = d.sinh(e.σ) (7)

Tertiary Creep

Power [16]: εf = f.tg (8)

Exponential [21]: εf = f.(exp(-g.t)-1) (9)

Damage [22,23]: (10)

Omega [24]: ε·f = ε·o.exp(Ω.ε) (11)

where a, b, c, d, e and f are fitting constants.

As a generality, logarithmic creep only occurs at lower
temperatures (i.e. below 0.3.Tm). At higher temperatures,
primary creep is more typically represented by power,
exponential or sinh functions of time. Similarly, secondary
creep rate can be represented by power, exponential or sinh
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functions of stress. For secondary creep rate, a sinh
formulation reduces to a power law at low stresses and an
exponential law at high stresses. Tertiary creep or creep rate
is typically modelled by power or exponential representations,
with or without a damage accumulation function, e.g. [22].
Typically, the effect of temperature is acknowledged by
incorporating an Arhenius A.exp(QC/RT) function into the
model equation.

In strongly physically based implementations of
constitutive creep equations, it is now common practice to
replace σ by (σ – σi) to acknowledge the existence of a
friction stress, in particular for precipitation strengthened
alloys, e.g. [25].

3.3 Rupture property based models

With the growing interest in modelling alloy creep
deformation characteristics from observations collated for a
number of casts (e.g. in a Case ii) type dataset), newer
formulations based largely on a knowledge of rupture
properties have been developed. The forerunner of these
were the expressions adopted to determine creep strength
directly from rupture strength [26], e.g..

Ru/t/T = (a1+b1/ε-c1.ε
2)Rε/t/T+d1+e1/ε+f1/ε

2-g1.ε
2 (12)

An extremely effective variant of this type of expression
is the characteristic strain model [27], i.e.

εf(σ) = ε.(Ru/t/T/Rε/t/T-1)/(Ru/t/T/σ-1) (13)

In contrast to using creep and rupture strength values,
the logistic creep strain prediction (LCSP) model relies on a
knowledge of times to specific creep and rupture strains [28],
i.e.

log[tu
*] = (log[α.tu]+β)/(1+{log[ε]/xo}

p)-β (14)

where xo, p and β are fitting constants defining creep curve
shape.

4. Creep-rupture model equations

4.1 Rupture time

4.1.1 Single model representations

Model equations for predicting creep rupture time
generally fall into two categories, namely those which are
based on time-temperature parameters (TTP) and those which
are based on algebraic equations. By far the best known TTP
formulation is that of Larson-Miller [29], i.e.

tu
* = exp[{Σn

k=0βk.(log[σo])
k}/T+β5] (15)

The development of eq. (15) was closely followed during
the 1950s by a series of TTP based models [29-34], some of
which derived from the same master equation [30], i.e.

tu
* = exp[{Σn

k=0βk.(log[σo])
k}/(T-To)r/(σo)

-q+β5] (16)

In eq. (16), the Larson-Miller model (eq. (15)) is obtained
if q = 0 and r = -1 [29], the Manson-Haferd model is obtained
if q = 0 and r = 1 [31], the Manson-Brown model is obtained
if q = 0 [32] and a stress modified model proposed by Murry

is obtained if q = 1 and r = 1 [33]. An additional TTP model
is that proposed by Orr-Sherby-Dorn [34]:

tu
* = exp[{Σn

k=0βk.(log[σo])
k}/QC/RT] (17)

where temperature is represented by the Arhenius term in eq.
(17), with QC being the activation energy for creep. During
the 1970s, the focus was more on the development of
algebraic models which were less flexible within-the-range of
the observed tu(T ,σo) data, but were more stable in
extrapolation, e.g.

tu
* = exp[β0+β1log[T]+β2log[σo]+β3/T+β4.σo/T] (18)

tu
* = exp[β0+β1log[σo]+β2.σo+β3σo

2+β4.T+β5/T] (19)

Of these, eq. (18) is an example of one of the so-called
Soviet models [35] and eq.(19) is the simplest form of the
minimum commitment model [36].

As a generality, the preference of creep rupture data
modellers has traditionally been to establish a single
continuous representation of the observed tu(T,σo) data
throughout the entire application ranges of temperature and
stress. However, as the metallurgical complexity of
engineering alloys has increased, the adoption of a single
function to adequately represent rupture behaviour
throughout the full application range has become increasingly
challenging.

4.1.2 Multi-regime modelling

During recent years, there has been a tendency to
increasingly adopt a multi-regime modelling approach for
metallurgically complex alloys. This concept was not new
and had been explored during the development of the
minimum commitment models [36] and in Germany during the
1970s [37], but the profile of such an approach was raised by
Kimura [38]. To date, Kimura has concentrated on fitting a
Larson-Miller model (eq. (15)) to tu(T,σo) observations in two
mechanism (stress) regimes. His main focus was P122 steel,
and for this alloy the regime splitting stress was 0.5.Rp0.2(T)
(coincident with the limit of proportionality for this steel).
Maruyama adopted a similar approach, but preferred to use
the OSD model (eq. (17)) so that regime splitting could be
done on the basis of activation energy [39]. Using a power
function (eq. (20)), Spindler modelled the complex rupture
behaviour of Esshete 1250 in three regimes by non linear
regression [40], i.e.

tu
* = Ai.exp[QCi/RT]σo

BiT+Ci (20)

where i was the regime number. The new Wilshire equation
provided the analytical means to ensure that rupture strength
at short times was sensibly constrained by the tensile
strength of the material [41], i.e.

tu
* = exp[1/ui.ln[1/ki]+1/ui.ln(-ln[σo/Rm])+Qc/RT] (21)

This formulation was ideally suited for multi-regime
modelling. In its original form, Wilshire set QC to that for
diffusion creep (i.e. 300kJ/mole), irrespective of regime.
Subsequently, Spindler demonstrated that eq. (21) could also
be effectively implemented using piecewise non-linear
regression to determine the ui, ki and QCi parameters for
each regime [40], i.e. with different QC for each regime (in a
similar way to that adopted by Maruyama [39]).
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4.2 Rupture ductility

Proven procedures for the assessment of rupture ductility,
in particular for large multi-source, multi-cast, multi-
temperature datasets are still under development. Such
datasets can be highly complex with individual casts
exhibiting the characteristics shown in Fig. 3a but displaced
to shorter or longer times respectively with increasing or
decreasing temperatures (e.g. Fig. 3b), the complexity being
typically compounded by significant cast-to-cast variations
in the rupture ductility properties for a given alloy [42].
There are model representations which can handle such
complexity (e.g. [42]), with the most successful to date being
that of Spindler [43], i.e.

ln[Au] = MIN|{ln[A1]+Qc/RT+n1.ln[ε·av]+m1.ln[σo]},ln[A] (22)

5. Assessment procedures

While significant advances in creep rupture property
modelling have been made in the last two decades, the most
notable progress has been made in the development of
formal, well-defined, state-of-the-art assessment procedures
which implement the available model equations with a high
level of automation (e.g. [11,12]). For example, the PD6605
procedure involves rigorously defined pre-assessment, model
selection and post assessment testing stages.

The basis of PD6605 [11] is a set of creep rupture models
comprising six TTP expressions (based on eq. (16), eq. (17))
and three algebraic equations (based on eq. (18), eq. (19)). In
addition, the user may define other models out of preference
or when none of the given selection provided adequately
represents the tu(T,σo) data (e.g. [40]). The software
accompanying PD6605 provides the user with the opportunity
to adopt either Weibull or log-logisitic error distributions

depending on which best represents the random component
of the creep data. However, the most notable feature of this
assessment procedure is the use of maximum likelihood
statistics to simultaneously estimate the parameters for the
systematic and random components of the model using all
available creep rupture data. The likelihood function for the
model has the important characteristic that it comprises
probability density functions covering the rupture times for
failed testpieces and the survival time for unfailed testpieces.
The routine consideration of unfailed tests is a main feature
of the PD6605 analysis. Confidence intervals for the estimated
time to rupture are obtained directly from the survival
function.

The software forming the basis of the DESA procedure
[12] similarly provides the user with the opportunity to check
the effectiveness of a range of model equations. DESA does
not yet employ maximum likelihood statistics and thereby
does not routinely consider unfailed tests or offer a choice
of error distributions but unlike PD6605, this procedure is
still evolving with the latest version offering simultaneous
assessments of creep strength and rupture strength [13].

6. Factors influencing advances in creep data
assessment

The chronological trend of the level of creep data
assessment development activity during the past 100 years
is summarised in Fig. 4. The first peak of activity occurred
during the 1950s and 1960s, and was initially driven by a
requirement for accurate material creep property descriptions
for the design of reliable critical high temperature components
primarily for aerospace but also increasingly for power
generation applications. The level of assessment development
activity revealed in the public domain appeared to diminish
during the 1970s and 1980s, but strongly increased during

Fig. 4 : Chronological trend in the level of creep data assessment development activity and the impact of influential factors (refer to
Sect.8 and [14] for source references)
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the new advanced steels were metallurgically complex,
exhibiting multi-regime creep rupture behaviour and requiring
new analytical approaches to provide acceptable modelling.

The improvements in desktop computer performance and
associated analytical software packages has also led to high
temperature component design and assessment becoming
more routinely the result of advanced finite element analysis
(FEA) based procedures. Such procedures require accurate
creep property model representations.

There are therefore a number of complementary factors
which have been responsible for the most recent resurgence
in creep data assessment development activity.

7. Concluding remarks

Advances made in the assessment of creep data during
the past 100 years have been reviewed, and factors
contributing to the developments achieved have been
examined.

The first peak of creep data assessment development
activity occurred at a time when major technical advances
were first being made in the designs of high temperature
components primarily for aerospace, but also for power
generation applications. A resurgence in activity coincided
with:

- the availability of large international industrial datasets,

- the need for their exploitation to underpin the long time
creep rupture strength values for European Design and
Product Standards

- the catalytic effect of the associated ECCC creep data
assessment procedure developments

- the dramatic improvements in low cost desktop PC
computing performance,

- the requirement for more effective modelling of the creep
behaviour of new advanced metallurgically complex
alloys, and

- the requirement for accurate creep property model
representations for implementation in FEA based high
temperature component design and assessment
analyses.
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NOMENCLATURE

A, Au Tensile elongation at fracture, creep elongation
at rupture

ECCC European Creep Collaborative Committee

n stress exponent

QC Activation energy for creep

R Universal gas constant

Rpε/t/T, Ru/t/T Creep strength and rupture strength for a
given time and temperature

Rp0.2, Rm 0.2% proof strength, tensile strength

t time

tu, tu,max, tu
* Observed time to rupture, maximum observed

time to rupture, predicted time to rupture

tpε/σ/T, t*pε/σ/T Observed and predicted times to given plastic
strain

tef(T,σ) Time to a specific creep strain as a function of
temperature and stress

T, Tm Temperature, melting temperature of material

Z Parameter quantifying effectiveness of master
creep equation to predict times to specific
strains

ε, εe, εi Strain, elastic strain, instantaneous plastic
strain

εf, εp, εk, εper Creep strain, plastic strain, anelastic strain,
permanent strain

ε·, ε·f,min, ε·ave Strain rate, minimum creep strain rate, average
strain rate

σ, σo Stress, initial stress

σi Friction stress

ω, ω· Damage, rate of damage accumulation

ECCC terms and terminology recommendations are given in ECCC
Volume 2 [4b]
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