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Abstract We extract the abstract core of finite homomorphism dualities using the
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1 Introduction

Finite dualities appeared in [32] in the categorical context of dual characterizations
of various classes of structures. It is a simple idea: characterize a given class both
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by forbidden substructures (associated with subobjects) and by decompositions
(associated with factorobjects); this proved to be surprisingly fruitful. In retrospect,
it was also a timely concept as it coincided with the introduction (in the logical and
artificial intelligence contexts) of the paradigm of Constraint Satisfaction [24, 26].

Only later it was realized (in the context of complexity theory) that these notions
are two aspects of the same general problem, the study of homomorphisms of
relational structures [12].

Finite dualities represent an extremal case of the above mentioned Constraint
Satisfaction Problem. Provided we have a finite duality, the problem in question is
polynomially decidable. Furthermore, in a broad context such problems coincide
with the decision problem for classes of structures that are first-order decidable
[3, 21, 38]. For general relational structures, finite dualities were characterized in [35]
and a number of interesting particular cases were investigated as well [14, 18, 29, 36].

Here, following [33] we return to the original motivation and discuss finite
dualities in the categorical context. We aim at pointing out those categories in which
one can describe finite dualities using the interplay of general categorical and order
theoretical concepts and techniques.

2 Background: Dualities in Graphs and Similar Categories

2.1 The categories we will work with are f initely concrete, that is, the objects
are finite sets endowed with structures, and morphisms are maps respecting the
structures in a specified way.

Typically we have in mind categories such as that of (finite) symmetric graphs, or
oriented graphs, with edge preserving homomorphisms (or more general relations
resp. relational systems), with relation preserving maps. Some of the results can be
applied for other choices of morphisms (strong or full homomorphisms).

2.2 We will assume that our categories admit finite sums (coproducts)

ι j : A j → A =
n∐

i=1

Ai

(characterized by the property that for each system f j : A j → B, j = 1, . . . , n there
is exactly one morphism A → B such that f ι j = f j for all j).

This is the minimal assumption; for more involved facts we will assume also the
existence of finite products

π j : A =
n∏

i=1

Ai → A j

(characterized by the property that for each system f j : B → A j there is exactly
one morphism B → A such that π j f = f j for all j), and also the Heyting property
(see Section 2.6 below).

2.3 The Constraint Satisfaction Problem (briefly, CSP) in a category C is the
membership problem of the class

CSP(B) = {X ∈ C | X → B for some B ∈ B}
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where X → Y stands for “there exists a morphism f : X → Y” and B is a class
of objects. Here we are concerned with the situation in which this class can be
represented as

Forb(A) = {X ∈ C | A � X for all A ∈ A}

where X � Y stands for “there exists no morphism f : X → Y” and A is a finite
class of objects (with an infinite A this is always possible). In fact the classes B we
are interested in are also finite. Thus, we investigate the situations of finite systems
A1, . . . , An and B1, . . . , Bm of objects such that

∀i, Ai � X iff ∃ j, X → B j (2.0.1)

and in this case we speak of a f inite duality.

Note Instead of forbidding morphisms from the objects Ai, one is sometimes
interested in forbidding subobjects from a finite family of isomorphism classes. If we
have (2.0.1), it is easy to replace the Ai’s by finitely many other objects providing such
a “subobject forbidding characterization”. Similarly, the X → B type requirements
can typically be replaced by requirements of epimorphisms.

Note The name Constraint Satisfaction Problem originates in the computational
setting, where the description involves variables and constraints (the elements and
structures of X) and a domain with relations (the structures in B).

2.4 The Poset C̃

Given a category C, consider the set of objects ordered by

A ≤ B ≡df ∃ f : A → B

and denote the obtained (pre-)ordered set by

C̃.

In fact, we usually think of C̃ as the poset of the obvious equivalence classes.
Note that if we assume the existence of sums as we did in Section 2.2 above, C̃ is a

join-semilattice. If we have, moreover, also the products, C̃ is a lattice.

2.5 Heyting Categories

A Heyting algebra is a bounded lattice with an extra operation ⇒ satisfying

a ∧ b ≤ c iff a ≤ (b ⇒ c).

A Heyting category is a category C such that C̃ is a Heyting algebra.
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Note Trivially, any Cartesian closed category (that is, a category with exponentia-
tion 〈X, Y〉 such that the sets of morphisms

A × B → C and A → 〈B, C〉
are naturally equivalent—see, e.g. [23]) is Heyting. However, Cartesian closedness is
not in general necessary, because in a Heyting category the requirement is weaker:
we just require that there exist a morphism A × B → C iff there exists a morphism
A → (B ⇒ C) and drop the requirement of natural equivalence. An example of a
Heyting category which is not Cartesian closed is the category of loopless graphs
(with an additional terminal object). For this and more examples, see [33].

2.6 Cores

In our categories the objects can be canonically reduced to make the relation A → B
antisymmetric (up to isomorphism).

Lemma 2.6.1 Let X be a f inite object in a concrete category. Then each bijective
morphism φ : X → X is an isomorphism.

Proof There is a k �= 0 and n such that φn+k = φn. Thus, φk = id and φ · φk−1 = φk−1 ·
φ = id. �

Proposition 2.6.2 Let X be a f inite object in a concrete category. Then the smallest
subobject Y ⊆ X such that there is a morphism f : X → Y

(1) is a retract of X, and
(2) is uniquely determined, up to isomorphism.

Proof

(1) Let j : Y → X be the embedding morphism. Then, by minimality, φ = f j :
Y → Y is bijective and by Lemma 2.6.1 it is an isomorphism, and we have the
retraction r = φ−1 f .

(2) Now if j ′ : Z → X is an embedding of another subobject with the property, we
have mutually inverse isomorphisms r′ j and rj ′. �

The object Y from Proposition 2.6.2 is called the core of X; denote it by cX. An
object X is called a core if it is the core of some object. Note that

– a core is the core of itself, and
– in a concrete category C with finite objects, A and B are equivalent in C̃ (that is

A ≤ B and B ≤ A) iff cA and cB are isomorphic.

Thus, if we restrict ourselves to cores and representatives of isomorphism classes,

– the pre-ordered set C̃ becomes actually a poset.

Furthermore, any duality

∀i, Ai � X iff ∃ j, X → B j



Order (2010) 27:327–342 331

can be replaced by the duality in the cores

∀i, cAi � X iff ∃ j, X → cB j

[16, 17].

3 Transversals and Weak Right Duals

3.1 In a poset (X, ≤) we will use the standard notation, for a subset M ⊆ X,

↓M = {x ∈ X | ∃m ∈ M, x ≤ m},
↑M = {x ∈ X | ∃m ∈ M, x ≥ m},

and for an element m ∈ X, let ↓m = ↓{m} and ↑m = ↑{m}.

3.2 Connected Elements

A element a of a lattice L is connected if

a ≤ b ∨ c ⇒ a ≤ b or a ≤ c. (3.2.1)

Note Another (and perhaps more frequently used) term is join-prime or ∨-prime.
We use “connected” because of the interpretation in the posets C̃ (recall Section 2.4)
we are primarily interested in. Note that a core graph satisfies (3.2.1) (in any choice
of morphisms at least as demanding as the standard graph homomorphism) iff it is
connected in the usual sense, i.e., there is a path between any two of its vertices.

The set of all connected elements of a semilattice L will be denoted by

CnL or simply by Cn .

3.3 Connected Decompositions

The upper semilattices we will be working with will possess f inite connected decom-
positions, that is

for each a ∈ L, there is finite F ⊆ CnL such that a = ∨
F. (3.3.1)

Note In a semilattice L satisfying (3.3.1), the set ↓a ∩ CnL has only finitely many
maximal elements for every a ∈ L, and

a = ∨
Max(↓a ∩ Cn).

The latter is then the only irredundant connected decomposition of a.

A connected component of an element a ∈ L is a c ∈ CnL such that a = c or there
exists a decomposition a = b ∨ c �= b .
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For a subset A ⊆ L write

ACn

for the set of all connected components of the elements from A. Clearly, a connected
element has exactly one connected component: itself. Moreover, in a lattice with
finite connected decompositions, ACn is finite for every finite subset A ⊆ L.

Note In a (semi)lattice satisfying (3.3.1), we have

{a}Cn = Max(↓a ∩ Cn).

3.4 Finite Dualities

A duality pair (l, r) in L is a pair of elements such that

↓r = L \ ↑l

(that is,

l � x iff x ≤ r. )

The element r (obviously uniquely determined by l) is then called the right dual of
l, and similarly l is called the left dual of r. If the other element of the pair is not
specified we speak of a right or a left dual.

Note The elements l that are left duals are always connected. In fact, whenever
l ≤ ∨

xi for any join
∨

xi, then necessarily l ≤ x j for some j (indeed, if for all j, l � x j

then for all j, x j ≤ r, and hence
∨

xi ≤ r and l �

∨
xi). This property is usually called

supercompactness, for obvious reasons.

A f inite duality in L is a pair (A, B) of finite subsets of L such that

(1) distinct elements in A resp. B are incomparable, and
(2) x ∈ ↑A iff x /∈ ↓B (in other words, ↓B = L \ ↑A).

(Compare with Section 2.3.) An element l (resp. r) is a weak left dual (resp. weak
right dual) if there is a finite duality (A, B) such that l ∈ A (resp. r ∈ B).

Fact 3.4.1 The set B in a f inite duality (A, B) is uniquely determined by A, and vice
versa.

Proof If (A, B1), (A, B2) are finite dualities then ↓B1 = ↓B2, and hence for each
x∈ B1 there is an α(x)∈ B2 such that x≤α(x), and similarly for each x∈ B2 there is a
β(x) ∈ B1 such that x ≤ β(x). Thus, x ≤ βα(x) and x ≤ αβ(x) and by incomparability
αβ = id and βα = id, and finally x≤α(x)≤x and α(x)=x and similarly β(x)=x. �

3.5 Transversals

For antichains M, N ⊆ L, we will write

M � N for N ⊆ ↑M . (3.5.1)

One sometimes speaks of M as of a ref inement of N; thus if M � N, then N is coarser.
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A subset M ⊆ ACn is said to be a transversal of A ⊆ L if

(T1) distinct elements of M are incomparable,
(T2) A ⊆ ↑M, and
(T3) in the refinement order �, M is maximal with respect to the properties (T1)

and (T2).

A subset satisfying only (T1) and (T2) is called a quasitransversal of A.

3.6 Let (A, B) be a finite duality. If M is a quasitransversal of A, then by (T2)

↑A ⊆ ↑M and hence L \ ↑M ⊆ ↓B .

For a quasitransversal M of A, set

M = ACn \ ↑M.

Note that if M, N are quasitransversals such that M � N, then M ⊆ N.
In the following, if we speak about M being a (quasi)transversal for (A, B), we

mean that (A, B) is a finite duality and M is a (quasi)transversal for A.

Lemma 3.6.1 Let M = ∅ for a transversal M of (A, B). Then

1. A = M = ACn, and
2. B has only one element.

Proof

1. Suppose first that A �= ACn. Let c be a maximal element of the set {c ∈
ACn | c is a component of some disconnected a ∈ A}. Then c /∈ A because A is
an antichain. As M = ∅ and by the choice of c, the set M \ {c} is a quasitransver-
sal, and moreover M � M \ {c}; thus M = M \ {c} and so c /∈ M. Because c /∈
M = ∅, there is some c′ ∈ M such that c′ < c. Again, since A is an antichain,
c′ /∈ A. Let A′ = {a ∈ A | ↓a ∩ M = {c′}}; observe that c′ /∈ A′

Cn because c′ /∈ A.
Let M′ = Min

(
(M \ {c′}) ∪ A′

Cn

)
. Then M′ is a quasitransversal and M ≺ M′, a

contradiction. Thus A = ACn.
Hence ACn is an antichain, so it is a quasitransversal. Since ACn \ ↑M = ∅ we
have ACn ⊆ ↑M, and hence M � ACn. By (T3), ACn = M.

2. Let r1, r2 ∈ B be distinct. Then, by the incomparability condition, r1 ∨ r2 � r for
all r ∈ B and hence l ≤ r1 ∨ r2 for some l ∈ A. Now by 1., l is connected and
hence l ≤ r1 or l ≤ r2, a contradiction. �

Lemma 3.6.2 Let M be a transversal of (M, B). Then

1. M = ∅, and
2. there is no other transversal.



334 Order (2010) 27:327–342

Proof

1. By definition, all elements of a transversal are connected, so M = MCn and M =
MCn \ ↑MCn = ∅.

2. If N is another transversal, then N ⊆ MCn = M ⊆ ↑M, and so M � N. Thus, by
(T3), N = M. �

Lemma 3.6.3 Let M be a transversal of (A, B). Then there is precisely one r ∈ B such
that

(1) M ∩ ↓r = ∅, and
(2) M ⊆ ↓r.

Proof

I. If M = ∅ for a transversal M, we have B = {r} by Lemma 3.6.1, and this r
satisfies the conditions.

II. Now suppose that A is not its own transversal. Then M �= ∅. Set s = ∨
M. We

have s /∈ ↑M (if x ∈ M and x ≤ s then by connectedness x ≤ y ∈ M), hence s /∈
↑A, and consequently s ∈ ↓B and we have an r ∈ B such that s ≤ r so that
M ⊆ ↓s ⊆ ↓r.
Now suppose c ∈ M ∩ ↓r. By (T3), the set (M \ {c}) is not a quasitransversal,
and thus A � ↑(M \ {c}). Choose some l ∈ A \ ↑(M \ {c}) and let l = ∨

li be a
connected decomposition of l. If li ≥ b ∈ M, then b = c and hence li = c. Hence
for every i, either li = c or li ∈ M, and therefore l ≤ r, contradicting the duality.

III. Finally let distinct r1, r2 have the property. Then r1 ∨ r2 /∈ ↓B, hence r1 ∨ r2 ∈
↑M and there is a (connected) x ∈ M such that x ≤ r1 ∨ r2; thus, x ≤ r1 or x ≤
r2, contradicting (1). �

3.7 The uniquely determined r from Lemma 3.6.3 will be denoted by

r(M).

Note that if A is not its own transversal, then r(M) is determined by the formula
∨

M ≤ r(M) ∈ B. (3.5.2)

Lemma 3.7.1 If M1, M2 are distinct transversals, then M1 ∩ M2 �= ∅.

Proof If M1 �= M2, then M2 �� M1 and hence there is a c ∈ M2 \ ↑M1. Then c ∈
(ACn \ ↑M1) ∩ M2. �

Lemma 3.7.2 For r ∈ B set M = Min{x ∈ ACn | x � r}. Then M is a quasitransversal,
and if Mr is a transversal with M � Mr, then r(Mr) = r.

Proof Let l ∈ A. Then l = ∨{x ∈ ACn | x ≤ l} � r and hence there is an x ∈ ACn such
that x ≤ l and x � r. Thus M is a quasitransversal.

We have Mr = M. If M = ∅, then Lemma 3.6.1 applies. Suppose that M �= ∅ and∨
M � r. Then there is an x ∈ M such that x � r, that is, x ∈ M, a contradiction. �
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Proposition 3.8 Let (A, B) be a f inite duality in a semilattice with f inite connected
decompositions. The formulas

M �→ r(M) where
∨

M ≤ r(M) ∈ B (if M �= ∅),

r �→ Mr where Mr � M = {x ∈ ACn | x � r}
constitute a one-to-one correspondence between the transversals of (A, B) and ele-
ments of B.

Proof We already know that r(Mr) = r. Let M1, M2 be distinct transversals.
By Lemma 3.7.1, there is a c ∈ M1 ∩ M2. By Lemma 3.6.3(1), c � ↓r(M1) and
by (3.5.2), c ≤ ↓r(M2). Hence r(M1) �= r(M2). �

Proposition 3.9 Let L be a semilattice with f inite connected decompositions and let
(A, B) be a f inite duality. Then each transversal M of A together with the element
r(M) def ined in Section 3.7 constitutes a f inite duality

(
M, {r(M)}).

Proof Set r = r(M). We have M ⊆ L \ ↓r(M) and hence ↑M ⊆ L \ ↓r(M)

by Lemma 3.6.3.
Now let x /∈ ↑M = ⋃{↑c | c ∈ M}. We want to prove that x ∈ ↓r(M). Let y =

x ∨ ∨
M. We have c � x for all c ∈ M, and by connectedness c � y for all c ∈ M.

Suppose that l ≤ y for some l ∈ A. If c ∈ M and c ≤ l we have c ≤ y and hence c ≤ x,
a contradiction. Thus, y /∈ ↑A and hence y ≤ ↓B, that is, y ≤ r′ for some r′ ∈ B. But
then

∨
M ≤ r′ and hence r′ = r(M). Therefore x ∈ ↓r(M). �

4 Connected Components of Weak Left Duals are Left Duals

In Section 3.7 we have seen that given a finite duality (A, B), each element r ∈ B is in
a duality (M, {r}). In this section we will obtain dualities in the reversed order. Instead
of dualities for elements l ∈ A we will have them for their connected components
c ∈ ACn. For these, however, we will prove something stronger. Namely, we will show
that each such element is a left dual.

Unlike the previous section we will have to assume that the lattice L is Heyting
(and hence the categorical interpretation holds for Heyting categories only).

4.1 Gaps

A pair of elements (a, b) of a poset L is a gap if a < b and a ≤ c ≤ b implies that
a = c or b = c, for every c ∈ L.

4.2 We will need two facts from [33].

Proposition 4.2.1 ([33], 2.6) The gaps in a Heyting algebra L with connected decom-
positions are exactly the pairs (a, b) such that for some duality (l, r),

l ∧ r ≤ a ≤ r and b = a ∨ l.
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Proposition 4.2.2 ([33], 3.3) Let L be a Heyting algebra with connected decomposi-
tions, let A = {li | i ∈ J} be a subset of L and let r ∈ L. Let either J be f inite or L admit
inf ima of sets of the size of J. Then the pair (A, {r}) is a duality if and only if there are
dualities (li, ri), i ∈ J, such that

r =
∧

i∈J

ri.

Lemma 4.3 In a Heyting algebra with f inite connected decompositions, every element
of a transversal of a f inite duality (A, B) is a left dual.

Proof Let M be a transversal. We have the duality (M, r(M)), by Proposition 3.9.
Thus, by Proposition 4.2.2 there is a duality (m, rm) for each m ∈ M. �

Proposition 4.4 In a Heyting algebra with f inite connected decompositions, a con-
nected component of a weak left dual is a left dual.

Proof Let (A, B) be a duality and let c ∈ ACn. Suppose it is not a left dual; then in
particular, by Lemma 4.3, it is contained in no transversal.

Set

a = ∨{c′ ∈ ACn | c′ < c} ∨ ∨{c ∧ c′ | c′ ∈ ACn, c, c′ incomparable}.
We have a < c since else by the connectedness of c some of the summands would be
equal to c, which they are not. Now the couple (a, c) is not a gap: else we would have,
by Proposition 4.2.1 a duality (l, r) such that c = a ∨ l, and hence c = l.

Thus there exists x such that

a < x < c.

Claim If c′ ∈ ACn and c′ �= c then

c′ ≤ x if f c′ < c, and

c′ ≥ x if f c′ > c.

Proof of Claim In the first case: if c′ ≤ x, then c′ ≤ x < c; and if c′ < c, then
c′ ≤ a < x.

Now consider the second case. Trivially if c < c′, then x ≤ c′. Now suppose
x ≤ c′. Then if c′ < c, we have x = c′ by the first equivalence, hence x = c′ ≤ a, a
contradiction. If c and c′ are incomparable, then x ≤ c ∧ c′ ≤ a, a contradiction again.
Thus, c < c′ is the only alternative left. �

Proof continued Let l ∈ A be such that c is one of its connected components and let
l = b ∨ c �= b be a decomposition witnessing the fact. Set q = b ∨ x. We cannot have
l ≤ q since else c ≤ b and b ≤ l ≤ b contradicting the choice of the decomposition.
Consequently, we also have l′ � q for any other l′ ∈ A since otherwise l′ ≤ l. Thus,
∀l ∈ A, l � q and hence

∃r ∈ B, q ≤ r.



Order (2010) 27:327–342 337

Let M be the transversal such that r = r(M), so that in particular

∀m ∈ M, m � q.

We have c /∈ M since c is in no transversal, and hence m � x for all m ∈ M. By Claim,
m � c for all m ∈ M, and hence c ≤ r.

Now, since q ≤ r, we have l = q ∨ c ≤ r contradicting the duality (A, B). �

Corollary 4.4.1 If a Heyting algebra with f inite connected decompositions has no non-
trivial duality pair, then it admits no nontrivial f inite duality.

4.5 Note

Compare the following two facts (the first obtained by combining Propositions 3.8
and 4.2.2, the second is an immediate consequence of Proposition 4.4) holding in
Heyting algebras with connected decompositions:

– each weak right dual is a meet of right duals, and
– each weak left dual is a join of left duals.

(The facts from which these statements follow are, of course, stronger.)

5 The Transversal Construction Reversed: From Dual Pairs to Finite Dualities

In previous sections the notion of a transversal helped to analyze finite dualities
(A, B) in terms of the individual elements of A and B. The elements r ∈ B have been
shown to be naturally associated with transversals of (A, B) (in Proposition 3.8), and
then the elements of A have been shown to be joins of left duals (see Proposition
4.4). In this section we will use the procedure reversely: namely, for a finite set A of
sums of left duals we will construct a finite duality.

Observation 5.1 In any lattice, if (li, ri), i = 1, . . . , n, are dual pairs, then
({l1, . . . , ln}, {∧n

1=1 ri}) is a duality.

(Indeed, ∀i, li � x iff ∀i, x ≤ ri iff x ≤ ∧
ri.)

Lemma 5.2 In a distributive lattice L, let c be a connected component of an a ∈ L and
let a = ∨n

i=1 ai. Then c is a connected component of some ai.

Proof Let a = x ∨ c �= x. By the connectedness, c ≤ ai for some i. Then ai = (x ∨ c) ∧
ai = (x ∧ ai) ∨ c �= x ∧ ai since otherwise c ≤ x and a = x. �
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Proposition 5.3 Let L be a Heyting algebra with f inite connected decompositions. Let
A be a f inite set such that each a ∈ A is a f inite join of left duals. Then there exists a
f inite duality (A, B).

Proof Let a = ∨na
i=1 ci(a) be connected decompositions of the a ∈ A. Then

ACn ⊆ {ci(a) | a ∈ A, i = 1, . . . na}.
Now if a = ∨k

j=1 a j with a j left duals, then each connected component of a is,
by Lemma 5.2, a connected component of some of the a j, and hence each ci(a) ∈ ACn
is, by Proposition 4.4, a left dual. Denote by ri(a) the corresponding right dual.

Let M be the set of transversals of A, hence M ⊆ ACn. Trivially, it is finite. For
M ∈ M set

rM = ∧{ri(q) | ci(q) ∈ M}
and consider

B = {rM | M ∈ M}.
Let x ≤ rM for some M ∈ M. Then for all ci(q) ∈ M, we have x ≤ ri(q) and hence
ci(q) � x. For an arbitrary a ∈ A there is a ci(q) ≤ a and hence a � x.

On the other hand, let a � x for all a ∈ A. Thus, for each a ∈ A we have a
connected component xia(a) such that xia(a) � x. Set

M′ = {xia(a) | a ∈ A}
and consider M′′ the system of all minimal elements of M′ (to satisfy (T1)). Now M′′
is a quasitransversal and we have a transversal M � M′′. Then for each ci(q) ∈ M,
we have ci(q) � x, hence x ≤ ri(q), and finally x ≤ r. �

Note The elements rM corresponding to the transversals M are exactly the minimal
elements of B′ = {∧a∈A ria(a) | 1 ≤ ia ≤ na}, and so B = Min B′.

From Propositions 4.4 and 5.3 we now immediately obtain.

Corollary 5.3.1 Let L be a Heyting algebra with f inite connected decompositions.
Then the following statements on an element a ∈ L are equivalent:

(1) a is a weak left dual,
(2) a is a f inite join of left duals.

5.4 Define

wld(L)

as the set of all the weak left duals in L (this is the obvious abbreviation, but, by
coincidence it also alludes to the German word “Wald” for forest; it so happens that
in case of binary relations the weak left duals are precisely the disjoint unions of
trees, the forests). Then, by Proposition 5.3 (and Fact 3.4.1) we have
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Corollary 5.4.1 For each antichain A ⊆ wld(L) there is precisely one f inite duality
(A, B).

5.5 Note

By Observation 5.1 and the definition of rM, we have the dualities (M, {rM}), and
hence if ci(q) ∈ M, that is, ci(q) /∈ ↑M, then ci(q) ≤ rM. Thus,

∨
M ≤ rM

and rM = r(M) as in Proposition 3.8.

5.6 Remarks

As we already mentioned in Section 2.1, typical examples of a Heyting algebra
we have in mind are provided by categories of graphs or relational structures. A
characterization of finite dualities in the category of relational structures is provided
in [14, 35]. The relationship between finite dualities and duality pairs (analogues
of our Propositions 4.4 and 5.3) has recently been reproved in the special case of
digraphs [11] using the Directed Sparse Incomparability Lemma. Here we would
like to point out that sparse incomparability is not necessary to achieve these
results; in fact, much weaker assumptions suffice. However, we do employ sparse
incomparability in the next section, where we study the connection between dualities
and maximal antichains.

6 Sparse Incomparability and Antichains

6.1 In [5] one can find the following fact (cf. [34, 37]).

Directed Sparse Incomparability Lemma Let m, k be positive integers and let H be
a directed graph which is not an orientation of a forest. Then there exists a directed
graph H′ such that

(1) the girth of H′ is f inite and greater than k,
(2) for each directed graph G with fewer than m vertices, we have H′ → G if f H →

G, and
(3) H � H′ and H′ → H.

It should be clear now why the following assumption will be made in the Heyting
context.

Sparse incomparability axiom—briefly, SIA.
This is the assumption that for any x ∈ L, any M, U finite subsets of L such that

({x} ∪ ↑U) ∩ wld(L) = ∅, there is a y ∈ L \ wld(L) such that

y ∈ ↑{x}, y /∈ ↑({x} ∪ U) and ∀m ∈ M, y ≤ m iff x ≤ m. (SIA)

So for instance, if C is the category of digraphs (or relational structures with a fixed
signature) and homomorphisms, then the poset C̃ defined in Section 2.4 is a Heyting
algebra with SIA.
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Observation 6.2 If (A, B) is a finite duality in a lattice L, then

A ∪ (B \ ↓A)

is a finite maximal antichain in L.

(Indeed, it is an antichain because a � b for any a ∈ A, b ∈ B. It is maximal
because each x ∈ L is either in ↑A or there is a b ∈ B with x ≤ B; in the latter case,
if b ≤ a for an a ∈ A we have x ≤ a.)

6.3 We are now going to show that the antichains of Observation 6.2 are in some
sense the typical antichains in Heyting algebras with finite connected decompositions
and SIA.

Lemma 6.3.1 In a Heyting algebra L with SIA and f inite connected decompositions,
let C be a f inite maximal antichain. Set A = C ∩ ↓wld(L). Then

↑C \ C = ↑A \ C.

Proof The inclusion ⊇ is trivial. Thus, let x ∈ ↑C \ C and set U = C \ A.
If x /∈ ↑U then x ∈ ↑A and hence x ∈ ↑A \ C.
If x ∈ ↑U then x /∈ wld(L). We have ↑U ∩ wld(L) = ∅ and hence we can apply

SIA to obtain a y /∈ wld(L) such that

y /∈ ↑({x} ∪ U) and ∀m ∈ C ∪ {x}, y ≤ m iff x ≤ m. (∗)

Now x ∈ ↑C \ C and hence if m ∈ C ∪ {x} then x ≤ m only if x = m and consequently
y /∈ ↓C. Since C is a maximal antichain, y ∈ ↑C \ C. By (∗), y /∈ U = C \ A, hence
y ∈ ↑A and since y ≤ x we have, by (∗) again, x ∈ ↑A. �

Proposition 6.3.2 In a Heyting algebra L with SIA and f inite connected decomposi-
tions, let C be a f inite maximal antichain such that A = C ∩ ↓wld(L) = C ∩ wld(L).
Consider the unique f inite duality (A, B). Then

C = A ∪ (B \ ↓A).

Proof If b ∈ B then b /∈ ↑A and hence, by Lemma 6.3.1, b /∈ ↑C \ C. Consequently,
since C is a maximal antichain, b ∈ ↓C.

Now suppose that, moreover, b /∈ ↓A. We want to prove that b ∈ C. If not, b < c
for some c ∈ C and this means, by our assumption, that c ∈ C \ A. Then c � b ′ for
all b ′ ∈ B and hence, by duality, a ≤ c for some a ∈ A contradicting the antichain
property. Thus, b ∈ C and we have A ∪ (B \ ↓A) ⊆ C, and since by Observation 6.1
A ∪ (B \ ↓A) is a maximal antichain, A ∪ (B \ ↓A) = C. �
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6.4 Splitting antichains

Our final Proposition 6.3.2 asserts that every finite maximal antichain C in a Heyting
algebra L with SIA either contains an element of ↓wld(L) \ wld(L), or has a
very special structure. In particular, if B ∩ ↓A = ∅, it can be split into two subsets
(A and B) so that every element of L \ C is above A or below B. This fact has
a direct connection to the splitting property of posets (see [1, 2, 6, 9–11, 13]).
Indeed, in [14] it is proved that finite maximal antichains in the poset arising from
the category C of relational structures with one relation contain no elements of
↓wld(C̃) \ wld(C̃). Almost all such antichains split, with finitely many characterized
exceptions. However, the proof relies heavily on special properties of the category in
question (digraphs) and we do not expect that it could be easily translated into the
general setting of Heyting algebras.

6.5 Remarks

The Sparse Incomparability Lemma has a long and interesting history. While it seems
to have been formulated specifically in this form first in [34] for G = Kn and then
in [37] for general G, it was preceded in the seminal work on sparse graphs with high
chromatic number by Erdős and others [4, 7, 8, 15, 19, 22, 25, 27, 28, 39]. This useful
lemma is related to an important result in descriptive complexity by Kun [20], and to
a recent result on limits in graph sequences [30, 31].
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14. Foniok, J., Nešetřil, J., Tardif, C.: Generalised dualities and maximal finite antichains in the
homomorphism order of relational structures. Eur. J. Comb. 29(4), 881–899 (2008)

15. Greenwell, D., Lovász, L.: Applications of product colouring. Acta Math. Acad. Sci. Hung. 25,
335–340 (1974)
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