
Visual Comput (2008) 24: 525–533
DOI 10.1007/s00371-008-0233-0 O R I G I N A L A R T I C L E

Parag Chaudhuri
George Papagiannakis
Nadia Magnenat-Thalmann

Self adaptive animation based
on user perspective

Published online: 30 May 2008
© Springer-Verlag 2008

P. Chaudhuri (�) · G. Papagiannakis ·
N. Magnenat-Thalmann
MIRALab, University of Geneva
Switzerland
{parag, papagiannakis,
thalmann}@miralab.unige.ch

Abstract In this paper we present
a new character animation technique
in which the animation adapts itself
based on the change in the user’s
perspective, so that when the user
moves and their point of viewing the
animation changes, then the character
animation adapts itself in response to
that change. The resulting animation,
generated in real-time, is a blend
of key animations provided a priori
by the animator. The blending is
done with the help of efficient
dual-quaternion transformation
blending. The user’s point of view
is tracked using either computer
vision techniques or a simple user-
controlled input modality, such as
mouse-based input. This tracked

point of view is then used to suitably
select the blend of animations. We
show a way to author and use such
animations in both virtual as well
as augmented reality scenarios and
demonstrate that it significantly
heightens the sense of presence for
the users when they interact with such
self adaptive animations of virtual
characters.

Keywords Self adaptive character
animation · Animation blending ·
Augmented and virtual reality

1 Introduction

Over the years, character animation has developed into
a very mature art form. However, virtual characters are
still and far less convincing when they have to interact
with the user, especially in real-time. They are often inert
to the user’s presence or do not react appropriately. This is
a very important aspect in computer games and interactive
virtual and mixed reality applications. Therefore, a lot of
effort is being invested in creating expressive virtual char-
acters [33].

We present, in this paper, a simple and fast method
to author self adaptive character animations that respond
automatically to changes in the user’s perspective or point
of view in real-time. The animator creates a set of example
key animations for the characters assuming the user is
viewing the animation from different key viewpoints in the

world. When the user actually interacts with the character,
the user’s actual point of view is tracked in real-time by
using computer vision techniques or by simple user con-
trolled input methods. The tracked position of the user’s
viewpoint, with respect to the key viewpoints, is then used
to blend the example key animations, in real-time. Thus,
the animation of the character adapts itself in response to
the changes in the user’s viewpoint.

We will demonstrate that our method is simpler and
more efficient than other techniques that can be used to
obtain similar results [10, 27]. We will also show a work-
ing, prototype implementation of our method with simple
examples in virtual and augmented reality.

We begin by providing the related background work
in Sect. 2. Next, we present our method for authoring self
adaptive animations in Sect. 3. This is followed by a dis-
cussion of some lessons learned during implementation of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159153872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

526 P. Chaudhuri et al.

the introduced technique and an analysis of its perform-
ance in Sect. 4. Section 5 concludes with a discussion of
future work that can be done.

2 Background

In this section, we explore related prior work on con-
trol and blending of character animation, followed by re-
lated background work on presence and interaction in aug-
mented reality.

2.1 Control and blending of character animation

Many existing works represent the set of plausible char-
acter poses as an abstract space and use it to generate
the animation [18, 23]. Igarashi et al. [14] present spatial
keyframing where the user controls a character by adjust-
ing the position of a control cursor in 3D space and the
pose of the character is given as a blend of nearby key
poses. However, there is no concept of a view or camera
involved in this work. The first work to use the camera to
control the pose of a character was view-dependent geom-
etry [27]. In this work, the animator manually matches the
view direction and the shape of a base mesh model with
the sketched poses of the character and creates a view-
sphere. Tracing any camera path on this view-sphere gen-
erates the appropriate animation with view-dependent de-
formations. Chaudhuri et al. [10] extend the above work
to a generalized framework for doing view-dependent ani-
mation from sketches and video. These methods, however,
do not work in real-time and also involve a significant
amount of manual work in generating the space of poses.
Also, these methods do not associate animations to cam-
era viewpoints like we do, but only use a static pose-
camera association. This imposes a serious restriction on
this method that the animation is generated only when the
camera moves. Therefore, none of these techniques can be
used to generate real-time self adaptive character anima-
tion.

We blend between a set of example key animations
provided a priori by the animator. Example-based ani-
mation research has taken many directions, like mo-
tion recovery from video with/without additional human
motion databases [6, 28], resequencing motion capture
data [2, 17, 19] and performance driven animation [7, 30].
We use a dual quaternion based transformation blending
technique, as introduced by [16] for performing character
skinning to blend between multiple example animations in
real-time.

The blending is controlled by tracking the position of
the rendering camera in a subspace of key cameras. We can
usesimplemousebased input tocontrol theuser’sviewpoint
to create self adaptive animations in virtual reality (VR) or
use real-time camera tracking using computer vision tech-
niques to create such animations in augmented reality (AR).

We discuss the related work pertaining to animated virtual
characters in AR in the next section.

2.2 Animated virtual characters in augmented reality

Virtual characters have been used to enrich AR expe-
riences in a lot of different ways, e.g., as collaborative
game partners [3, 26], as training assistants for repairing
machinery [5] or to bring ancient civilizations back to
life [25]. Some virtual characters are designed to function
as autonomous software agents using the belief, desire and
intention model for agents [5], while others respond to
changes in the real world, made by the user [4]. However,
these examples do not allow for mutual persistent pres-
ence between real users and virtual characters, since the
virtual characters are not capable of sensing the real users,
looking at them and thus establishing a more advanced
conscious relationship [12]. It is known that non-verbal
communication (e.g., via gaze or gesture) between the vir-
tual character and the user enhances the expressiveness of
the virtual character and improves the sense of presence
for the user in the AR environment [33, 34]. Self-adaptable
animation is able to adapt the character animation in real-
time and react to the user appropriately.

Interactive, autonomous virtual characters have also
been used in storytelling [9] or for modeling individual
behaviour such as pedestrian behaviour in multi-human
simulations [29]. In these works, a procedural system is
used for modeling the cognitive and motor behaviour of
the character based on pre-recorded data or artistic intent.
These methods do not extend directly to AR or mixed real-
ity environments. Our method is complimentary to such
methods and can be used in conjunction with them to cre-
ate more interactive characters.

Though it may be argued by some that similar-looking
effects can already be seen in games, we have not found
any principled approach to creating such self adaptive
characters in existing literature. Since we do not know the
algorithms or techniques employed in these games other
than those that can be obtained by modifying some of the
methods mentioned in prior reported work, we can claim
that our method is simpler, more efficient and robust.

Contributions. We present a novel character animation
technique that uses fast real-time animation blending
based on the user’s point of view to create animation that
automatically adapts itself in response to tracked changes
in the user’s perspective. This enhances the user’s sense
of presence when interacting with such characters, both in
virtual and augmented reality environments.

3 Self adaptive animations

We start by explaining the notation we use to explain our
method of self adaptive animation.

Self adaptive animation based on user perspective 527

3.1 Notation

A character pose can be defined as a hierarchical tree
of rigid transformations. If we linearize this tree by
performing a fixed traversal on it, we get a list of trans-
formations. Rigid transformations can be represented as
unit dual quaternions [11].

A dual quaternion, q̂ can be thought of as a sum of
two normal quaternions, q̂ = q0 + εqε, where q0 is the
real part and qε is the dual part. ε is the dual unit, sat-
isfying ε2 = 0. The set of unit dual quaternions, Q1, is
a manifold in eight-dimensional Euclidean space (called
an image-space of dual quaternions [22]). A unit dual
quaternion with the dual part as zero represents a pure
rotation. Also, a unit dual quaternion, t̂ = 1 + ε

2(t0i + t1 j
+ t2k), represents a translation by the vector (t0, t1, t2)
with i, j, k being the usual quaternion units. Hence, if the
rotation is given by a quaternion, q0, then the complete
rigid transformation can be written down as a composition
(i.e., multiplication) of the two dual quaternions as
(

1+ ε

2
(t0i + t1 j + t2k)

)
q0 = q0 + ε

2
(t0i + t1 j + t2k)q0.

(1)

It can be proved that the composition always yields a valid
unit dual quaternion. The rotation and the translation can
thus be recovered from a given unit dual quaternion.

One of the advantages of using the dual quaternion
notation is that we have a single representation for rigid
transformations. So while blending animations, there are
no special cases to be handled for joints that only rotate
versus joints that can rotate and translate, including the
root joint.

We define a character pose, P = {q̂m}, as a list of dual
quaternions, with m as the index of the list. An anima-
tion is a time varying sequence of poses and hence can be
defined as P(t). An animator creates a set of 1 ≤ k ≤ K
key animations, Pk(t), that represent the way the character
should react when the user approaches or looks at the char-
acter from different directions. We refer to these directions
as key viewpoints or key cameras and represent them as vk.
We will now describe, with the help of an example, how
we author such self adaptive character animations.

3.2 Authoring self adaptive animations

In this example, the animator decides that when the user
approaches the character from different directions, the
character should turn around, look at the user and gesture
toward the user. The animator provides us with three (i.e.,
K = 3) different key animations in which the character is
looking in different directions while performing some ac-
tions (see Fig. 1). We associate one key camera with every
animation (see Fig. 2). In Fig. 2, the small green sphere
represents the key camera associated with the correspond-
ing pose shown. It is always in the center of view in the

Fig. 1. The input key animations

figure because when the key camera is added, the current
rendering camera is the same as the key camera.

This creates a subspace of key cameras, vk, such that
each camera has one animation associated with it. It is
a subspace of the space of all the view directions from
which the user can look at the character. Since we are only
interested in the direction of viewing, this space can be
represented by a unit sphere around the character. This is
shown as the large transparent sphere in Figs. 2 and 3. All
the key cameras, shown as small green and blue spheres in
Fig. 2, lie on this unit sphere. This is similar to (though not
the same as) the view-space used in [10]. There the sphere
is around each character pose and the complete space is
an aggregation of these spheres, while we are only inter-
ested in finding out the direction of the user vis-a-vis the
character, so one unit sphere around the character is suffi-
cient (see Fig. 3). This sphere moves with the character if
the character changes position, so that the relative location
of the user can always be figured out. Our formulation is
simpler and more appropriate for real-time use.

Once we have associated the cameras to the anima-
tions, then the character is ready to interact with the user.
Note that this association has to be done only once and
can be stored for future use. When the user moves around
the character, we track the user’s viewpoint and project
it onto the unit sphere. This is referred to as the current
camera or viewpoint, vc. We then compute a set of convex
weights, wk, based on the distances between the current
camera and the key cameras (see Eq. 2). For the K input
key animations, if the distance between vc and vk is given
by D(vc, vk), then

wk = [1/D(vc, vk)]α∑K
k=1[1/D(vc, vk)]α

, (2)

where α generally ranges from 2 to 4. Lower values of
alpha mean that the influence of the respective key camera
is spread over a larger area, while larger values of alpha
tend to focus the influence in closer vicinity of the key
cameras. The distance function, D, can be the geodesic
distance between the cameras computed on the surface of
the unit sphere, or it can be approximated by the Euclidean
chordal distance between the cameras. Then the current

528 P. Chaudhuri et al.

Fig. 2. The input key cameras

Fig. 3. The key cameras are shown in blue and green. The current
camera is shown in red. The large sphere represents the space of all
the directions from which the character can be viewed

character animation seen by the user is given by

P(t) = BLENDk(Pk(t), wk), (3)

where BLENDk is a blending function that blends the
corresponding dual quaternions of each animation at that
particular time. We can use either dual quaternion lin-
ear blending (DLB) or dual quaternion iterative blending
(DIB) to blend the actual dual quaternions [16]. Given the
list of the K dual quaternions to be blended, q̂k

m , and the
set of convex weights, wk, the DLB is given by

DLB
(
q̂k

m, wk) = q̂1
mw1 +· · ·+ q̂K

m wK
∥∥q̂1

mw1 + . . .+ q̂K
m wK

∥∥ . (4)

The linear blend is fast because it is a closed-form
solution, however, it is not precise. For a more precise
solution, we employ the DIB algorithm (as given in Algo-
rithm 1).

Algorithm 1. Dual quaternion iterative blending
Require: The input list of dual quaternions, q̂k

m and the convex
weights, wk .

Require: The desired precision, p.
1: Compute b̂ = DLB(q̂k

m , wk)
2: repeat
3: x̂ = ∑K

k=1 wk log
(
b̂∗q̂k

m

)
//b̂∗ is the conjugate of b̂

4: b̂ = b̂ exp(x̂)
5: until ‖x̂‖ < p
6: The output blended quaternion is b̂

In practice, both methods can be used for real-time
scenarios. Though the DLB is a very good approxima-
tion to the precise blend solution, it has been shown [16]
that the iterative DIB algorithm is the best choice when
blending more than two rigid transformations. It is so be-
cause the DIB preserves rigidity, it shows coordinate sys-
tem invariance, so the blending is constant speed. In other
words, the derivatives of both the interpolated rotation and
translation are constant and it computes the blend along
shortest path. For pure rotations and/or translations, the
methods can be degraded gracefully to simpler solutions.

Blending rigid transformations has been a long-studied
problem, however, blending multiple (more than two)
rigid transformations has very few solutions that can
work in real-time scenarios. SLERP or spherical linear
interpolation [31] can be used to blend between only
two quaternions. Other solutions that can handle multiple
transformations require decomposition into component
translations and rotations that make the method coordi-
nate system dependent [8] or they are computationally
less efficient [1]. If the component translation vectors and
rotation quaternions are already available then the dual
quaternion blending is very easy to do and more efficient
in cases when both of these transformations exist. Hence,
dual quaternion blending is a very good choice for blend-
ing multiple animations. In our method, it performs very
well for creating the self adaptive character animations.
A more detailed description of the dual quaternion algebra
and blending techniques is out of the scope of this paper,
but the interested reader can find the details in [11, 16, 22].

Therefore, as the user moves, the animation is gener-
ated instantaneously based on the position of the user’s
viewpoint. In this particular example, when the user
changes the view direction using the mouse, the character
turns to look at and gesture toward the user (see Fig. 4).
This is a typical VR scenario, and we see that the blend-
ing works very nicely to adapt the animation to react to
the user’s movement. An obvious advantage we have over
other gaze tracking solutions that can also be used to per-
form such tasks, is that the jitter in the movement of the
user is completely damped during the blend. So the char-
acter does not jerk unexpectedly. Also, all the poses of
the character are automatically kinematically correct as
long as the input key animations are kinematically cor-
rect (i.e., all joint transformations are valid and within
limits). Since we blend the transformation hierarchies of

Self adaptive animation based on user perspective 529

Fig. 4. Self adaptive animation in VR: the character reacts to the
user’s movement

the character (i.e., kinematic or skeleton level blending),
then if the skinning of the character is derived from the
skeleton joint positions, it does not have to be blended
separately. This is a big advantage in terms of efficiency.
Earlier methods [10, 27], blend the mesh vertices directly
and hence are much slower. They also cannot guarantee
the kinematic validity of the resulting blended charac-
ters.

We can also associate multiple key cameras with one
key animation. This is done using a many-to-one map
from the cameras to the animations. The animator can thus
use very few input key animations to create the self adap-
tive animations. We can also blend static poses in addition
to animations.

4 Implementation

Dual quaternions are not the de facto standard to represent
transformations in current graphics libraries. Therefore,
it is not obvious how to combine dual quaternion based
blending with an existing real-time graphics architecture.
We discuss in this section how we efficiently implement
self adaptive animations in a real-time setting.

4.1 Self adaptive animation in VR

We use OpenSceneGraph (OSG) [24] to manage our char-
acters and the scene. OSG represents the characters as
a hierarchical tree of transform nodes. Animations are rep-
resented as a sequence of rigid transformations, called
animation paths, attached to every transform node of the
character. The transform changes, as per the animation
paths, to generate the animations. We first convert the key
animations to lists of dual quaternions by parsing all their
animation paths. This involves a one-time conversion of
all the transformation matrices, representing the input key
animations, to dual quaternions. Then for the character
in the final scene, we attach an update callback to every
transform node. OSG performs an update pass when all
update callbacks are processed, before performing a ren-
der pass for every frame of the animation. The update
callback updates every transform node of the character
(see Algorithm 2).

Algorithm 2. Algorithm for the OSG update callback
Require: Input key cameras, vk and associated key

animations, Pk(t).
Require: A camera manipulator that controls the current camera.

1: Get the position of the current camera, vc, from a camera
manipulator.

2: Based on vc and the set of key viewpoints, vk , compute the
set of convex weights, wk , for all 1 ≤ k ≤ K (using Eq. 2).

3: Compute a blend of the respective dual quaternions from the
input key animations using Eq. 3, to get the blended dual
quaternion.

4: Use the blended dual quaternion to update the transformation
node to which this update callback is attached.

The last step of the update callback involves the only
conversion from dual quaternion to matrices (the conver-
sion uses Eq. 1) in this algorithm. This algorithm thus en-
sures that the conversion happens only once for each trans-
formation node of the character. This also abstracts out
the mechanism of controlling the current camera position
to a camera manipulator. For a VR scenario, a standard
OSG trackball camera manipulator can be used to con-
trol the current camera with a mouse. In the next section,
we describe how we can use input from real-time camera
tracking to control the current camera used for blending in
an AR scenario.

4.2 Self adaptive animation in AR

For a simple AR scenario, we use the ARToolkit [15] to
track the current camera position with respect to the charac-
ter. We recover the current transform for a tracked marker
and place our character at that position. The pose of the
marker is used to infer the position of the camera looking at
the scene. This functionality is then encapsulated in a cam-
era manipulator. The user wears a head mounted display
(HMD) with a camera attached to it (see Fig. 5).

Fig. 5. The user with a camera mounted on the HMD looks at the
scene with the marker

530 P. Chaudhuri et al.

Fig. 6. Self adaptive animation in AR

Then, when the user moves looking at the marker, the
orientation of the camera is obtained in real-time. The user
can see the character in the scene, at the position of the
marker. This is then used to blend the key animations,
to generate the self adaptive animation. The character re-
sponds to the movement of the user, looks at the user and
gestures in the direction of the user. Note that the camera
position also changes due to relative movement between
the user and the character, so rotating the marker is the
same as the user moving and looking at the character from
various directions (see Fig. 6).

We can also do life size augmentation of a scene,
where we use a markerless tracking solution (see Fig. 7).
We first record a video of the scene and extract fea-
ture point correspondences from the video. We create
a database of these tracked features. Then in real-time, we
track feature points in the scene by matching them to the
database of stored feature points. A stratified, metric re-
construction from the computed feature correspondences
gives the camera matrix, P, for the camera mounted on
the HMD [13, 32]. The 3×4 projective camera matrix, P,
is decomposable as K[R|t], where K is a 3 ×3 matrix
containing the focal length of the camera, R is a 3 ×3
submatrix controlling the view direction, and t is a 3 ×1
submatrix governing the viewpoint distance. The camera-
to-world transformation is given by the R and t matrices.
These can be used to place the character in the scene. The
camera center, C can be recovered as the right null space
of P by solving PC = 0. This camera center is then used
to control the self adaptive animation. As the user moves
around the character, she turns and looks at the user in re-
sponse. In addition, the character also gestures toward the
user. Hence, the complete body animation of the character
can be adapted according to the user’s perspective.

4.3 Performance analysis

In this section, we present some performance indicators
for our algorithm. Our hardware configuration is a 2.4 Ghz
Core 2 Duo PC with a NVidia 8800 GTX card, Logitech
QuickCam Express and Notebook Pro webcams, and an

Fig. 7. Self adaptive animation in markerless, life size AR – the
character turns her head to look at the user

i-Glasses SVGA Pro HMD. In Table 1, we can see that
the frames-per-second (FPS) for the animation without
blending and that with blending in the VR scenario do
not differ significantly. The FPS for the AR case is lesser
because additional processing needs to be done for the
video frames. It can also be seen that while the DIB shows
a lesser frame rate than the DLB in both VR and AR,
it is still suitable for real-time interaction with the char-
acter. The DIB precision used was 0.001. Character 1 is
the character shown in Fig. 6 with 25 000 triangles in the
skinning mesh and 27 joints in the articulation skeleton.
Character 2 is a simpler mesh with 8009 triangles and 27
joints. Character 3 is the character shown in Fig. 7 with
30 236 triangles and 27 joints. The numbers shown for the
AR case are for the marker-based tracking case using AR-
Toolkit. Though it is possible to implement dual quater-
nion blending in the GPU, we are not using any shaders in
this prototype implementation.

The FPS statistics have been recorded using the OSG
statistics counters. OSG performs update, cull and ren-
der passes for each frame of the animation. The update
callbacks are called during the update pass. We can see
in Fig. 8 the update pass statistics of the no blending, VR
and AR cases. We see that the time taken for the update
passes are almost similar in all three cases, i.e., the self

Self adaptive animation based on user perspective 531

Table 1. Frames per second for the character animation

of triangles, joints FPS (without blending) VR scenario AR scenario
FPS (DLB) FPS (DIB) FPS (DLB) fps (DIB)

Character 1 25 000, 27 84 82 79 55 50
Character 2 8009, 27 135 132 130 80 77
Character 3 30 236, 27 58 56 53 45 43

Fig. 8. From left to right: OSG update pass times for the no blending (6.90 s), DLB blending in VR (7.12 s) and DLB blending in AR
cases (7.35 s)

adaptive animation is only slightly more costly in terms of
efficiency, than normal animation. Since everything else is
the same in all the cases, measuring the performance of the
update pass is equivalent to measuring the performance of
our technique, as that is where the adaptation occurs.

The solution is as scalable as any example-based ani-
mation technique, as it requires the example key anima-
tions to create the self adaptive characters. Thus, our al-
gorithms are efficient and help create characters that are
more responsive and give the user an enhanced sense of
presence in an immersive VR/AR scenario.

5 Conclusion

We have presented a simple and efficient method to create
self adaptive character animation, in which the anima-
tion of the character automatically adapts itself to react
to the changes in the user’s perspective. We have used
fast dual quaternion blending between example key ani-
mations based on position of the current camera to achieve

this in real-time. As a result, we can create more believable
characters in VR and AR that can react, as required by the
animator, to the changes in the real user’s perspective.

An obvious extension to the current implementation is
to implement the dual quaternion blending on the GPU
and also use the same blending algorithms for character
skinning. The current technique uses the camera position
to control the blend. It is possible to use other camera par-
ameters, like distance from the character, to control other
characteristics of the blend, e.g., levels of articulation de-
tail. We can even think of using this simple method in
conjunction with more complex methods like those pre-
sented for animation of conversational characters in [21]
or for scripted interactive characters in [20], in order to
create even more expressive characters in the future.

Acknowledgement We would like to thank Nedjma-Cadi Yazli for
creating the example animations that were crucial to this work.
The work done in this project is funded by the European research
project INDIGO (IST-045388).

References
1. Alexa, M.: Linear combination of

transformations. ACM Trans. Graph. 21(3),
380–387 (2002)

2. Arikan, O., Forsyth, D.A., O’Brien, J.F.:
Motion synthesis from annotations. ACM
Trans. Graph. 22(3), 402–408 (2003)

3. Balcisoy, S., Kallmann, M., Torre, R.,
Fua, P., Thalmann, D.: Interaction
techniques with virtual humans in mixed
environments. In: Proceedings of the 2nd
International Symposium on Mixed Reality
(Yokohama, Japan) (2001)

4. Barakonyi, I., Schmalstieg, D.:
Augmented reality in the character
animation pipeline. In: ACM SIGGRAPH
2006 Sketches. ACM Press, Boston, MA
(2006)

5. Barakonyi, I., Schmalstieg, D.: Ubiquitous
animated agents for augmented reality.
In: ISMAR 2006 – IEEE/ACM
International Symposium on Mixed and
Augmented Reality, pp. 145–154. IEEE
Computer Society, Santa Barbara, CA
(2006)

6. Bregler, C., Malik, J.: Tracking people with
twists and exponential maps. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition,
pp. 8–15. IEEE Computer Society, Santa
Barbara, CA (1998)

7. Buck, I., Finkelstein, A., Jacobs, C.,
Klein, A., Salesin, D.H., Seims, J.,
Szeliski, R., Toyama, K.:
Performance-driven hand-drawn
animation. In: NPAR 2000: First
International Symposium on Non

532 P. Chaudhuri et al.

Photorealistic Animation and Rendering,
pp. 101–108. ACM Press, Annecy, France
(2000)

8. Buss, S.R., Fullmore, J.P.: Spherical
averages and applications to spherical
splines and interpolation. ACM Trans.
Graph. 20(2), 95–126 (2001)

9. Cavazza, M., Charles, F., Mead, S.J.:
Character-based interactive storytelling.
IEEE Intell. Syst. 17(4), 17–24 (2002)

10. Chaudhuri, P., Kalra, P., Banerjee, S.:
View-Dependent Character Animation.
Springer, London (2007)

11. Clifford, W.: Mathematical Papers.
Macmillan, London (1882)

12. Encarnação, J., Gross, M., Reiner, M.,
Slater, M., Stork, A., Stricker, D.,
de Velde, W.V.: Presence and interaction in
mixed reality environments. FET Proactive
initiative (2004). Ftp://ftp.cordis.lu/pub/

ist/docs/fet/pr2-37.pdf
13. Fitzgibbon, A., Zisserman, A.: Automatic

camera tracking. In: Shah, M., Kumar, R.
(eds.) Video Registration, pp. 18–35.
Kluwer Academic (2003)

14. Igarashi, T., Moscovich, T., Hughes, J.F.:
Spatial keyframing for performance-driven
animation. In: Proceedings of the 2005
ACM SIGGRAPH/Eurographics
Symposium on Computer Animation,
pp. 107–115. ACM Press, Los Angeles, CA
(2005)

15. Kato, H.: Human Interface Technology
Laboratory: ARToolkit (2007).
http://artoolkit.sourceforge.net

16. Kavan, L., Collins, S., Zara, J.,
O’Sullivan, C.: Skinning with dual
quaternions. In: 2007 ACM SIGGRAPH
Symposium on Interactive 3D Graphics and
Games, pp. 39–46. ACM Press, Seattle,
WA (2007)

17. Kovar, L., Gleicher, M., Pighin, F.: Motion
graphs. ACM Trans. Graph. (Proceedings
of SIGGRAPH ’02) 21(3), 473–482 (2002)

18. Lewis, J.P., Cordner, M., Fong, N.: Pose
space deformation: A unified approach to
shape interpolation and skeleton-driven

deformation. In: SIGGRAPH ’00:
Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive
Techniques, pp. 165–172. ACM
Press/Addison-Wesley Publishing Co.,
New York, NY (2000)

19. Li, Y., Wang, T., Shum, H.Y.: Motion
texture: A two-level statistical model for
character motion synthesis. In: SIGGRAPH
’02: Proceedings of the 29th Annual
Conference on Computer Graphics and
Interactive Techniques, pp. 465–472. ACM
Press, San Antonio, TX (2002)

20. Loyall, A.B., Reilly, W.S.N., Bates, J.,
Weyhrauch, P.: System for authoring highly
interactive, personality-rich interactive
characters. In: SCA ’04: Proceedings of the
2004 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation,
pp. 59–68. Eurographics Association,
Grenoble, France (2004)

21. Masuko, S., Hoshino, J.: Head-eye
animation corresponding to a conversation
for cg characters. Comput. Graph. Forum
(Proceedings of Eurographics 2007) 26(3),
303–312 (2007)

22. McCarthy, J.M.: Introduction to Theoretical
Kinematics. MIT Press, Cambridge, MA
(1990)

23. Ngo, T., Cutrell, D., Dana, J., Donald, B.,
Loeb, L., Zhu, S.: Accessible animation
and customizable graphics via simplicial
configuration modeling. In:
SIGGRAPH ’00: Proceedings of the 27th
Annual Conference on Computer Graphics
and Interactive Techniques, pp. 403–410.
ACM Press/Addison-Wesley Publishing
Co., New Orleans, LA (2000)

24. OSG: OpenSceneGraph 2.0 (2007).
http://www.openscenegraph.org

25. Papagiannakis, G., Schertenleib, S.,
O’Kennedy, B., Arevalo-Poizat, M.,
Magnenat-Thalmann, N., Stoddart, A.,
Thalmann, D.: Mixing virtual and real
scenes in the site of ancient pompeii.
Comput. Animation Virtual Worlds 16(1),
11–24 (2005)

26. Piekarski, W., Thomas, B.: ARQuake: The
outdoor augmented reality gaming system.
Commun. ACM 45(1), 36–38 (2002)

27. Rademacher, P.: View-dependent geometry.
In: SIGGRAPH ’99: Proceedings of the
26th Annual Conference on Computer
Graphics and Interactive Techniques,
pp. 439–446. ACM Press/Addison-Wesley
Publishing Co., Los Angeles, CA (1999)

28. Ren, L., Shakhnarovich, G., Hodgins, J.K.,
Pfister, H., Viola, P.: Learning silhouette
features for control of human motion. ACM
Trans. Graph. 24(4), 1303–1331 (2005)

29. Shao, W., Terzopoulos, D.: Autonomous
pedestrians. In: SCA ’05: Proceedings of
the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation,
pp. 19–28. ACM, Los Angeles, CA (2005)

30. Shin, H.J., Lee, J., Shin, S.Y., Gleicher, M.:
Computer puppetry: An importance-based
approach. ACM Trans. Graph. 20(2), 67–94
(2001)

31. Shoemake, K.: Animating rotation with
quaternion curves. In: SIGGRAPH ’85:
Proceedings of the 12th Annual Conference
on Computer Graphics and Interactive
Techniques, pp. 245–254. ACM Press, San
Francisco, CA (1985)

32. Simon, G., Fitzgibbon, A., Zisserman, A.:
Markerless tracking using planar structures
in the scene. In: Proceedings of
International Symposium on Augmented
Reality, pp. 120–128. IEEE Computer
Society, Munich (2000)

33. Vinayagamoorthy, V., Gillies, M.,
Steed, A., Tanguy, E., Pan, X., Loscos, C.,
Slater, M.: Building expression into virtual
characters. In: Eurographics – State of the
Art Reports, pp. 21–61. Eurographics
Association, Vienna, Austria (2006)

34. Wagner, D., Billinghurst, M.,
Schmalstieg, D.: How real should virtual
characters be? In: Conference on Advances
in Computer Entertainment Technology.
ACM International Conference Proceeding
Series, vol. 266, no. 57. ACM Press,
Hollywood, CA (2006)

Self adaptive animation based on user perspective 533

PARAG CHAUDHURI is a post-doctoral re-
searcher at MIRALab, University of Geneva. He
received his Ph.D. from the Indian Institute of
Technology Delhi, India in 2006. He received
the Outstanding Ph.D. Dissertation award from
IBM IRL for 2006. His primary research in-
terests include all of computer animation. He
is also interested in rendering, motion capture,
real-time computer graphics, mixed reality and
computer vision (geometric and active). He has
been involved in the FP6 European projects
ENACTIVE and INDIGO.

GEORGE PAPAGIANNAKIS is a computer
scientist and senior researcher at MIRALab,
University of Geneva. He obtained his Ph.D. in
computer science at the University of Geneva in
2006, his M.Sc. (Hons) in advanced computing
at the University of Bristol and his B.Eng.
(Hons) in computer systems engineering at the
University of Manchester Institute of Science
and Technology (UMIST). His research interests
are mostly confined to the areas of mixed reality,
illumination models, real-time rendering, virtual
cultural heritage and programmable graphics. He
has actively been involved with and significantly
contributed to the CAHRISMA, LIFEPLUS,
STAR, ENACTIVE, JUST and ERATO FP5
and FP6 European projects. Currently he is
participating in the INTERMEDIA, INDIGO
and EPOCH FP6 EU projects. He is a member
of ACM and IEEE.

NADIA MAGNENAT-THALMANN has pio-
neered research into virtual humans over the last
25 years. She obtained her Ph.D. in quantum
physics from the University of Geneva. From
1977 to 1989, she was a professor at the Univer-
sity of Montreal where she founded the research
lab MIRALab. She was elected Woman of the
Year in Montreal for her pionnering work on
virtual humans and presented Virtual Marilyn
at the Modern Art Museum of New York in
1988. Since 1989, she has been a professor at
the University of Geneva where she recreated
the interdisciplinary MIRALab laboratory. With
her 30 Ph.D. students, she has authored and
coauthored more than 300 research papers and
books in the field of modeling virtual humans,
interacting with them and living in augmented
worlds. She is presently taking part in more
than a dozen European and National Swiss
research projects and she is the coordinator of
several European research projects such as the
Network of Excellence (NoE) INTERMEDIA,
the European project HAPTEX and the Euro-
pean Research Marie Curie training network 3D
ANATOMICAL HUMANS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

