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In this paper robustness properties of the maximum likelihood estimator (MLE) and several robust 
estimators for the logistic regression model when the responses are binary axe analysed. It is found that the 
MLE and the classical Rao's score test can be misleading in the presence of model misspecification which 
in the context of logistic regression means either misclassification's errors in the responses, or extreme data 
points in the design space. A general framework for robust estimation and testing is presented and a robust 
estimator as well as a robust testing procedure axe presented. It is shown that they axe less influenced by 
model misspecifications than their classical counterparts. They are finally applied to the analysis of binary 
data from a study on breastfeeding. 
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1. Introduction 

The focus in this paper is on a robust approach to logistic regression. One issue addressed 
is the influence of data misclassification (e.g., a yes mistaken from a no) and/or of a singular 
subject on the value of the parameter's estimates as well as on the results of significance tests. A 
general theory of robustness is developed in Huber (1981) and Hampel, Ronchetti, Rousseeuw, 
and Stahel (1986) and the work of Wilcox (see Wilcox 1998 and the references therein) has 
opened the way for more systematic use of robust methods in psychology in particular and in 
the social sciences in general. In the case of logistic regression several authors (see Carroll & 
Pederson, 1993; Copas, 1988; Kuensch, Stefanski, & Carroll, 1989; Markatou, Basu, & Lindsay, 
1997; Pregibon, 1982) have made different proposals. In this paper, a general framework for 
robust inference is stated and then robust estimators and testing procedures are proposed and 
compared to previous results. 

The paper is organized as follows. In section 2, the theoretical framework is set in which 
first the logistic model and its MLE is presented, then a general framework for robust estimation 
is given and links are made with other results for the logistic model, and finally robust testing is 
developed. A robust estimator is proposed and in section 3 it is compared to the MLE and other 
robust estimators through an extensive simulation study involving different parameters and con- 
taminated samples. In section 4, the results are applied to real data from a study on breastfeeding. 

2. Theoretical Results for Robust Inference 

2.1. The Logistic Model and the MLE 

A very common model for the analysis of binary data is the logistic regression model. Let Y 
be a binary response variable (for example Y = 1 when the answer is yes). It is supposed that Y 
has the binomial distribution with parameter # = E[Y] = P (Y = 1) (Y is also called a Bernoulli 
trial). When independent variables X = [Xb X2 . . . . .  Xp] are observed, they are "linked" to the 
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expectation of Y by means of a link function g(#)  = X/3 such that g - l (x /3 )  takes values in 
(0, 1), the definition interval of #. X denotes here the design variables which usually include a 
constant and are supposed to be fixed. There are different possible choices for the link function, 
but we will consider here the canonical link (McCullagh & Nelder, 1989), that is, 

g - l ( N i l )  = # ( X / 3 )  - -  
exp(X/3) 

1 + exp(X/3)" 

To estimate the parameter/3 = [/31 . . . . .  / 3 p ] t  classically one uses the maximum likelihood 
estimator (MLE) defined as the solution in/3 of the score function 

1 H 

i~l(yi -m)x I =0. n 

How is the MLE of/3 influenced by model misspecification? It can be shown analytically (see 
Victoria-Feser, 2000) that the MLE can be influenced by extreme values in the design space. The 
case of misclassification errors on the other hand has been studied by, for example, Copas (1988) 
and Pregibon (1982). Their results and mine (see below) show that misclassification errors can 
also lead to a biased MLE. 

2.2. A General Framework for Robust Estimation 

We now turn to possible robust estimators for the logistic regression model. The problem 
comes from misclassification of the responses and also from extreme data in the design space. It 
is therefore important to bound both types of influences. 

A general formulation for a consistent robust estimator for the logistic regression model is 
given by the solution in/3 of 

1 n 1 n 

- - E = o  
n ~ n i=1 ' z  

(1) 

where wi are weights that might depend on xi, Yi or both, and b(xi, fl) is defined to ensure 
consistency (see below). Equation (1) can be compared to Equation 2.1 of Carroll and Pederson 
(1993). If wi = 1 and b(xi, fl) = 0 Vi, then (1) yields the MLE. Equation (1) actually defines an 
M-estimator for which asymptotic properties are now well known (see, e.g., Huber 1981; Hampel 
et al., 1986). For example, the asymptotic covariance matrix of the robust estimator is given by 

V(fi) = M - 1 Q ( M ' )  -1 (2) 

where 

and 

1 
M = Z # i ( 1  - /~i )xlxi  (l~iWily=O + (1 - I~i)Wily=l) 

n 
(3) 

o = n l  ~ / ~ i ( 1  - /~ i )x lx i  (l~iWily=O + (1 - i~i)Wily=l) 2 . (4) 

We consider here consistency as defined in Kuensch et al. (1989), namely conditional Fisher 
consistency. This means that given xi, E[(y - ~ ( x i f l ) ) w i x t i  ] - b(xi, fl) = 0, Vi so that b(xi, fl) = 
E[(y - ~(Xifl))WiXl]. If the weights do not depend on the response then b(xi, fl) = O. 
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Three robust estimators are considered in this paper• The simplest one is given by taking 
y~-m (see McCul- weights depending on the standardized residuals or Pearson residuals Ira(1-m)]1/2 

lagh & Nelder, 1989) as proposed in Cantoni (1999) for generalized linear models; namely, 

Y i  - -  # i  1/2 -1 } = = m i n  1 ; c  (5) 

where c is a tuning constant which controls the degree of robusmess (see e.g. Hampel et al., 
1986)• To ease the notation, we will also use { 1 / {  -1} 

w ° = min 1; c #i W 1 = min 1; c 1 - -  #i 
yi [ # i ( 1  - - ) i ) ]  1/2 and Yi [ ~ i ( 1  " 

This Huber-type estimator does not consider simultaneously the problem of misclassification and 
extreme data in the design space• This problem could be solved by also considering a weighting 
scheme in the x's. This would lead to a weight function of the type wi = Wy~ • Wx~ which 
separates the weights on extreme residuals (Wy~) for the misclassification errors and the weights 
on extreme data in the design space (Wx~). One possibility would be to base Wx~ on the diagonal 
elements of the hat matrix H = X(X~X)-lX ~ (see Victoria-Feser, 2000)• I prefer, however, to 
choose a weighting function for the x's based on the influence function ( I F )  (see Hampel et al., 
1986)• The I F  carries most of the information about the robusmess properties of an estimator (or 
a test statistic) since it measures a first-order approximation of its (asymptotic) bias due to an 
infinitesimal deviation (of any type) from the assumed model• (For an illustration see Hampel 
et al., 1986, Figure 1, p. 42). A controlled bound on the I F  therefore ensures robustness of the 
resulting estimator. 

Equation (1) can be written as 

1 
~ . £ [ W y i ( Y i  # i ) - - a i ]  -- - -  X i tlOx i : 0 

! 

/'/ i=1 

(6) 

w h e r e  t h e  constants ai = E [Wy~ ( y  - # i  )] = ~ i  (1 - ~ i  ) ( w l  i - w 0y~ ) e n s u r e  c o n d i t i o n a l  F i s h e r  c o n -  

w 0 sistency• The I F  is equal to M - l [wy (y  - # )  - a]x~wx,  M given in (3) with wi ly=0 = Wx~ • y~ 

• w I Actually there exists several ways to bound the I F  (see Hampel et and w i l y = l  = Wxi yi" 

al., 1986), one of them being the standardized version which leads in our case to the condition 
I wy  (y  - # )  - a lwx~ Ix Q -  lx~] 1/2 _< c, with Q given in (4). We therefore propose here the follow- 
ing weighting system: Huber weights on the response's standardized residuals given by (5) and 
Huber weights on [ x Q - l x  ~] 1/2, that is, 

[xi  Q _ l x t i  ] l / 2  • 
(7) 

A referee noted that the weights Wx~ are a variation of Mahalanobis distances with the exception 
that the matrix Q is not the covariance matrix of x• The estimator we propose belongs to the 
so-called Mallows class of estimators (Mallows, 1975)• To compute it one needs an iterative 
algorithm, whereby given a current value for the estimates one computes the weights and then a 
Newton-Raphson step for (6)1• Alternatively, by using a scoring method, these estimators can be 
seen as reweighted least squares estimators defined by (see Victoria-Feser, 2000) 

X1WXfi(k+l) = X1Wz 

1In order to simplify the estimation, the weights in (4) axe taken to be only the weights on the response, that is, 
0 and wi ly=l 1 Wily=O = Wy i = Wy i. 
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where z = vec (x i f l  (k) q- vi) ,  vi = {my i (Yi - IZi) - a i } / [ IZ iW° i q- (1 - i z i )wl i ] lZ i (1  - IZi) and 

W = d i a g ( [ # i w °  i + (1 - 1 #i  ) my i ] # i  (1 - # i  ) Wxi ). 
We note here that Markatou, Basu, and Lindsay (1997) proposed also weighted likelihood 

estimating equations for the logistic regression model. It is however not applicable in the setting 
we consider here but in settings where the responses are made of the results from several trials 
(like the number of dead eggs in vials as considered in Markatou et al., 1997). It may be possible 
to extend the weighted likelihood methodology in this context. However, we do not pursue this 
goal here. Finally another estimator with a weight function which depends both on the design 
and the response has been proposed by Kuensch et al. (1989). Its weight function is given by 

{ c / 
wi = min 1; lYi - I*i - dil [ x i A - l x l i ]  1/2 

(8) 

where A is defined implicitly by Q = (A-1)(A-1) I, c is a tuning constant and di is given in 
Kuensch et al. (1989). The procedure to compute this estimator is rather complicated because 
of the implicit calculation of A. Nevertheless, it should be stressed that this estimator not only 
has a bounded I F  with a bound controlled by a unique tuning constant c, but also it is the most 
efficient estimator in the whole class of consistent M-estimators with bounded I F  in which robust 
estimators of the type given in (1) are included. This estimator is actually the Optimal B-robust 
Estimator (OBRE) defined for general parametric models by Hampel et al. (1986). By means of 
some simulation studies and through several examples, Carroll and Pederson (1993) conclude 
that the OBRE has the overall best performance in terms of robustness and efficiency with rea- 
sonable sample sizes compared to the robust estimator they propose (with weights depending on 
xi fi through #i) and other (nonconsistent) ones. 

In section 3 we present the results of a simulation study in which the MLE, the OBRE, the 
Huber type and Mallows type estimators are compared, from which it will be concluded that the 
Mallows type estimator has the best performance overall. 

2.3. Testing in Logis t ic  Regress ion  

As Wilcox (1998) stresses, robustness becomes really appealing when it comes to testing. 
Robust theory actually started with testing procedures where the problem is to control the prob- 
ability of type I error in the presence of model misspecification (see Box, 1953). To investigate 
the robustness properties of a testing procedure one works with the asymptotic bias on the level 
of the test due to an infinitesimal model deviation (see Heritier & Ronchetti, 1994). In order 
to test hypotheses on linear combinations of regressors we choose Rao's score test which has a 
robust analogue. Suppose that fi is split into two parts fl(1) and fi(2) (and correspondingly X(1 ) 
and x(2)) and we want to test the null hypothesis that fi(2) = 0. Victoria-Feser (2000) shows in 
the particular case of logistic regression by using the results of Heritier and Ronchetti (1994) 
that the level of Rao's score test can become arbitrarily biased either because of misclassifica- 
tion in the response or when there are extreme points in the design subspace X(2). Heritier and 
Victoria-Feser (1997) examine an example of logistic regression and confirm that the level of the 
classical score test can be seriously biased by data contamination. It is therefore important to use 
a robust procedure which downweights extreme data so that the significance level is really the 
postulated one. 

Using the results of Heritier and Ronchetti (1994), Victoria-Feser (2000) shows that a suit- 
able robust version of Rao's test statistic for the logistic regression model can be based on (6) 
and is given by 

R =ZbC- z  
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1 n W where Z M = ~ ~ i = 1 [  Yi (Yi - -  #(Xi/0)) -- ai]x}2) iWxi  with the weights given in (5) and (7), 
1 n t/) ! 0 .  T h e  fi(2) = 0 and fi(1) defined implicitly by ~ ~ i = 1 [  y~ (Yi - #(xi/~))  - ai ]  x(1) iWx ~ = 

standardization matrix is C = M(22.1)V(22)MI22.1) where M(22.1) = M(22) - M(21)M~11)M(12)  

and V(22) are obtained by computing respectively (2) and (3) at fi(2) = 0 and/~(1), nR2M is then 
compared to a ) ~  with q = dim(fi(2)). We use this robust test statistic for the analysis o f  the data 
from the breasffeeding study. 

3. Simulation Study 

In order to compare the different robust estimators in different settings, taking the OBRE 
as a benchmark, we  performed a simulation study. The design matrix consists o f  a constant and 
two simulated standard normal variables. It is purposely simple because robust estimators result 
in high computational time in simulations. Three different sample sizes were considered, namely 
n = 100, 50, and 25. The sample size of  25 was not a good choice because all estimators where 
very unstable, even without contamination. We also considered two arbitrary parameter sets, 
fi = (2, 3, 1) and ( - 2 ,  1, 3). The values of  the mean and standard deviation of  the resulting 
true means # i  = x~fi are  respectively (0.72, 0.35) and (0.4, 0.4). We then contaminated the 
samples in five different ways. First we  took proportions e of  responses chosen randomly and 
changed them from 0 to 1 or 1 to 0. This constitutes the misclassification-type error. Second 
we took proportions e of  x2 and replaced them by the value of  10. This constitutes a systematic 
misspecification in one of  the explanatory variables (which is also called leverage). Third we took 
proportions e of  one of  x l or x2 (chosen randomly) and replaced them by the value of  10. It should 

0% contamination 

m 

"t-- n n "Y" 

M L E  H u b e r  O B R E  Mallows 

03- 

oq. 

o -  

1% contamination 

m 

m 

M L E  H u b e r  O B I R E  Mallows 

~o- 

o -  

~,- 

2% contamination 

7 7 
z m m m 

M L E  H u b e r  O B I R E  Mallows 

3% contamination 4% contamination 5% contamination 

m 

-- ? ~ m 

~= [] [] [] 

£o 

o 

m 

E 

m 

m 

m 
M L E  H u b e r  O B R E  Mallows MLE Huber OBRE Mallows MLE Huber OBRE Mallows 

FIGURE 1. 

/32 e s t i m a t o r s '  b i a s  d i s t r i b u t i o n  w i t h  m i s s c l a s s i f i c a t i o n  e r r o r s  (n = 100, /3  = ( - 2 ,  1, 3)). 
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be stressed that only the value of  one of  the regressors should be contaminated, otherwise the 
misspecification error is confounded with a misclassification error. The aim is to create leverages 
in both explanatory variables. Finally, misclassification and misspecification errors where also 
considered simultaneously. 

To compute the robust estimators, one has to choose first the tuning constant(s). In order to 
be fair in the comparisons, the tuning constants were chosen so that each of the robust estimators 
achieves the same degree of  efficiency at the model  compared to the MLE. We chose an efficiency 
ratio of  0.85 which is for example the default value for robust regression based on M-estimators in 
the Splus 4.5 statistical software. On how to compute the tuning constants and their values for the 
simulation exercise, see Victoria-Feser (2000). The latter also noticed that the parameters 's  value 
does not seem to change the efficiency ratio, whereas the sample size and the design matrix do. 

3.1. Estimates Distributions 

With misclassification errors, the simulations results depend on the sample size, the pa- 
rameter which is estimated and the true parameters 's  values. For  example we found that with 
fi = (2, 3, 1), all 4 estimators behave in the same manner, and depending on the parameter  
which is estimated they are (almost) unbiased for e up to 5%. This behavior is however not al- 
ways observed. With n = 50 and/or with fi = ( - 2 ,  1, 3), the MLE becomes biased with only 
1% of  contaminated data, whereas the robust estimators remain stable with up to 4% contami- 
nated data. For example, with n = 100 and fi = ( - 2 ,  1, 3), one can see in Figure 1 that for fi2, 
the Mallows estimator performs well even with 4% of contaminated data. The graphics actually 
represent the distribution of  the bias, namely the estimates minus the value of the corresponding 
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FIGURE 2. 
/32 estimators' bias distribution with leverages in x 2 (n = 100,/3 = (-2, 1,3)) 
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parameter. Al l  simulations results cannot be presented here but the following conclusions can 
be drawn: with misclassification errors, the MLE can become biased with just  1% misclassified 
response, whereas the robust estimators can withstand at least 3% of  contaminated data. 

When the contaminated data are leverage points, the simulation results are different. With 
leverage systematically in x2 it is the estimates of/32 that are most dramatically affected. How- 
ever, the Mal lows '  estimator is very resistant with contaminated data at least up to 3%. For  
example, in Figure 2 are presented the/32 estimates distributions for n = 100. Only the Mallows 
estimator remains unbiased. Moreover, a bias can also be present for the other parameters as 
presented in Figure 3 for/31. With/3 = (2, 3, 1), the bias on all estimators are smaller than with 
/3 = ( - 2 ,  1, 3), except for/32, for which both the OBRE and Mallows estimators are resistant up 
to 3% of  contaminated data. It therefore seems that the effect of contamination strongly depends 
on the parameter 's  value and we do not have an explanation for that. In general, with n = 50, the 
simulation results are similar to those with n = 100. With leverages in xl  and/or x2, the MLE of 
all three parameters can become biased with only one leverage. This is especially the case with 
/3 = ( - 2 ,  1, 3). Among the robust estimators, once again it is Mal lows ' s  estimator which is the 
most resistant overall. The conclusion is that it is probable that with leverages, the MLE becomes 
biased with only 1% of  contaminated data, that Huber estimator and the OBRE are more resistant 
but the Mallows estimator is overall the most resistant, with at least 3% of  contaminated data. 

Finally, with both types of  errors (misclassification and leverages), the simulation results 
show again that the MLE can be biased with only 1% of  misclassified response and 1% leverages 
(this makes in reality 2% of contaminated data), whereas robust estimators are more resistant, 
with the Mallows estimator having the best performance overall. For example, in Figure 4 are 
presented the distributions of/32 estimates and one can see that only Mal lows 's  estimator is 
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FIGURE 4. 
/3 2 estimators' bias distribution with missclassification errors and leverages in x I and/or x 2 (n = 100,/3 = (-2, 1, 3)). 

resistant to up to 5% of  both types of  errors. We found that the smallest amount of  contamination 
Mal lows 's  estimator can withstand is of  3% of  misclassification errors and 3% of  leverages, that 
is, 6% of  contaminated data all together. 

It should be stressed that when analyzing real data, it is neither possible to know where the 
errors might be (misclassification or leverages or both) nor their amount. Therefore it is safer to 
use the Mallows estimator which has overall the best performance. 

3.2. Estimating Standard Errors 

Standard errors are important for judging the significance of the parameters through a 
t-test. This subsection considers the effect of contaminated data on the estimated standard er- 
rors. In the same simulation study, we also computed standard errors for the estimators using 
the diagonal elements of  (2) with parameters replaced by their estimates. In general we found 
that contamination has the effect of  lowering standard errors, that the MLE can be affected by 
only 1% contamination, that the robust estimators are more resistant with the Mallows estimator 
being the most resistant overall. When n = 50, we also found that the OBRE estimated standard 
errors can be very large for some samples, thus showing some instability. This is not surprising 
because Kuensch et al. (1989) remarked that the effect of estimating the matrix A in (8) might  
have an effect on asymptotic results in small samples. The cases in which the standard errors are 
underestimated are the same as these when the estimators are biased, for all estimators, so that 
the same conclusions for all types of  contaminations can be drawn for estimated standard errors. 
As an example, consider the case of  fi2 with leverages in x2 presented in Figure 5. The triangle 
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FIGURE 5. 
Estimated standard errors distributions for/32 with leverages in x 2 (n = 100,/3 = (-2, 1,3)). 

in the boxplots are the standard errors computed using the true 3. One can see that for the MLE 
the standard errors are systematically underestimated with only 1% leverages and that both the 
OBRE and the Mallows estimator give standard errors comparable to the 0% contamination case 
with up to 5% leverages. It should be stressed that underestimating standard errors means that 
the chance of  finding significant parameters is increased or in other words that the significance 
tests are not made at the usual 5% significance level, but at a much larger one. 

3.3. Computational Time 

Finally, a referee asked that the computational times of the different estimators be com- 
pared. As expected, the computational times (as measured by the function unix.time in Splus 
which gives the cpu time needed in seconds to run a function) increase with the complexity of  
the estimator. The smaller computational times are for the MLE, followed by Huber estimator, 
the Mallows estimator and finally the OBRE. The comparisons of  computational times were 
similar across all the simulation setting, and as an example we present in Figure 6 the different 
computational times for n = 100 and fi = ( - 2 ,  1, 3). It is clear that t ime is gained by using the 
Mallows estimator compared to the OBRE. 

4. Example: Breasffeeding Study 

In this section we apply robust estimation and testing procedures on real data. Moustaki,  
Victoria-Feser, and Hyams (1998) conducted a study in a U.K. hospital on the decision of  preg- 
nant women to breastfeed their babies or not. 135 expecting mothers were asked what kind of  



30 

0% contamination 

m 

MLE Huber OBRE Mallows 

04 

~4 

o4 

~ 4  

o 4  

P S Y C H O M E T R I K A  

1% contamination 

m 

m 

| -  

MLE Huber OBRE Mallows 

2% contamination 

m 

MLE Huber OBRE Mallows 

3% contamination 4% contamination 5% contamination 

m 

m __ 

04 

"T 

LO-I - -  1 

m 

m 

[ ]  

MLE Huber OBRE Mallows MLE Huber OBRE Mallows MLE Huber OBRE Mallows 

FIGURE 6. 
Computational times for the different estimators with misclassification errors (n = 100,/3 = ( - 2 ,  1, 3)). 

feeding method they would use for their coming baby. Their responses where classified in two 
categories, one which included breasffeeding, try to breastfeed and mixed breast- and botflefeed- 
ing and another which was only botflefeeding. One aim of the study was to determine the factors 
which are important for a woman to choose to at least try to breasffeed and then use the results to 
promote breastfeeding among women with a lower probability of choosing it. The factors (vari- 
ables) that were considered were the advancement of their pregnancy (beginning or end) (X1), 
how they were fed as babies (only bottle- or some breasffeeding) (X2), how their friends fed their 
babies (only bottle- or some breasffeeding) (X3), if they had a partner (X4), their age (Xs), the 
age at which they left full time education (X6), their ethnic group (white or non white) (X7) and 
if they smoked, stopped smoking or never smoked (Xs). 

4.1. Robust Estimation 

For the robust estimators, we chose their tuning constant so that they all achieve 85% ef- 
ficiency compared to the MLE. The different estimates and their standard errors are given in 
Table 12. On the whole, the estimates are of a similar order across methods. However, the in- 
tercept is very large (and significan0 when using the Mallows-type estimator./0 3 (for the way 
friends fed their babies) is stable but becomes non significant with the Mallows-type estima- 
tor. fi6 (for the age at the end of full time education) is 5 times higher and significant with the 

2Variables were coded as dummy, with ones for the first category of each factor. Bold estimates denote significant 
parameters at the 5% level. 
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TABLE 1. 
Classical and robust estimates for the breastfeeding data 
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Int X 1 X 2 X 3 X 4 X 5 X 6 X 7 X8/1 X8/2 

MLE -4.12 -0.98 0.31 1.50 1.08 0.027 0.17 -1.96 1.57 3.31 
(SE) 2.39 0.58 0.59 0.59 0.70 0.05 0.13 0.76 0.59 1.01 

Huber -7 .12 -0.90 0.51 1.45 0.85 0.03 0.38 -2.64 1.91 3.51 
(SE) 3.24 0.68 0.69 0.68 0.80 0.06 0.18 1.05 0.67 1.11 

OBRE -5.06 -0.80 0.31 1.35 0.91 0.023 0.25 -2.21 1.71 3.22 
(SE) 6.93 0.89 0.88 0.85 1.00 0.074 0.41 1.37 0.80 1.40 

Mallows -14.31 -0.68 0.85 1.51 0.66 0.04 0.83 -3.09 1.85 3.93 
(SE) 6.19 0.82 0.82 0.81 0.91 0.07 0.37 1.46 0.77 1.43 

Mallows-type estimator compared to the MLE. Finally fi7 (for the ethnic group) is substantially 
larger (in absolute value) for the Mallows-type estimator compared to the MLE. 

These estimated differences mean that the interpretations about the factors determining the 
choices of  expecting mothers are also different. If  one takes a classical approach, then the age at 
which expecting mothers leave full time education (meaning their educational level) is not im- 
portant, whereas it is with a robust (Mallows) approach. On the other hand, how friends feed their 
babies is a significant factor with a classical approach and is not with a robust approach. More- 
over, if one computes the odds ratios from the estimated parameters (exp(fi)),  one finds that for 
a white expecting mother they are considerably smaller with a robust approach (0.045 compared 
to 0.141) meaning that it is considerably less probable that a white expecting mother chooses to 
at least try to breasffeed her baby. When comparing the three robust estimators, one also notices 
some differences. Huber estimator, compared to Mallows leads to a significant parameter for the 
way the expecting mother 's  friends feed their babies. The OBRE on the other side produces only 
two significant parameters, namely those for the smoking habit. So one might ask which result to 
trust? There is in my opinion no definite answer, but by construction of  the estimators and from 
the simulations results, it is my opinion that Mallows estimator should be preferred. The only 
doubt would be about the significance of  the factor how the expecting mother 's  friends feed their 
babies, since with Mallows estimator one can see that it is just  non significant at the 5% level but 
would be at the 10% significance level. The gain with a robust approach with this particular data 
set is thus the significance of  the educational level, and the different odds for a white expecting 
mother. 

4.2.  Tes t ing  

With this data set, a few hypotheses are of  interest. They are presented in Table 2 where 
they are tested classically and robustly using the results of  subsection 2.3 with the tuning con- 
stants used to compute the estimates. The first hypothesis concerns the influence of  the expectant 

TABLE 2. 
Classical and robust scores test for the breastfeeding data 

Classical test Robust  test 

(p-value) (p-value) 

H o :/32 =/33 = 0 0.017 0.094 
H o :/34 =/36 = 0 0.086 0.061 
110 : fi8/1 = fi8/2 = 0 0.0002 0.0004 
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mother's mother and friend in the way they fed their babies. If one uses a classical score test, we 
find that this influence is significant whereas a robust test fails to reject the null hypothesis. If one 
evaluates the influence on the social background as measured by the presence or not of a partner 
and the age of full time education's leave, both tests fail to reject the null hypothesis at the 5% 
level, but the robust one is nearly significant. Finally, the factor smoking (with three levels) is 
clearly significant with both the classical and the robust score test statistic. These results confirm 
similar results by Heritier and Ronchetti (1994) on another dataset. 

5. Conclusion 

In this paper we have presented a general framework for robust estimation and inference 
based on the IF, applied to the logistic regression for the analysis of binary data. We have pro- 
posed a Mallows-type estimator and compared it with the MLE and other robust estimators all 
belonging to the general class of M-estimators. The findings show that the MLE can be biased in 
the presence of misclassification errors and extreme data in the design space, whereas the robust 
estimators are stable with reasonable amounts of contamination. The Mallows-type estimator is 
however preferred since it is more robust than the Huber estimator when there are leverages, 
more resistant, less complicated to compute and faster than the OBRE with reasonable amounts 
of contamination. For testing, a robust score test statistic is proposed that is stable under model 
misspecification. It is used and compared to the classical one on the breasffeeding data and it 
is found that the conclusions about some hypothesis can be different. We would therefore rec- 
ommend to the applied researcher to at least try a robust procedure when analyzing binary data. 
Finally, it should be stressed that the theoretical results can be extended to any model of the 
family of generalized linear models, but this will be the subject of other papers. 
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