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Sperm reduces female longevity and increases melanization of the spermatheca
in the bumblebee Bombus terrestris L.
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Abstract. Here we present evidence that the male mating
products (sperm and gland products) reduce survival
during hibernation of queens of the bumblebee B.
terrestris. Most remarkably, the inseminated queens are
significantly more likely to have melanized spermathecae
than their virgin sisters. Although we could not detect a
direct relationship between these two findings they are
quite remarkable since B. terrestris is a monandrous and
comparably long-lived insect where sexual conflict is
unlikely to evolve. The reduced survival can probably be
attributed to a general cost of maintaining the sperm,
whereas the presence of melanized spermathecae in the
inseminated queens may indicate a pathogen transferred
during mating or genetic incompatibilities between males
and queens.
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Introduction

In many polyandrous species males and females seriously
differ in their reproductive interests, a situation that
generates sexual conflict (Parker, 1979). Since males
more intensively compete with other males for access to
female products than vice versa, males have evolved a
number of ways to manipulate females in their own favor
(Cordero, 1995; Eberhard, 1996; Baer and Schmid-
Hempel, 2005; Chapman, 2006). For example, during
mating special gland products are often transferred in
addition to sperm. These products can induce oogenesis

and increase oviposition rates (Simmons, 2001), yet
reduce the willingness of females to re-mate (Chen
et al. , 1988; Baer et al. , 2001) or may even be toxic to
the female (Chapman et al., 1995; Gillott, 1996). Alter-
natively, in some species, females benefit from products of
the seminal fluid. For example, in the bruchid beetle,
Bruchidius dorsalis, males transfer a nuptial gift during
copulation – compounds in the seminal fluid serve as a
source of nutrients for females (Gillott, 1996; Takakura,
2004). Proteins released by the accessory glands and the
ejaculatory ducts in males of Drosophila melanogaster
were also shown to have antimicrobial and antifungal
properties (Samakovlis et al. , 1991; Chapman, 2001;
Lung et al. , 2001).

Among social Hymenoptera, such conflict-generating
polyandry is rare (Strassmann, 2001). Therefore, the
conflict between the sexes based on sperm competition is
not expected to be very pronounced in this group.
Moreover, females of social Hymenoptera commonly
become inseminated only during one mating episode in
their life (Boomsma and Ratnieks, 1996; Strassmann,
2001) and use the sperm which is stored in the sperma-
theca for up to several decades (Weber, 1972; Keller,
1998). In such a scenario males should not evolve traits
that affect the longevity of the females. Here we inves-
tigated the effects of the male mating products on the
survival of females during hibernation in the annual,
eusocial, and monandrous bumblebee Bombus terrestris
L. (Hymenoptera; Apoidea) whose reproductive system
has received significant attention during the past years
(Baer, 2003). Given the arguments outlined above, no
adverse male interference with female viability and
fecundity should be expected, as the interests of both
sexes converge with strict monandry and a single mating
episode. However, as mentioned below, male effects on
female longevity have been observed.* Author for correspondence.
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In B. terrestris, at the end of the colony cycle, the young
queens emerge and mate once with a single male and
store the sperm in their spermatheca until they start a new
colony after hibernation (Schmid-Hempel and Schmid-
Hempel, 2000). Male bumblebees conduct mate guarding
(Duvoisin et al. , 1999) and place a mating plug inside the
female�s sexual tract containing substances that cause a
reduction in the propensity of the queens to mate again.
In addition, the plug also physically seals off the entrance
to the genital tract (Baer et al. , 2000, 2001). The plug
consists of a cyclic peptide (cycloprolylproline) and four
fatty acids (palmitic, linoleic, oleic, and stearic acid), of
which linoleic acid is the key compound that triggers the
behavioral response. The energetic value of the plug was
measured and estimated to allow an average sized queen
to remain aloft for 2.3 seconds if she could fully
metabolize the plug (Sauter et al. , 2001). Therefore, the
plug has virtually no nutritional value and is likely to
benefit the male to secure his paternity.

In previous experiments, fitness effects on inseminat-
ed queens of sperm alone were tested by artificially
inseminating queens (Baer and Schmid-Hempel, 2001,
2005; Korner and Schmid-Hempel, 2003). These studies
showed that different patrilines had a significant effect on
female longevity and on fitness, and that singly insemi-
nated queens survived longer than multiply inseminated
queens. At present, it remains largely obscure by what
mechanisms sperm influence the females of bumblebees.
Besides the possible transmission of diseases while
inseminating the queens, genetic incompatibilities (Zeh
and Zeh, 2003) or immune reactions after insemination
(Baer et al. , 2006) offer potential explanations. Further-
more, the extra effects of the accessory gland-products (as
compared to sperm alone) on survival and fitness of the
queens of B. terrestris have not been investigated so far,
nor is it fully evident from the conditions of this species
what should be expected. It is unclear whether the sperm
plus the male mating products enhance or diminish the
female survival. Our study therefore attempts to inves-
tigate this question and compares the survival and the
physiological responses of naturally mated and unmated
(i.e. virgin) queens during hibernation.

Methods

As a source of virgin queens we used second-generation daughter
queens from a colony derived from a queen of B. terrestris that was wild-
caught in the spring of 2003 near Zurich (Neunforn area), Switzerland
and allowed to build up colonies in the laboratory under standard
conditions (20–25 8C, 60 –70% r.H., red light and food ad libitum). The
virgin males were taken from six colonies, which were obtained from
commercial breeders (BioBest�Biological Systems, B-2260 Westerlo)
in order to avoid any possible inbreeding or local adaptation effects.
Males and queens were removed from the colonies shortly after
eclosion from the pupa and kept with pollen and sugar water ad libitum
in brother and sister groups.

Queens appear most willing to mate at around 6 days after
emergence (Gretenkord, 1997), while males are most active at 16�7
days (Duchateau and Marien, 1995). For practical reasons, we used

queens and males in an age range of 5–13 and 6–17 days, respectively.
The matings were staged as follows: one individual from a pair of sister
virgin queens (daughters from the same mother colony) of the same age
was placed individually in a plastic box together with one male. The
other queen of the pair was placed in another, paired, box with another
male but so that the two (same-aged) males in the two paired boxes
were brothers. Otherwise, the assignment of mating partners was
randomized. In one box, the male�s abdomen was dipped into liquid
wax in order to seal his genital organs. This prevented actual mating but
not mating behavior and courting activities. The other male (i.e. his
brother) was left intact and could mate normally (with the sister of his
brother�s mate). After the unsealed male had copulated (usually after
around 30–40 min), the mating opportunity was terminated and the
two brothers were removed. The two queens were then provided with
sugar water and pollen ad libitum for 5 days. Then, the queens were
weighed for the first time on a balance (Mettler AE 240) to the nearest
mg, put individually into cardboard matchboxes and transferred into a
climate chamber at approx. 4 8C for artificial hibernation. Every week,
the hibernating queens were weighed and their survival was checked.
The weekly interval was chosen as a compromise between detailed
coverage and not to disturb the hibernating queens too often. As soon
as an individual was detected to have died (i.e. an expected average of
3–4 days after the last check, but not later than seven days), it was
stored at -20 8C for later dissection and inspection.

For dissections, a queen�s abdomen was opened in Ringer�s saline,
the melanization of the spermatheca was recorded and one of the two
ovaries was photographed. In each queen, the diameter of the largest
oocyte was quantified with ImageJ (http://rsb.info.nih.gov/ij). The fat
content of the abdomen was measured according to the protocol of
Ellers (1996). For this purpose, the abdomen was dried at 70 8C for 4
days and weighed to the nearest mg (Mettler AE 240). Afterwards the
abdomen was placed in 2 ml of ether for 48 h to extract the fat. After
rinsing with fresh ether the abdomen was again dried at 70 8C for
another 4 days and weighed again. The difference between the
measures indicated the amount of fat in the abdomen. Body size was
estimated by the length of the radial cell of one of the forewings
(Bertsch, 1984). In total 260 queens from one single colony and 260
males from 6 different colonies (number of males per colony: 38, 40, 40,
42, 48, 52, respectively) were used.

Data were analyzed with SPSS v. 11 for Macintosh. Longevity of
queens, body mass, fat-content and length of ovarioles were analyzed
using a repeated measures ANOVA with two-tailed probabilities;
insemination (whether queens were mated to a waxed or a fertile male)
was used as a within subject factor, the colony of the males was used as a
between subject factor and the date of the mating served as a covariate.
When body size had a significant effect, the data used in the analysis
were divided by the corresponding body sizes. Melanization was
analyzed with a binary logistic regression (Method =Enter) for of the
abovementioned factors. Unless specified, data are given as mean �1
SE.

Results

The survival of the bumblebee queens during hibernation
was influenced by insemination even though the differ-
ence was small: queens paired with waxed males, on
average, died 152�2.23 d (n=130) after the mating,
whereas their inseminated sisters perished after
148�2.08 d (n=130, p=0.029, Table 1). Male origin
(i.e. the colony from where it came) had no significant
effect on survival. However, the date of mating had a
highly significant effect with queens that were mated later
dying earlier (p<0.001, Table 1). Queen body size did not
correlate with the survival of the queens (linear regres-
sion: F1,258 =0.609, p=0.436).
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Inseminated queens, i.e. those paired with intact
males, were significantly more likely to show melanized
(i.e. brown or dark) spermathecae compared to their non-
mated sisters (non-mated: 2 cases out of total 128 queens,
inseminated: 28 out of total 128 queens; binary logistic
regression (enter method): Wald1,256 =15.4, p<0.001). No
effect on melanization was found for male origin
(Wald5,256 =8.551, p=0.128), the date of the mating
(Wald1,256 =0.002, p=0.969) or queen body size
(Wald1,256 =0.174, p=0.676). Binary logistic regressions

were done as well either with forward or backward
elimination of factors. The results were the same as in the
case of the enter method. Effects of the melanization
response on the survival of the queens were tested on the
data for the inseminated queens alone. No difference
between queens with (145�3.89 d, n=29) and without
(average survival=148�2.47 d, n=100) melanized sper-
matheca was detected (t-test: t127 =0.597, p=0.552).

The body masses at the beginning of the hibernation
and one week before death both correlated positively
with body size (linear regression: before hibernation
F1,258 =169, p<0.001; one week before death F1,258 =135,
p<0.001); the body mass measures used for the statistical
tests (Table 2) were, therefore, related to the correspond-
ing body sizes i.e. taking the ratio. In line with the
experimental design, these relative body masses before
hibernation were not different between experimental
groups (queens paired with waxed males: 187�1.58 mg/
mm, with intact males: 187�1.56 mg/mm, Table 2) nor
did they vary with origin of the males; only the date of the
mating had a significant effect with later mating queens
being relatively heavier for their body size (p=0.001,
Table 2).

The same patterns emerged for relative body masses
one week before the queens died: no difference between
treatment groups (paired with waxed males:
115�1.07 mg/mm, with intact males: 115 � 1.12 mg/
mm, Table 2), nor for the origin of the males; yet, the date
of the mating had a significant influence (later mating
queens being heavier, p<0.001, Table 2).

The fat content of the abdomen of the freshly dead
queens correlated positively with their body sizes (linear

Table 1. General linear model for survival of the queens during
hibernation.

Survival

Source† d.f. MS F p

Insemination 1 2.27*103 4,89 0,029

Insemination*Male colony 5 1.04*103 2,23 0,055

Insemination*Date mating 1 1.22*103 2,62 0,108

Error 123 464

Intercept 1 1.18*106 2.05*103 <0.001

Male colony 5 730 1,26 0,285

Date mating 1 15.4*103 26,6 <0.001

Error 123 579

† Insemination as within subject factor; Male colony as between sub-
ject factor; Date mating as covariate

Figure 1. Observed survival of naturally inseminated and virgin
bumblebee queens during hibernation in the laboratory. Virgin queens
died later than their inseminated sisters (p=0.029).

Figure 2. Melanization of the spermatheca in inseminated and virgin
bumblebee queens. Dissections were done after the queens had died
during hibernation. In 29 out of 128 inseminated queens the sperma-
thecae were melanized whereas virgin queens had only in 2 out of 128
individuals a darkened spermatheca. This difference was significant
(p<0.001).
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regression F1,257 =22.0, p<0.001); the fat measurements
analyzed in the repeated ANOVA (Table 3) were thus
standardized for body size by taking the respective ratio.
Neither treatment (paired with waxed males:
4.96�0.162 mg/mm, with intact males: 5.66�0.127 mg/
mm, Table 3) nor the colony of the males had a significant
influence on the fat content; only the date of mating
showed an effect (increasing fat content at later dates,
p=0.001, Table 3).

Finally, the lengths of the ovarioles correlated pos-
itively with body size (linear regression F1,155 =5.54,
p=0.020); measurements were again standardized for
body size for the further statistical analysis (Table 4).
Because the photographic material did not always allow
an accurate measurement, the ovaries could be analyzed
only in 156 queens. There was no significant difference in
the relative ovariole length of queens paired with waxed
males versus their sisters paired with intact males (waxed:
89.3 � 1.27 mm/mm, intact: 91.5�1.10 mm/mm). The
colonies of the males had no significant effect on the
lengths of the ovarioles nor did the date of mating
(Table 4).

Discussion

We found a slight but still significant negative effect of
insemination, that is, exposure and mating with intact
males, on the survival of hibernating queens. Although
during mating males transfer a variety of peptides in
addition to sperm, which change the behavior of the
queens and seal off the female genital tract via a mating
plug, these effects disappear after a few days (Baer et al. ,
2001; Sauter et al. , 2001). But during hibernation, neither
insemination nor any other reproductive activity by the
queen occurs. Therefore, our finding is especially inter-
esting as both queens and males obviously benefit from
prolonged survival of the hibernating queen, rendering
any sexual conflict very unlikely to act during this period.

Baer et al. (2006) discovered a cost of sperm storage in
the leaf-cutting ant Atta colombica, which became
manifest in a reduced ability to raise an immune response
against an artificial implant. Most interestingly, the
number of sperm within the spermatheca negatively
correlated with the strength of the immune response.
Since they could exclude a direct triggering of the
immune system by the sperm, these costs must be of
metabolic nature. The reduced survival of the insemi-
nated queens in our experiment would be compatible
with the hypothesis that sperm storage imposes a cost to
the inseminated queen although the mechanisms are still
unknown. For example, the pure maintenance of sperm
viability could be costly. Schoeters and Billen (2000)
reported high glycogen content in the cells lining the
reproductive tract of the females of B. terrestris and
assumed this to serve as an energy source for the sperm. In
the honey bee Apis mellifera, Collins et al. (2004) found
ten- to twenty-fold transcript increases of antioxidative
enzymes in the spermathecae of mated queens when
compared to unmated queens. Those antioxidative en-
zymes are thought to reduce the damage by reactive
oxygen species common to many biological processes.
Alternatively, the sperm themselves may be genetically

Table 2. General linear model for relative body mass of the queens at
the start of hibernation and one week before they died.

a) Relative Body Mass at the start of hibernation

Source† d.f. MS F p

Insemination 1 15 0,429 0,514

Insemination*Male colony 5 32,7 0,938 0,459

Insemination*Date mating 1 8,09 0,232 0,631

Error 122 34,9

Intercept 1 2.00*105 3.59*103 <0.001

Male colony 5 47 0,844 0,521

Date mating 1 607 10,9 0,001

Error 122 55,7

b) Relative Body Mass before death

Source† d.f. MS F p

Insemination 1 16,7 0,958 0,33

Insemination*Male colony 5 6,5 0,373 0,866

Insemination*Date mating 1 19,4 1,11 0,293

Error 122 17,4

Intercept 1 66.7*103 3.38*103 <0.001

Male colony 5 20,1 1,02 0,408

Date mating 1 1.11*103 56,4 <0.001

Error 122 19,7

† Insemination as within subject factor; Male colony as between sub-
ject factor; Date mating as covariate

Table 3. General linear model for the relative abdominal fat content.

Fat

Source† d.f. MS F p

Insemination 1 4.85*10-7 1,38 0,242

Insemination*Male colony 5 3.60*10-7 1,03 0,405

Insemination*Date mating 1 4.36*10-8 0,124 0,725

Error 122 3.51*10-7

Intercept 1 1.26*10-4 299 <0.001

Male colony 5 2.15*10-7 0,51 0,768

Date mating 1 5.37*10-6 12,7 0,001

Error 122 4.22*10-7

† Insemination as within subject factor; Male colony as between sub-
ject factor; Date mating as covariate
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incompatible with some parts of the females� physiology
or immune system. Such mechanisms have been inves-
tigated during the past years (Zeh and Zeh, 2003). In B.
terrestris, for example, strong paternal effects on survival
appeared after artificial insemination where any effect of
additional male products could be largely excluded
(Korner and Schmid-Hempel, 2003). Activation of the
immune system has been shown to reduce the longevity of
bumblebee workers under stressful conditions (Moret
and Schmid-Hempel, 2000). In our experiment we could
not find any paternal effects on the survival of the queens.
Although paternal effects are difficult to prove as large
sample sizes are required in order to show such inter-
actions, we can fairly exclude the influence of genetic
incompatibilities on survival. Likewise, the inseminated
queens with melanized spermatheca did not die signifi-
cantly earlier in our experiment than those with clear
spermatheca. Reduced survival of the inseminated
queens therefore does not seem to relate to the melani-
zation of the spermathecae. The most parsimonious
explanation for the reduced survival of the queens is,
therefore, that sperm impose a general cost of main-
tenance. The reason for the significant effect of the date of
mating on the survival of the queens (and as well on other
parameters of this experiment) is so far enigmatic.

We found a highly significant rise in the frequency of
melanized spermatheca in mated, inseminated bumble-
bee queens compared to non-mated, virgin queens.
Melanization is a key reaction in the immune system of
insects (Ashida and Brey, 1995). It is governed by the
enzyme phenoloxidase (PO), which is stored as an
inactive proenzyme in haemocytes and catalyzes the
chemical cascade that leads to the formation of melanin.
The reaction intermediates (mainly reactive oxygen
species) generated in the enzymatic cascade from tyro-
sine to melanin are toxic to most microorganisms
(Cerenius and Soderhall, 2004) and are under tight
control as the insect itself would suffer from a systemic
activation. Most interestingly, PO is also found in the

cuticular matrix that lines the reproductive ducts. There,
it plays a role in the sequestration of fungal pathogens.
Zeh and Zeh (2003) suggest an ”immunologically hostile
female reproductive tract to provide a physiological
screening process capable of weeding out incompatible
genotypes in sperm”, even though they thought of
polyandrous species. In a monandrous social hymenop-
tera like B. terrestris, such a scenario is very unlikely to
evolve, since the sperm from a single (haploid) father is
clonal and would thus not offer any genotypic variation to
be screened. However, once the reproductive tract is
immunologically competent it may raise immune re-
sponses spuriously. Rather than playing a role in the
avoidance of incompatible sperm from a single father,
melanization could create a mechanism of incompatibil-
ity with regard to different fathers, provided the female
has the opportunity to re-mate (which again is rare in B.
terrestris). In the Drosophila nasuta subgroup, for exam-
ple, interspecific matings were found to result in melan-
ized and persistent reaction masses in the genital tract,
which – given the description – correspond to the mating
plugs of the bumblebees. In intraspecific matings the
reaction masses remained soft and clear, and disappeared
after a while (Asada and Kitagawa, 1988). No such data
exist for bumblebees yet. It is unclear whether in our
experiment mating incompatibilities were apparent.
Mating incompatibilities would manifest themselves as
interaction effects (paternal x maternal lines) and are
difficult to prove as they require large sample sizes. In our
experiment we could not find such effects.

Finally, it may be that the males transferred a
pathogen or other material during mating. In the honey-
bee A. mellifera, Fievet et al. (2006) found virus infections
both of the queens� ovaries and the drones� seminal
vesicles. In B. terrestris, however, there is no evidence for
sexual transmitted diseases so far (Macfarlane et al. ,
1995). Although no bumblebee used in this experiment
showed any unusual signs that could indicate an infection,
the possibility of a contagion during mating cannot
completely be excluded.

No significant differences could be detected between
inseminated and virgin queens in terms of fat content of
the abdomen, ovary size or body mass. Fat reserves in B.
terrestris are usually built up before hibernation inde-
pendently from insemination (Alford, 1975). The matu-
ration of the ovaries depends largely on the amount of
juvenile hormone (Bloch et al. , 2000), which is governed
by the corpora allata. Previous studies have shown that
the corpora allata are small and inactive before hiberna-
tion (Palm, 1948). In queens, ecdysteroid titers were
higher in colony-heading queens when compared to
solitary phase queens (post-mating to end of diapause)
(Geva et al. , 2005). Palm concluded that only after a
successful hibernation the ovaries can start to grow. Since
all of our bumblebees died during hibernation no differ-
ences in ovary size should be expected between insemi-
nated and virgin queens.

Table 4. General linear model for the relative length of ovarioles.

Ovarioles

Source† d.f. MS F p

Insemination 1 8.01*10-6 0,612 0,437

Insemination*Male colony 5 2.56*10-5 1,96 0,096

Insemination*Date mating 1 2.11*10-5 1,61 0,208

Error 71 1.31*10-5

Intercept 1 2.67*10-2 1.38*103 <0.001

Male colony 5 1.20*10-5 0,621 0,684

Date mating 1 1.40*10-5 0,723 0,398

Error 71 1.93*10-5

† Insemination as within subject factor; Male colony as between sub-
ject factor; Date mating as covariate
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We therefore conclude that a reduced survival of
inseminated queens if compared to their virgin sisters,
most likely results from costs of keeping the sperm alive.
In addition, the melanization responses in the sperma-
thecae of inseminated queens hint at mating incompati-
bilities or at transfer of pathogens. Immune response
within the genital tract may give valuable insights for the
understanding of the invertebrate immune system. Proc-
esses of self/non-self discrimination could in conjunction
with mating incompatibilities favour the formation of
subgroups within a population and eventually, the origin
of novel species.
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