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Abstract Object: A method is
proposed for generating schemes of
diffusion gradient orientations
which allow the diffusion tensor to
be reconstructed from partial data
sets in clinical DT-MRI, should the
acquisition be corrupted or
terminated before completion
because of patient motion.
Materials and methods: A general
energy-minimization electrostatic
model was developed in which the
interactions between orientations are
weighted according to their temporal
order during acquisition. In this
report, two corruption scenarios
were specifically considered for
generating relatively uniform
schemes of 18 and 60 orientations,
with useful subsets of 6 and 15
orientations. The sets and subsets
were compared to conventional sets
through their energy, condition
number and rotational invariance.

Schemes of 18 orientations were
tested on a volunteer.
Results: The optimized sets were
similar to uniform sets in terms of
energy, condition number and
rotational invariance, whether the
complete set or only a subset was
considered. Diffusion maps obtained
in vivo were close to those for
uniform sets whatever the
acquisition time was. This was not
the case with conventional schemes,
whose subset uniformity was
insufficient.
Conclusion: With the proposed
approach, sets of orientations
responding to several corruption
scenarios can be generated, which is
potentially useful for imaging
uncooperative patients or infants.

Keywords Orientations · Gradients ·
DTI · Motion · Patient

Introduction

In diffusion tensor (DT) MRI, images must be acquired
using diffusion-encoding gradient pulses, applied along
at least six non-collinear orientations, to take into ac-
count tissue anisotropy [1–4]. As the gradient-encoding
scheme may greatly influence the degree to which noise
affects the diffusion tensor parameter estimation, several
schemes have already been proposed [5–17]. For instance,
in order to obtain a uniform distribution of orientations,
a model mimicking Coulomb electrostatic interactions [9]

or “ultrarepulsive” interactions [10] has been previously
suggested. The evaluation of the condition number of the
scheme-associated transformation matrix [11] has been
proposed to assess performances regarding sensitivity to
noise. A uniform distribution of the orientations in space
is necessary to obtain an accurate tensor estimation in
each voxel [9,12,13], and the rotationally invariant ico-
sahedra-based sets can provide reproducible results [15–
17]. Besides, increasing the orientation count considerably
improves the signal-to-noise ratio (SNR) and the diffu-
sion contrast-to-noise ratio [18] by averaging. Consider-
ing different orientations then enables a better sampling
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Fig. 1 Interaction coefficients (αi j ), as function of orientation positions during acquisition, i and j, for a set of N =18 orientations (subsets
of n =6 orientations) with an arbitrary minimum threshold a, for schemes A (a) and B (b)

of the diffusion space, and, consequently, the information
about local tissue organization becomes more accurate
[7]. The optimal orientation count to be acquired is still
debated and critically depends on the image SNR [10,13,
14], but the acquisition time linearly increases with this
count, and it is not always possible to predict how long a
subject (e.g. a non-sedated pediatric patient or an unco-
operative patient) will remain still in the MRI scanner. In
this case, three acquisition strategies are available for the
experimenter.

– He can choose to acquire a small uniform set of orien-
tations, during which the patient will surely sleep and
which yields an accurate estimation of the diffusion
tensor. However, it would not be optimal if the patient
continued to sleep after the acquisition end, since more
informative data could have been obtained.

– In contrast, he can choose to acquire a large uniform
set of orientations, but corrupted images should be
rejected if motion had happened during acquisition,
and the tensor estimation would not be correct with
such an incomplete distribution.

– As a compromise, he can choose to acquire a large
set of orientations, which is not perfectly uniform but
whose partial subsets could provide a relatively correct
tensor estimation.

In this perspective, our goal was to implement a
general method for generating orientation acquisition
schemes which yield the “best” spatial distribution of the
orientations should motion happen or the acquisition be
corrupted or terminated before completion. Thus, our
interest was intrinsically different from previous studies
[5–17] as we seek a compromise between the available data
amount and the diffusion tensor estimation accuracy. In
this article, we describe the method of optimization [19]
and outline the parameters which can be tuned in order to
design schemes for specific motion scenarios. Two exam-
ples are given.

Materials and methods

Method description

The method was inspired from a classical model used to gener-
ate a spatially uniform distribution of orientations: the physical
model of charges distribution on a sphere [9,10,12, Appendix
1]. Orientations are assumed to pivot and to repulse each other,
through electrostatic forces, and equilibrium is reached when the
orientations are uniformly distributed, which corresponds to the
minimum of the system global energy. Nevertheless, this model
assumes that all of those orientations are available to calculate
the diffusion tensor, which in turn implies that the whole data
set is intact: if data are corrupted by motion or the acquisition
is stopped before completion, the tensor estimation of the undis-
carded data will not be very accurate, which implies that the data
set may be completely lost.

We propose here to generate schemes of orientations for
which partial data sets still contain quite uniformly distributed
orientations and can be used for DTI calculation, which is not
the case for non-modified “conventional” (uniformly distributed)
schemes. In order to generate such schemes, two approaches are
available: to sort out the orientation order of a conventional data
set [20] or to generate directly an optimized set [19].

With both approaches, an extension to the electrostatic
model is necessary. Each orientation is labelled according to its
sequential order within the acquisition sequence. The repulsive
potential between two orientations i and j, Ei j , is proportional
to the electrostatic-like potential, E0

i j , (Appendix 1) and to an
interaction weight, αi j , which depends on the orientations order:
Ei j =αi j E0

i j . In a uniformly distributed scheme (denoted U), all
interactions have equal weights (αi j = 1). However, for acquisi-
tions where corruption might occur, the sequence of orientations
must consist in a series of small meaningful subsets (a cluster
of at least six uniform orientations), while all clusters comple-
ment each other with additional orientations. This implies that
orientations close in time during the acquisition sequence inter-
act with maximum weight (αi j = 1), while orientations distant
in time interact with reduced weight (αi j ≤ 1). The sizes of the
whole set and of subsets can be adjusted according to both the
programmed total acquisition time and the expected fraction of
actually available data. A minimum interaction between the first
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Fig. 2 a Normalized energies
(left column) and condition
numbers (right column) of sets
of 18 orientations and of
subsets of m orientations (Xm

18,
6≤m ≤17, X: A, B or U ) for
the generated schemes
(A18, B18), compared to the
non-sorted conventional
scheme (U18). Energies and
condition numbers were
normalized to the energies and
condition numbers of the
conventional distributions of
identical orientation count
(Um). Considering scenario A,
the energies and condition
numbers of the two first subsets
of 6 and 12 orientations
(X1−6

18 , X1−12
18 , X: A or U) are

presented. Considering scenario
B, the energies and condition
numbers averaged over all the
subsets of 6 to 17 orientations
(Xi− j

18 with m = j − i +1, X: B
or U) are presented. Schemes
A18, B18 were generated for
different minimum thresholds a.
b Corresponding orientation
distributions of the sets of 18
orientations and of some
subsets of 6 and 12 orientations
for the generated schemes
(A18, B18,with a =0.5),
compared to the non-sorted
conventional scheme U
(U6,U12,U18). c Corresponding
standard deviations of FA as
function of tensor orientation
along θ and φ
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Fig. 2 (Contd.)

and the last orientations provides a coherent global set of ori-
entations, but this threshold may be chosen to give priority to
the complete set or to particular subsets. In this way, variable
schemes can be devised depending on the expected corruption
scenario.

Scheme description

In this article, two different scenarios are presented as examples
(Fig. 1, Appendix 2). Sets of N orientations are considered. A
threshold (a ≤ 1) between the first and the last orientations is
present in both cases.

In scenario A, the acquisition might be terminated shortly
before the expected end (typically a patient is asleep and wakes

up) and the scheme is composed of successive subsets of orien-
tations with a small orientation count (n ≥ 6). A subset is a unit
which is completely available or not at all and which must add
information compared to previous subsets. In this scheme, inter-
actions within the first subset orientations are maximal, while
other interactions decrease with the distance in time between the
subsets within the acquisition (Fig. 1a, Appendix 2).

In scenario B, a single acquisition is performed, corruption
may occur at any time, at random, but the whole data set is
acquired. This scheme assumes that each acquisition segment
corresponding to a set of n orientations (n ≥ 6) is either kept or
rejected as a whole. In this scheme, an orientation fully interacts
with its 2(n − 1) closest neighbours in time and the interaction
decreases with the distance in time between orientations (Fig. 1b,
Appendix 2).
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Table 1 Sets of 18 orientations
(A18, B18, described in Fig. 2),
generated with threshold a = 0.5

Orientations of A18 Orientations of B18

0.609153 0.348325 0.712463 −0.902076 0.426784 0.0641472
−0.787805 −0.52741 0.318123 −0.683024 −0.694914 0.224885
0.0635821 0.989828 0.12727 −0.621315 −0.271961 −0.73485
−0.885332 0.461305 −0.0581836 −0.125341 −0.828559 −0.545691
−0.142819 0.562158 −0.814605 0.181076 0.433856 −0.882599
0.433676 −0.395948 −0.809414 −0.447386 0.325336 0.833068
0.228851 0.850542 −0.473503 0.414791 −0.909039 0.039961
−0.644471 −0.709112 −0.286038 0.95386 0.0833837 −0.288442
−0.446098 0.84138 0.305085 0.803914 −0.447358 0.39191
0.0198736 −0.0799377 −0.996602 0.47033 −0.172819 0.865404
−0.75348 0.308626 −0.580533 −0.695204 −0.650044 −0.306813
−0.871579 −0.0185212 0.489905 0.287343 0.804991 −0.51906
−0.463647 −0.391374 0.794894 −0.0580362 −0.423947 −0.903825
−0.768181 0.47868 0.425163 −0.630117 −0.168543 0.757988
−0.122045 −0.736668 −0.665151 −0.0474071 −0.9914 −0.12198
−0.963215 −0.212488 −0.16452 −0.646892 0.628004 0.432599
0.371772 −0.869556 0.32505 −0.953319 −0.108384 −0.281844
−0.429775 0.112506 −0.895899 0.3372 −0.674455 0.656815

In what follows, we denote by UN , AN and BN the sets of N
orientations corresponding to the conventional, non-optimized
uniform scheme U and to A and B scenarios. We call Xi− j

N any
subset of the previous sets (X: U, A or B), with [i;j] the range of
orientations in the complete set.

Scheme generation

Given the interaction weights defined for each scenario, the orien-
tation set is optimized from the minimization of its corresponding
energy. We used the method which consists in generating directly,
as a whole, an optimized set [19]: all orientations were initially
randomized and the energy minimization was performed using a
conventional descent gradient algorithm [9].

Scheme examples and evaluation

Optimizations were performed with N/n =18/6, for scenarios A
and B (for different minimum thresholds a), and N/n = 60/15,
for scenario A.

The set spatial distributions were characterized by the energy
level, calculated with all interaction weights set to 1. The distribu-
tion condition number was also assessed. Sets of N orientations
(X N ) and subsets of m orientations (Xi− j

N with m = j − i + 1)
were respectively compared to uniform sets of N and m orienta-
tions (UN/Um) through the normalization of energies and con-
dition numbers. Considering scenario A, respectively two and
three subsets were studied (for N/n = 18/6, subsets of 6 and 12
orientations: X1−6

18 , X1−12
18 ; for N/n = 60/15, subsets of 15, 30

and 45 orientations: X1−15
60 , X1−30

60 , X1−45
60 ). As for scenario B,

all subsets of n to (N − 1) orientations were considered. Subsets
of the non-sorted uniform sets (Ui− j

N ) were also studied.
Besides, the rotational invariance of the generated sets and

subsets was characterized by evaluating the errors in frac-
tional anisotropy (FA) as a function of the tensor orientation

[11,13], considering the following parameters: 10−3 mm2 s−1

theoretical mean diffusivity, 0.6 theoretical FA, SNR = 30 and
b = 900 s mm−2 (details on the method are provided in [13]). In
summary, the tensor was rotated by angle θ around the x-axis
from 0 to π (in 20 steps), and angle φ around the z-axis from
0 to 2π (in 40 steps). For each rotation, the FA standard devia-
tion was calculated over 5.103 samples of noisy signal.

Finally, as an example, a scheme of 18 orientations for
scenario A was evaluated on an adult, under a protocol ap-
proved by the Institutional Ethical Committee. Four different
DTI acquisitions were performed with a DW–SE–EPI tech-
nique on a 1.5-T MRI system (Signa LX, GEMS, USA; b
value = 0/700 s mm−2, TE/TR = 66.5 ms/12 s, interpolated spa-
tial resolution = 0.9 × 0.9 × 3.4 mm3). Diffusion gradients were
applied according to scheme A18 and to schemes U18,U6 and
U12 for benchmarking. For N = 18 orientations, the acquisition
time was 3.8 min. In post-processing, acquisitions corresponding
to conventional and proposed schemes were analysed consider-
ing either the complete set (the whole acquisition is available) or
only subsets of orientations (only a fraction of the acquisition
is available); maps of colour-coded directionality (RGB) were
calculated.

Results

Sets of 18 orientations (A18, B18) were generated with
scenarios A and B, for different minimum thresholds a,
and compared to the conventional scheme (U18) (Fig. 2).
The normalized energies and condition numbers are pre-
sented for the sets and subsets of these schemes (Fig. 2a).
Regarding subsets with a small orientation count (m from
6 to 12), the subset corresponding to the conventional
scheme strongly differs from the conventional set (Um)

(normalized energies and condition numbers are larger
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Fig. 3 a Normalized energies
(left column) and condition
numbers (right column) for the
sets of 60 orientations and
subsets of 15, 30 and 45
orientations for the generated
scheme (A60, with a = 0.5),
compared to the non-sorted
conventional scheme (U60). b
Corresponding orientation
distributions. c Corresponding
standard deviations of FA as
function of tensor orientation
along θ and φ
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Table 2 Sets of 60 orientations (A60, described in Fig. 3), generated
with threshold a = 0.5

Orientation of A60

−0.0620255 0.969279 0.238014
−0.590392 0.691327 0.416539
0.832079 −0.252625 −0.493787
0.407539 0.753135 −0.51643
0.772251 0.321716 −0.547839
−0.399355 0.0182789 0.916614
0.542116 −0.22155 0.810571
−0.144761 −0.260138 −0.954658
0.96726 −0.193975 0.163652
−0.0996349 0.965323 −0.241297
−0.721408 −0.457627 −0.519757
−0.0431366 0.498168 −0.866007
−0.62369 −0.780281 −0.0466048
0.698702 −0.677253 0.23053
−0.0794753 −0.666166 −0.741557
−0.415908 0.908961 0.0284565
−0.516029 0.517755 −0.682381
−0.312844 0.355545 0.880748
−0.200541 0.792286 −0.576252
−0.908794 0.365036 0.202096
0.0661257 0.187804 −0.979978
−0.274626 −0.954691 0.11465
0.356633 0.477761 −0.802843
0.828767 0.0218569 −0.559167
0.837099 0.517716 0.176735
−0.279575 0.819499 0.500259
0.65698 0.203892 0.725814
0.956585 0.257488 −0.13655
−0.397375 −0.721049 −0.567611
−0.895454 0.0165788 −0.444845
0.289479 −0.6167 −0.73204
−0.243609 −0.951229 −0.189256
−0.442904 −0.138527 −0.885803
−0.22214 0.207392 −0.952703
−0.705832 0.699695 0.110576
0.426922 −0.850603 0.306939
0.613782 0.723288 0.316425
−0.990266 −0.0921729 −0.104297
0.0927022 0.723476 −0.684097
−0.606186 0.403811 0.685183
−0.538433 −0.790268 0.292515
−0.541466 −0.216562 0.812352
0.354366 0.499081 0.790786
0.812979 −0.370855 0.448922
−0.788945 −0.501919 0.354461
−0.624942 0.625522 −0.467086
−0.0389319 0.998982 0.0227983
0.478208 −0.820052 −0.314375
0.821955 0.555657 −0.125045
0.153939 0.905929 −0.394456
−0.642144 0.0829743 0.76208
0.189207 0.852312 0.487611
0.585638 0.513825 −0.626907
−0.0934106 0.0619547 0.993698

Table 2 (Contd.)

Orientation of A60

0.0452882 −0.484571 −0.873579
0.881691 −0.471656 0.0126873
0.72787 −0.114571 0.676076
0.250884 −0.583763 0.77219
0.878214 0.296705 0.375109
−0.977722 0.0155313 0.209331

than 1). In contrast, the subsets for scenarios A and B
are acceptable (normalized energies and condition num-
bers are close to 1). For subsets with a larger orientation
count (12 to 17), the trend is the same while the differ-
ence in quality is less pronounced. This means that if an
acquisition is corrupted before completion (e.g. in case of
motion), the implemented orientation schemes allow the
data sets to still be meaningful and usable, which would
not be the case with a conventional acquisition scheme.
When we compare the whole sets, the generated schemes
are equivalent to the conventional one in terms of global
space sampling, which means that no information is lost
if the acquisition is not interrupted. As scenario B is more
flexible than scenario A with regard to the acquisition
hypothesis (corruption can happen at any time, not just
at the acquisition end), sets B18 and the B subsets of 6 and
12 orientations are respectively less optimal than sets A18
and the A subsets.

As outlined for each scenario, the choice for thresh-
old a results from a trade-off between the distribution
uniformity for the whole set and subsets, which cannot be
optimal for both. The threshold should be iteratively opti-
mized by the user according to the expected acquisition
scenario. In the next part, we focus on the distributions
generated for an intermediate threshold (a =0.5).

Distributions of sets A18 and B18 and of some sub-
sets are presented in Fig. 2b and Table 1. As expected,
the FA rotational invariance is improved with set unifor-
mity (Fig. 2c). For both the generated sets and subsets, it
is close to the optimal situation (complete uniform set).
In addition, the FA standard deviation decreases as the
orientation count increases.

In Fig. 3 and Table 2, results obtained with scenario A
for a set of 60 orientations (A60) with a minimum subset
of 15 orientations are described.

Figure 4 represents diffusion maps obtained on a
volunteer, highlighting the corpus callosum body, in
different situations (interruption of the acquisition before
completion or not) for schemes A18 and U18 compared
to U6 and U12. Maps obtained with scheme A18 are very
similar to those obtained with conventional distributions,
both with the full set or a subset, but results are signifi-
cantly different with the conventional scheme U18.
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Fig. 4 RGB maps obtained on a volunteer (zoomed at the level of the body of the corpus callosum) using 6, 12 and 18 orientations of
conventional schemes U and scheme A18(U6,U12, X1−6

18 , X1−12
18 , X18, X : A, U ), with corresponding acquisition time

Discussion and conclusion

Since the time a patient can remain still in an MRI scan-
ner is not always predictable, especially with non-sedated
infants or uncooperative patients, our goal was to imple-
ment a method for generating orientation schemes, for
DTI acquisitions, which permit one not to lose the whole
data set in case of motion or if the acquisition is stopped
before programmed completion. A compromise must be
found between an optimized spatial distribution of ori-
entations (and so the tensor estimation accuracy, [5–17])
and a somewhat short acquisition time. Our minimization
method was inspired by a model based on Coulomb elec-
trostatic interactions [9], but different interaction coeffi-
cients between orientations were introduced according to
their sequence order within the acquisition sequence in
order to generate subsets of orientations which maintain
a uniform distribution in space.

Whereas several scenarios can be designed using this
method, two examples were specifically detailed in this
article. Examples obtained for schemes of 18 and 60

orientations were described. We focused on acquisition
schemes applicable, for instance, to unsedated babies,
with high robustness to motion, short acquisition time
and small orientation count. The generated sets were com-
pared with conventional ones by characterizing their en-
ergy and their condition number, as these indexes were
shown to be respectively markers of the spatial unifor-
mity of the distribution [9] and of the noise performance
for the DTI scheme [11]. The FA rotational invariance
was also briefly evaluated for the generated sets, but it
was beyond the scope of this article to quantitatively
assess the robustness of the generated schemes concerning
tensor estimation [13,16]. Diffusion maps were presented
for one of the set examples: their quality was only slightly
modified when only subsets were used.

As previously outlined, two approaches were available
to deal with acquisition with potential early termination.
One approach [20] was to sort out the orientation order
in a complete set of uniform orientations, so that the
first acquired orientations are the more uniformly distrib-
uted over the space. Nevertheless, “recycling” a uniform
set is not optimal for generating uniform subsets, and
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two optimization cycles must be successively performed,
which is time consuming. Moreover, these sorted sets are
inappropriate in the case of random corrupted acquisi-
tions (case B). In contrast, with the proposed approach
[19], orientations were not fixed and the constraint was
directly applied in the first optimization. By design, this
approach was more optimal for generating uniform sub-
sets and it was therefore preferred, even though the global
set of orientations was not necessarily uniform as in the
first approach.

Interestingly, with our method, orientation schemes
can be dedicated to specific scenarios or subject popula-
tion. However, the scenario must be defined before the
acquisition so as to program the necessary gradient ori-
entation temporal sequence within the acquisition, and
subsets with unartefacted images are selected in post-pro-
cessing. Also the orientation optimization becomes more
complicated with large orientation counts, and it is diffi-
cult to optimize both small and large subsets. Therefore, a
first step with the proposed approach is to precisely define
the scenario which must be dealt with in order to generate
an appropriate orientation distribution.

In conclusion, we proposed a general approach to gen-
erating clinically useful sets of orientations and we out-
lined the parameters which can be tuned in order to design
schemes for specific corruption scenarios. The executable
code for generating such orientation sets (NmrUniform-
OrientationSet) is freely available on the laboratory web-
site (http://brainvisa.info).

Appendices

Appendix 1: Generation of uniform distributions

To generate a spatially uniform distribution of orienta-
tions, the analogy with the physical model of charges dis-
tribution on a sphere has been suggested [9]. The global
energy, E, of a system of N orientations is minimized:

E =
N∑

i, j=1
i< j

Ei j ,

where Ei j is the interaction potential between orienta-
tions i and j.

As acquiring in DTI an orientation (�gi ) or its
symmetrical counterpart (−�gi ) is equivalent, both are

considered for the calculation of the electrostatic-like
potential (E0

i j ):

E0
i j ∝ 1∥∥�gi − �g j

∥∥ + 1∥∥�gi + �g j
∥∥ .

Appendix 2: Interaction weights

– Case A

In this scenario (Fig. 1a), a subset of orientations
(S+1) includes the previous subset (S). S is defined
as the smallest subset that orientations i and j both be-
long to. The more distant in time the orientations are,
the more reduced is the interaction. If i and j belong
to the first subset (S = 1), their interaction is maximal:
αi j =1. If i and j belong to the last subset (S = P, with P
the number of subsets), their interaction is minimum:
αi j = a < 1. Otherwise, the interaction coefficient is
defined as αi j =a(S−1)/(P−1).

Note that many other schemes, not detailed here,
can be devised on this thematic. If a subset of ori-
entations is not assumed to include the previous
one, the interaction coefficient can be defined as
αi j = a|I−J |/(P−1), where orientations i and j belong
respectively to subsets I and J. In addition, for gen-
erating small independent uniform subsets (without
constraints of time) and a uniform set, the coefficient
can be defined as αi j = δI J · (1−a)+ a, where δI J is
the Kronecker symbol. In the method proposed by
Cook et al. [20], a is null because the global set is the
conventional (uniform) one.

– Case B

In this scenario (Fig. 1b), an orientation fully interacts
with its 2(n −1) closest neighbours in time: if |i − j |<
n then: αi j = 1. For the most distant orientations
(the first and the last), the interaction is minimum:
α1N =a <1. Otherwise, the interaction monotonically
decreases as the distance in time (|i − j |) increases: if
|i − j |≥n

αi j =1− (1−a) · N−n+1
N−n

(
1− 1

|i− j |−n+2

)
.
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