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Abstract. We investigate anisotropic XXZ Heisenberg spin-1/2 chains with control fields acting on one
of the end spins, with the aim of exploring local quantum control in arrays of interacting qubits. In this
work, which uses a recent Lie-algebraic result on the local controllability of spin chains with “always-
on” interactions, we determine piecewise-constant control pulses corresponding to optimal fidelities for
quantum gates such as spin-flip (NOT), controlled-NOT (CNOT), and square-root-of-SWAP (

√
SWAP).

We find the minimal times for realizing different gates depending on the anisotropy parameter Δ of the
model, showing that the shortest among these gate times are achieved for particular values of Δ larger
than unity. To study the influence of possible imperfections in anticipated experimental realizations of
qubit arrays, we analyze the robustness of the obtained results for the gate fidelities to random variations
in the control-field amplitudes and finite rise time of the pulses. Finally, we discuss the implications of our
study for superconducting charge-qubit arrays.

1 Introduction

Coherent control of quantum systems is one of the prereq-
uisites for quantum information processing. While already
simple arguments lead to the conclusion that almost any
coupled quantum system can be controlled in principle [1],
the mathematical foundations of the subject are based on
the notion of controllability and formulated using the lan-
guage of Lie algebras [2]. In particular, a system is com-
pletely controllable if its internal dynamics governed by
external fields can give rise to an arbitrary unitary trans-
formation in the Hilbert space of the system [3]. Both state
control and the more general operator control have been
implemented in a variety of systems [4].

Recent quantum control studies have focused their at-
tention on interacting systems. A familiar example is fur-
nished by spin chains, systems that can be used as data
buses [5] for state [6–9] and entanglement transfer [10]. In
such systems, “always-on” interactions between the con-
stituents (typically nearest neighbors) allow for a global
control of the system dynamics by manipulating only a
small subsystem, in the extreme case a single spin. The
main question is then what is the smallest possible sub-
system of a given system that one needs to act upon to en-
sure the complete controllability, or, at least, the ability to
perform certain pre-determined unitary transformations.
This is the central idea behind the local-control approach.

a e-mail: vladimir.stojanovic@unibas.ch

The fact that the local-control approach can be ad-
vantageous in interacting systems provides an incentive
for identifying minimal controlling resources that guaran-
tee controllability in particular classes of systems. Quite
recently, several Lie-algebraic results pertaining to local
control of spin chains have been obtained [11–15]. For ex-
ample, it was demonstrated that acting only on one of the
end spins of an XXZ-Heisenberg spin chain ensures com-
plete controllability of the chain [12]. Adopting the last
result as our point of departure, in this paper we investi-
gate the feasibility of local operator control in qubit arrays
modeled as spin-1/2 chains with Heisenberg interaction. In
contrast to our recent proof-of-principle study [16], where
only the isotropic Heisenberg-coupling case was addressed,
in the present work we discuss the case of (anisotropic)
XXZ coupling. The main motivation stems from the rele-
vance of the XXZ-case for implementations of Josephson-
junction based superconducting qubit arrays [17–19].

We determine piecewise-constant control fields, acting
only on the first spin in the chain, which lead to the high-
est possible fidelities for a selected set of quantum logic
operations: the spin-flip (NOT) of the last spin in the
chain, as well as the controlled-NOT (CNOT) and the
square-root-of-SWAP (

√
SWAP) gates applied to the last

two spins. We optimize the gate fidelities with respect to
the control-field amplitudes for three-spin chains. We then
carry out a sensitivity analysis, i.e., discuss the robust-
ness of the obtained results with respect to random errors
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in the control fields, as well as finite rise/decay-times for
control-field amplitudes. The present work is concerned
with XXZ-Heisenberg spin chains and our conclusions ap-
ply to any physical realization of qubit arrays with this
type of coupling [17,18].

2 System and method

The total Hamiltonian of a Heisenberg spin-1/2 chain of
length Ns reads

H(t) = H0 + Hc(t), (1)

where

H0 = J

Ns−1∑

i=1

(Si,xSi+1,x + Si,ySi+1,y + ΔSi,zSi+1,z) ,

(2)
is a XXZ Heisenberg part with anisotropy Δ, and

Hc(t) = hx(t)S1x + hy(t)S1y (3)

a Zeeman-like control part, with control fields hx(t), hy(t)
acting only on the first spin. In what follows, we will also
employ control Hamiltonians with fields in the x and z-
directions. Whether the XXZ spin chain under consider-
ation is ferromagnetic or antiferromagnetic is not crucial
here, as we are concerned with operator control; aspects
such as, for example, the different nature of the ground
states in the two cases (separable vs. entangled) would
only be consequential for issues related to, e.g., state con-
trol or entanglement transfer. For definiteness, we will as-
sume that J > 0 and Δ > 0. It is useful to recall that
the one-dimensional XXZ model has an antiferromagnetic
ground state for Δ ≥ 1, a ferromagnetic one for Δ < −1,
while for the intermediate values of Δ it is characterized
by a critical gapless (quasi-long-range ordered) phase [20].

For convenience, we hereafter set � = 1 and, in ad-
dition, express all frequencies and control fields in units
of the coupling strength J . Consequently, all times in the
problem are expressed in units of 1/J .

Since implementing control fields with a complex time
dependence is difficult, we resort to piecewise-constant
ones according to the following scheme. At t = 0 we
start acting on the first spin of the chain with an x con-
trol pulse of amplitude hx,1, which is kept constant until
t = T . Thus the system is governed by the Hamiltonian
Hx,1 ≡ H0 + hx,1S1x. We then apply a y pulse with the
amplitude hy,1 (Hamiltonian Hy,1 ≡ H0 + hy,1S1y) over
the next interval of length T , etc. This sequence repeats
until Nt pulses are carried out at t = tf ≡ NtT . The full
time evolution is described by

U(tf ) = Uy,Nt/2 Ux,Nt/2 . . . Uy,1 Ux,1, (4)

where Ux,i ≡ e−iHx,iT and Uy,i ≡ e−iHy,iT are the respec-
tive time-evolution operators corresponding to Hx,i and
Hy,i, which can be evaluated using their spectral form.

Our control objectives (target unitary operations) are
both one-qubit gates, such as the spin-flip (NOT) opera-
tion on the last spin of the chain XNs := 1⊗1⊗· · ·⊗1⊗X
(X being the Pauli matrix), and some entangling two-
qubit gates. For instance, CNOTNs := 1 ⊗ 1 ⊗ · · · ⊗
1 ⊗ CNOT performs the controlled-NOT operation on
the last two qubits in the chain. Similarly,

√
SWAPNs

:=
1⊗ 1⊗ · · ·⊗ 1⊗√

SWAP performs the
√

SWAP operation
on the same pair of qubits.

Unlike in many other control studies [11], which make
use of single-excitation subspaces, we retain the full
Hilbert space of the system. This puts constraints on the
system size that can be treated within our framework. In
what follows, we discuss three-spin chains.

3 Controllability and reachability

In reference [12] a very general graph-infection criterion
was proven, which – as a special case – guarantees the
complete controllability of XXZ Heisenberg spin chains
through acting on one end spin. The more conventional ap-
proaches for proving complete controllability entail finding
the dimension of the relevant dynamical Lie algebra, a task
for which special algorithms have been developed [21]. In
the present problem, such an algebra is generated by the
skew-Hermitian traceless operators {−iH0,−iS1x,−iS1y}
and has dimension d2 − 1, where d ≡ 2Ns is the dimen-
sion of the Hilbert space of the system. Being generated
by traceless operators, this algebra is then isomorphic to
su(d), the Lie algebra associated with the special unitary
group SU(d) [22].

Setting aside the issue of complete controllability, one
might be interested to know if some particular unitary
operations – on an otherwise not completely controllable
system [23,24] – are possible with an even smaller de-
gree of manipulation, e.g., a control field only in one
direction. For such operations, equation (4) goes over
into U(tf ) = Ux,Nt . . . Ux,1. For example, the XNs and√

SWAPNs
gates require only a control field in the x di-

rection. To demonstrate this for XNs , let Lx be the dy-
namical Lie algebra generated by −iH0 and −iS1x, a sub-
algebra of su(d) with dimension 30 in a three-spin XXZ
chain (note that the counterpart of this algebra in the
isotropic-coupling case has smaller dimension, namely 18).
For showing that XNs belongs to the connected Lie sub-
group eLx of SU(d) it suffices to find an element A ∈ Lx

such that XNs = eA. Using the repeated commutators of
the generators of Lx, it can be demonstrated that XNs

is an element of this algebra. XNs is both unitary and
Hermitian, implying that X2

Ns
= 1. It is then easy to show

that A = −iπ
2 XNs , an element of Lx, fulfills eA = −iXNs .

Therefore, XNs is reachable using only an x control field.
Recalling that the

√
SWAP gate on two qubits is given

by [25]

√
SWAP = ei π

8 e−i π
8 (X⊗X+Y ⊗Y +Z⊗Z), (5)
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the reachability of
√

SWAPNs
using an x control only

readily follows from the fact that 1 ⊗ 1 ⊗ . . . ⊗ 1 ⊗ (X ⊗
X + Y ⊗ Y + Z ⊗ Z) is an element of Lx.

4 Target gates and minimal gate times

In this section our goal is to find control fields leading to
optimal fidelities for a chosen set of quantum gates, with a
particular emphasis on minimal times needed for realizing
different gates depending on the anisotropy Δ.

In quantum operator control, the figure of merit is the
gate fidelity

F (tf ) =
1
d

∣∣tr
[
U †(tf )Utarget

]∣∣ , (6)

where U(tf ) is the time-evolution operator of the sys-
tem at time t = tf (Eq. (4)) and Utarget stands for the
quantum gate that we want to realize. We perform opti-
mization, i.e., maximize the gate fidelity with respect to
the Nt control-field amplitudes, for varying number (Nt)
and durations (T ) of pulses (hence different total evolu-
tion times tf ). We make use of a quasi-Newton method
due to Broyden, Fletcher, Goldfarb, and Shanno (BFGS-
algorithm) [26]. It should be stressed that, much like other
optimization approaches, this algorithm ensures only con-
vergence to a local maximum. Therefore, to determine a
globally-optimal sequence of control-field amplitudes (for
a given target gate and given value of Δ) we ought to re-
peat the optimization process for a number of different ini-
tial guesses for these amplitudes. We generate these initial
guesses using a uniform random number generator [26].

An alternative to fixing the pulse durations and maxi-
mizing over the control-field amplitudes would be to keep
the amplitudes constant and treat the pulse durations as
variable control parameters. However, we choose optimiza-
tion over the control-field amplitudes since this approach
allows us to easily fix tf and determine its minimal value
for implementing the desired gate for any fixed value of
the parameter Δ.

The obtained results for the gate fidelities have
the following two salient features. Firstly, for fixed pa-
rameters of the model and fixed total evolution time
tf , the fidelity for any given gate can increase sig-
nificantly with increasing Nt (or, equivalently, decreas-
ing T ). In other words, more rapid switching leads
to higher fidelities. For instance, in the case of the
CNOT3 gate with Δ = 1.3 and tf = 30, for Nt =
10, 20, 30, 40, 50, 60, 70 we obtain the respective fidelities
F = 0.455, 0.697, 0.837, 0.953, 0.995,1–10−4,1–10−8. Sec-
ondly, for each gate there exists a minimal value of tf
(i.e., minimal gate time), below which fidelities close to
unity cannot be reached regardless of the value of Nt.
The obtained minimal gate times for different values of Δ
in the x-y (x-z) control cases are given in Table 1. Ap-
parently, there exists an optimal value of Δ which cor-
responds to the shortest among these times. For the X3

and CNOT3 gates, for example, these values are around
Δ = 5. The corresponding optimal sequences of x and y

Table 1. Minimal times (in units of J−1) needed to reach
fidelities higher than 0.999 for the relevant gates in the x-y
control case. The corresponding values in the x-z control case
are given in the brackets.

Δ X3 CNOT3

√
SWAP3

0.1
0.2
0.7
0.8
0.9
1.0
1.1
1.2
1.3
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0

23.3 (19.0)
23.9 (23.8)
18.2 (18.0)
16.5 (16.9)
15.4 (13.9)
15.0 (14.9)
15.4 (15.8)
14.8 (14.8)
16.2 (16.0)
15.8 (15.1)
12.0 (13.4)
12.2 (13.0)
12.2 (13.2)
12.0 (13.5)
12.9 (13.9)
12.9 (14.5)
13.6 (15.0)
14.8 (16.6)
21.7 (17.9)
22.1 (20.4)

73.2 (60.2)
33.5 (28.7)
22.2 (22.6)
22.8 (21.6)
18.4 (18.2)
17.3 (16.7)
17.3 (16.4)
20.6 (16.7)
20.0 (19.0)
12.3 (12.4)
12.0 (12.2)
12.2 (12.2)
11.2 (11.1)
11.5 (11.3)
11.8 (9.8)
13.3 (11.7)
13.1 (10.4)
14.4 (11.9)
13.1 (10.8)
19.3 (12.0)

14.2 (14.2)
20.7 (21.2)
18.9 (16.8)
16.6 (16.9)
1.6 (1.6)
1.5 (1.5)
1.5 (1.5)

14.9 (12.2)
15.2 (14.8)
12.8 (9.9)
10.2 (8.8)
8.0 (6.6)
5.4 (5.3)
4.4 (4.4)
3.8 (2.0)
3.3 (3.3)
4.3 (3.0)
3.9 (3.9)
2.4 (2.4)
2.2 (3.3)
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Fig. 1. (Color online) Optimal control sequences for Δ = 5
realizing the (a) X3 and (b) CNOT3 gates with fidelity higher
than 0.999.

control pulses for the X3 and CNOT3 gates are shown in
Figures 1a and 1b, respectively. Since ideal steplike pulses
cannot be realized in practice, in reference [16] we also
studied frequency-filtered control fields and showed that
sufficiently high fidelities can still be retained.

In Table 2 the minimal times are given for the X3 and√
SWAP3 gates realized using only an x control field. It is

interesting to compare these minimal times to the above
case with both x and y (or x and z) controls. For small
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Table 2. Minimal times (in units of J−1) needed to reach
fidelities higher than 0.999 for the relevant gates using only an
x control field.

Δ X3

√
SWAP3 Δ X3

√
SWAP3

0.1
0.2
0.7
0.8
0.9
1.0
1.1
1.2
1.3
2.0

128.4
70.4
36.4
37.1
34.4
18.8
25.2
31.1
30.7
23.2

80.6
45.0
25.0
25.6
28.9
25.8
25.8
31.9
31.5
21.7

3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0

19.2
18.4
17.3
16.4
16.1
15.5
15.8
15.8
16.2
16.5

14.2
9.5
7.7
7.5
7.3
6.4
5.7
3.9
4.7
4.3

Fig. 2. (Color online) Average fidelity versus half-width (δ) for
the

√
SWAP3 gate with Δ = 1.2 and fixed total time tf = 60.

values of Δ (with the exception of Δ = 1) the minimal
times for realizing the X3 gate in the x-only control case
are significantly longer than their counterparts in the x-y
(x-z) case. In contrast, for larger Δ these times become
more and more similar. Finally, for Δ ≥ 11 the minimal
times in the x-only control case are even shorter than in
the x-y and x-z cases. Since x-only control is easier to
implement, this surprising observation provides an addi-
tional argument for using x-only control in the regime of
interest for superconducting charge qubits.

As is well known [25], the
√

SWAP gate on two qubits
is naturally implemented by the isotropic Heisenberg
Hamiltonian after a time τ = π/2 ≈ 1.57. As can be seen
in Table 1, the minimal

√
SWAP3-gate times indeed seem

to correspond to Δ ≈ 1 and are only slightly shorter than
in the control-free case. This is despite the fact that our√

SWAP3 gate performs the
√

SWAP operation on the last
two qubits (leaving the state of the first qubit unchanged)
while the Heisenberg Hamiltonian of equation (2) also con-
tains the interaction between the first two qubits. Thus we
can conclude that the role of control fields in this case is
to counteract the effect of the free evolution of the first
qubit governed by H0.

Generally speaking, the minimal gate times can in
principle be found based on the time-optimal unitary op-
eration formalism put forward by Carlini et al. [27]. This

method requires solving a system of coupled nonlinear
equations for Lagrange multipliers resulting from the
quantum brachistochrone equation. In practice, extract-
ing minimal times for different quantum gates in this
way is feasible only when the time evolution of the to-
tal Hamiltonian of the system is as simple as to allow for
an analytical solution of these equations. This is possible,
for instance, when this Hamiltonian has a block-diagonal
form in the computational basis, where each block com-
mutes with itself at different times. In the problem at hand
this is not the case, therefore an alternative strategy for
finding minimal times is required.

5 Robustness to random errors and finite
pulse rise times

In the following, we analyze the sensitivity of the fidelity
to random errors in the control-field amplitudes, as well
as to a finite rise time.

The random errors in control-field amplitudes are as-
sumed to follow a uniform distribution of half-width δ. For
given δ, we generate a large sample of N ∼ 1000 control
fields affected by random noise, for which we recalculate
the fidelity. We are interested in the behavior of the av-
erage fidelity F̄ =

∑N
i=1 Fi/N , where the Fi are fidelities

for specific realizations of the random field, versus δ for
the gates of interest and varying values of Δ.

In our previous work [16], using the isotropic
Heisenberg model (Δ = 1) as an example, it was demon-
strated that the shape of the fidelity decay curves (F̄ vs.
δ) depends on the number of control pulses Nt and their
length T . Provided that the system satisfies the condi-
tions for complete controllability, the saturation regime
of the average fidelity sets in for δ � 2J . The univer-
sal saturation value is 1/d, where d is the dimension of
the Hilbert space of the system. Importantly, for fixed
tf = NtT , the average fidelity is closer to the intrinsic (in
the absence of random errors) optimal values for larger
Nt (faster switching), this being a consequence of general
properties of systems that exhibit competition between
the resonance- and relaxation-type behavior [16]. There-
fore, more rapid switching leads not only to higher intrin-
sic fidelities in the absence of randomness (recall Sect. 4),
but also renders these fidelities less sensitive to random
errors. This is a manifestation of an intrinsic robustness
of the system. Figure 2 illustrates that these features are
also present in the anisotropic XXZ case.

The sensitivity to random errors in the control-field
amplitudes depending on the anisotropy Δ is illustrated
in Figure 3. As can be inferred from this figure, for larger
Δ the system is less sensitive to random errors.

Another unavoidable source of imperfections in qubit-
array realizations is the finite rise time of the control fields.
Instead of a stepwise behavior, experimental control fields
hj,n (j = x, y; n = 1, . . . , Nt/2) are expected to have a
finite rise/decay time τ . Figure 4 shows the dependence of
the fidelity on the finite rise time. For larger values of Δ,
the fidelities of optimal control sequences seem to be less
affected by the finite rise time.
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Fig. 3. (Color online) Average fidelity versus half-width (δ) of
random-noise distribution for optimal control sequences with
Nt = 70 and T = 1 corresponding to the CNOT3 gate.

Fig. 4. (Color online) Illustration of sensitivity to finite rise
time for the X3 gate. The optimal control sequences used cor-
respond to Nt = 70 and T = 1.

The central result of this section is that values of Δ > 1
lead to both shorter gate times and a reduced sensitivity
of the fidelity to random errors in control field and finite
rise time. This provides a guiding principle for future im-
plementations of qubit arrays.

6 Discussion and conclusions

Our results are of direct relevance to superconducting
qubit arrays [6]. One-dimensional Josephson arrays of
capacitively coupled superconducting islands can be de-
scribed as XXZ Heisenberg spin-1/2 chains [28,29]. In
general, the XY -part of Hamiltonian is characterized by
a nearest-neighbor interaction, whereas the Z-part will
also have coupling contributions beyond nearest neigh-
bors. However, by properly choosing the junction capaci-
tances and the capacitance of each island to the back gate
of the structure, the Z-part will also be approximately of
nearest-neighbor type. The correspondence between the
parameters of the Josephson array and the spin chain is
as follows: the Josephson energy EJ of the junctions cou-
pling the islands corresponds to the exchange coupling
constant J of the spin system and can be controlled by
a magnetic field if we assume that the coupling junctions

are realized as SQUIDs. The parameter ΔJ of the spin
system corresponds to the charging energy EC , i.e., the
anisotropy parameter Δ corresponds to EC/EJ . Values
of Δ like those studied in Tables 1 and 2 can be exper-
imentally realized. Finally, the first island should form a
charge qubit, and the control field hz corresponds to the
gate voltage, while hx and hy play the role of the Joseph-
son energy of this charge qubit. Our study shows that, in
principle, arbitrary quantum algorithms can be realized
on a one-dimensional Josephson array by controlling only
the first island in the array.

In summary, we have shown that local control of the
first spin of an anisotropic XXZ Heisenberg spin-1/2 chain
enables universal quantum computation. Using a recent
Lie-algebraic result on the local controllability of spin
chains with “always-on” interactions, we have determined
control pulses leading to optimal fidelities for quantum
gates such as spin-flip (NOT), controlled-NOT (CNOT),
and square-root-of-SWAP (

√
SWAP). We have found the

minimal times for realizing different gates depending on
the anisotropy parameter Δ of the model, showing that
the shortest among these gate times are achieved for par-
ticular values of Δ larger than unity. Another surprising
result was that in the regime of interest for superconduct-
ing charge qubits, the minimal times in the simpler x-
only control case can be even shorter than in the x-y and
x-z control cases. We have also analyzed the sensitivity
of the obtained results for the gate fidelities to random
variations in the control-field amplitudes and finite rise
time of the pulses. Our results are independent of a par-
ticular experimental realization of the XXZ chain, yet, a
superconducting Josephson array would be a particularly
appealing candidate. Our investigation paves the way for
future studies, involving more sophisticated control strate-
gies [30,31].

We would like to thank R. Fazio for discussions. This work was
financially supported by EU project SOLID, the EPSRC grant
EP/F043678/1, the Swiss NSF, and the NCCR Nanoscience.
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